X. OPEN-CHANNEL FLOW

Previous internal flow analyses have considered only closed conduits where the fluid typically fills the entire conduit and may be either a liquid or a gas.

This chapter considers only partially filled channels of liquid flow referred to as open-channel flow.

Open-Channel Flow: Flow of a liquid in a conduit with a free surface.

Open-channel flow analysis basically results in the balance of *gravity and friction forces*.

One Dimensional Approximation

While open-channel flow can, in general, be very complex (three dimensional and transient), one common approximation in basic analyses is the

One-D Approximation: The flow at any local cross section can be treated as uniform and at most varies only in the principal flow direction.

Fig. 10.2 Geometry and notation for open- channel flow.

This results in the following equations.

<u>Conservation of Mass</u> (for ρ = constant)

$$Q = V(x) A(x) = constant$$

Energy Equation

$$\frac{V_1^2}{2g} + Z_1 = \frac{V_2^2}{2g} + Z_2 + h_f$$

The equation in this form is written between two points (1-2) on the free surface of the flow. Note that along the free surface, the pressure is a constant, is equal to local atmospheric pressure, and does not contribute to the analysis with the energy equation.

The friction head loss h_f is analogous to the head loss term in duct flow, Ch. VI, and can be represented by

$$h_f = f \frac{x_2 - x_1}{D_h} \frac{V_{avg}^2}{2g}$$
 where P = wetted perimeter
 D_h = hydraulic diameter = $\frac{4A}{P}$

Note: One of the most commonly used formulas uses the hydraulic radius:

$$R_{h} = \frac{1}{4}D_{h} = \frac{A}{P}$$

Flow Classification by Depth Variation

The most common classification method is by rate of change of free-surface depth. The classes are summarized as

- 1. Uniform flow (constant depth and slope)
- 2. Varied flow
 - a. Gradually varied (one-dimensional)
 - b. Rapidly varied (multidimensional)

Flow Classification by Froude Number: Surface Wave Speed

A second classification method is by the dimensionless Froude number, which is a dimensionless surface wave speed. For a rectangular or very wide channel we have

$$Fr = \frac{V}{c_o} = \frac{V}{(gy)^{1/2}}$$
 where y is the water depth and $c_o = (gy)^{.5}$

and $c_0 =$ the speed of a surface wave as the wave height approaches zero.

There are three flow regimes of incompressible flow. These have analogous flow regimes in compressible flow as shown below:

Incompressible Flow		Compressible Flow	
Fr < 1	subcritical flow	Ma < 1	subsonic flow
Fr = 1	critical flow	Ma = 1	sonic flow
Fr > 1	supercritical flow	Ma > 1	supersonic flow

Hydraulic Jump

Analogous to a normal shock in compressible flow, a hydraulic jump provides a mechanism by which an incompressible flow, once having accelerated to the supercritical regime, can return to subcritical flow. This is illustrated by the following figure.

Fig. 10.5 Flow under a sluice gate accelerates from subcritical to critical to supercritical and then jumps back to subcritical flow.

The critical depth
$$y_c = \left(\frac{Q}{b^2 g}\right)^{1/3}$$
 is an important parameter in open-

channel flow and is used to determine the local flow regime (Sec. 10.4).

Uniform Flow; the Chezy Formula

Uniform flow

- 1. Occurs in long straight runs of constant slope
- 2. The velocity is constant with $V = V_0$
- 3. Slope is constant with $S_o = tan \theta$
- 4. Water depth is constant with $y = y_n$

From the energy equation with $V_1 = V_2 = V_0$, we have

$$\mathbf{h}_{\mathrm{f}} = \mathbf{Z}_{1} - \mathbf{Z}_{2} = \mathbf{S}_{\mathrm{o}}\mathbf{L}$$

where L is the horizontal distance between 1 and 2. Since the flow is fully developed, we can write from Ch. VI

$$h_{f} = f \frac{L}{D_{h}} \frac{V_{o}^{2}}{2g}$$
 and $V_{o} = \left(\frac{8g}{f}\right)^{1/2} R_{h}^{1/2} S_{o}^{1/2}$

For fully developed, uniform flow, the quantity $\left(\frac{8g}{f}\right)^{1/2}$ is a constant

and can be denoted by C. The equations for velocity and flow rate thus become

$$V_o = C R_h^{1/2} S_o^{1/2}$$
 and $Q = C A R_h^{1/2} S_o^{1/2}$

The quantity C is called the Chezy coefficient, and varies from 60 ft^{1/2}/s for small rough channels to 160 ft^{1/2}/s for large rough channels (30 to 90 m^{1/2}/s in SI).

Example 10.1 A straight rectangular channel is 6 ft wide and 3 ft deep and laid on a slope of 2°. The friction factor is 0.022. Estimate the uniform flow rate in cubic feet per second. Assume steady, uniform flow. Solve using

Assume steady, uniform flow. Solve using the Chezy formula.

$$C = \sqrt{\frac{2g}{f}} = \sqrt{\frac{2 \cdot 32.2 \text{ ft/s}^2}{0.022}} = 108 \frac{\text{ft}^{1/2}}{\text{s}}, A = b \text{ y} = 6 \text{ ft} \cdot 3 \text{ ft} = 18 \text{ ft}^2$$
$$R_h = \frac{A}{P_{wet}} = \frac{18 \text{ ft}^2}{(3+6+3)\text{ ft}} = 1.5 \text{ ft} \qquad S_o = \tan\theta = \tan 2^o$$
$$Q = CA R_h^{1/2} S_o^{1/2} = 108 \frac{\text{ft}^{1/2}}{\text{s}} \cdot 18 \text{ ft}^2 \cdot 1.5 \text{ ft} \cdot \left(\tan 2^o\right)^{1/2} = 450 \frac{\text{ft}^3}{3}$$

The Manning Roughness Correlation

The friction factor f in the Chezy equations can be obtained from the Moody chart of Ch. VI. However, since most flows can be considered fully rough, it is appropriate to use Eqn 6.64:

fully rough flow:
$$f \approx \left(2.0 \log \frac{3.7 D_h}{\varepsilon}\right)^{-2}$$

However, most engineers use a simple correlation by Robert Manning:

S.I. Units
$$V_o(m/s) \approx \frac{\alpha}{n} \left[R_h(m) \right]^{2/3} S_o^{1/2}$$

B.G. Units
$$V_o(ft/s) \approx \frac{\alpha}{n} \left[R_h(ft) \right]^{2/3} S_o^{1/2}$$

where n is a roughness parameter given in Table 10.1 and is the same in both systems of units and α is a dimensional constant equal to 1.0 in S.I. units and 1.486 in B.G. units. The volume flow rate is then given by

Uniform flow
$$Q = V_o A \approx \frac{\alpha}{n} A R_h^{2/3} S_o^{1/2}$$

Example 10.2

Use the Manning formula in English units, Eqn. 10.19, to predict flow rate.

For a brickwork channel, from Table 10.1 use n = 0.015

$$A = b \ y = \frac{b^2}{2} \qquad R_h = \frac{A}{P_{wet}} = \frac{b \cdot b/2}{b + 2 \cdot b/2} = \frac{b}{4}$$
$$Q = \frac{\alpha}{n} A R_h^{2/3} S_0^{1/2} = \frac{1.486}{0.015} \left(\frac{b^2}{2}\right) \left(\frac{b}{4}\right)^{2/3} (0.006)^{1/2} = 100 \frac{ft^3}{s}$$
Solving for b we obtain
$$b^{8/3} = 65.7 \qquad b = 4.8 \ ft$$

Table 10.1 Experimental Values for Manning's n Factor

	"	Average roughness height ϵ	
		ft	mm
Artificial lined channels:			
Glass	0.010 ± 0.002	0.0011	0.3
Brass	0.011 ± 0.002	0.0019	0.6
Steel, smooth	0.012 ± 0.002	0.0032	1.0
Painted	0.014 ± 0.003	0.0080	2.4
Riveted	0.015 ± 0.002	0.012	3.7
Cast iron	0.013 ± 0.003	0.0051	1.6
Cement, finished	0.012 ± 0.002	0.0032	1.0
Unfinished	0.014 ± 0.002	0.0080	2.4
Planed wood	0.012 ± 0.002	0.0032	1.0
Clay tile	0.014 ± 0.003	0.0080	2.4
Brickwork	0.015 ± 0.002	0.012	3.7
Asphalt	0.016 ± 0.003	0.018	5.4
Corrugated metal	0.022 ± 0.005	0.12	37
Rubble masonry	0.025 ± 0.005	0.26	80
Excavated earth channels:			
Clean	0.022 ± 0.004	0.12	37
Gravelly	0.025 ± 0.005	0.26	80
Weedy	0.030 ± 0.005	0.8	240
Stony, cobbles	0.035 ± 0.010	1.5	500
Natural channels:			
Clean and straight	0.030 ± 0.005	0.8	240
Sluggish, deep pools	0.040 ± 0.010	3	900
Major rivers	0.035 ± 0.010	1.5	500
Floodplains:			
Pasture, farmland	0.035 ± 0.010	1.5	500
Light brush	0.05 ± 0.02	6	2000
Heavy brush	0.075 ± 0.025	15	5000
Trees	0.15 ± 0.05	?	2

*A sinte complete for is given in Ref. 4, pp. 110...119.