Uniform Flow in a Partly Full, Circular Pipe

Fig. 10.6 shows a partly full, circular pipe with uniform flow. Since frictional resistance increases with wetted perimeter, but volume flow rate increases with cross sectional flow area,

(a)

(b)

Fig. 10.6 Uniform Flow in a Partly Full, Circular Channel

$$
\mathrm{A}=\mathrm{R}^{2}\left(\theta-\frac{\sin 2 \theta}{2}\right) \quad \mathrm{P}=2 \mathrm{R} \theta \quad \mathrm{R}_{h}=\frac{\mathrm{R}}{2}\left(1-\frac{\sin 2 \theta}{2 \theta}\right)
$$

The previous Manning formulas are used to predict V_{o} and Q for uniform flow when the above expressions are substituted for A, P, and R_{h}.

$$
\mathrm{V}_{\mathrm{o}} \approx \frac{\alpha}{\mathrm{n}}\left[\frac{\mathrm{R}}{2}\left(1-\frac{\sin 2 \theta}{2 \theta}\right)\right]^{2 / 3} \mathrm{~S}_{\mathrm{o}}^{1 / 2} \quad \mathrm{Q}=\mathrm{V}_{\mathrm{o}} \mathrm{R}^{2}\left(\theta-\frac{\sin 2 \theta}{2}\right)
$$

These equations have respective maxima for V_{O} and Q given by

$$
\begin{aligned}
& \mathrm{V}_{\max }=0.718 \frac{\alpha}{n} \mathrm{R}^{2 / 3} \mathrm{~S}_{\mathrm{o}}^{1 / 2} \text { at } \theta=128.73 \mathrm{P} \text { and } \mathrm{y}=0.813 \mathrm{D} \\
& \mathrm{Q}_{\max }=2.129 \frac{\alpha}{n} \mathrm{R}^{8 / 3} \mathrm{~S}_{\mathrm{o}}^{1 / 2} \text { at } \theta=151.21 \mathrm{P} \text { and } \mathrm{y}=0.938 \mathrm{D}
\end{aligned}
$$

Efficient Uniform Flow Channels

A common problem in channel flow is that of finding the most efficient lowresistance sections for given conditions.
This is typically obtained by maximizing R_{h} for a given area and flow rate. This is the same as minimizing the wetted
 perimeter.

Note: Minimizing the wetted perimeter for a given flow should minimize the frictional pressure drop per unit length for a given flow.

It is shown in the text that for constant value of area A and $\alpha=\cot \theta$, the minimum value of wetted perimeter is obtained for

$$
A=y^{2}\left[2\left(1+\alpha^{2}\right)^{1 / 2}-\alpha\right] \quad \mathrm{P}=4 \mathrm{y}\left(1+\alpha^{2}\right)^{1 / 2}-2 \alpha \mathrm{y} \quad \mathrm{R}_{\mathrm{h}}=\frac{1}{2} y
$$

Note: For any trapezoid angle, the most efficient cross section occurs when the hydraulic radius is one-half the depth.

For the special case of a rectangle $\left(\alpha=0, \theta=90^{\circ}\right)$, the most efficient cross section occurs with

$$
\mathrm{A}=2 \mathrm{y}^{2} \quad \mathrm{P}=4 \mathrm{y} \quad \mathrm{R}_{\mathrm{h}}=\frac{1}{2} y \quad \mathrm{~b}=2 \mathrm{y}
$$

Best Trapezoid Angle

The general equations listed previously are valid for any value of α. For a given, fixed value of area A and depth y , the best trapezoid angle is given by

$$
\alpha=\cot \theta=\frac{1}{3^{1 / 2}} \quad \text { or } \quad \theta=60 \mathrm{~F}
$$

Example 10.3

What are the best dimensions for a rectangular brick channel designed to carry 5 $\mathrm{m}^{3} / \mathrm{s}$ of water in uniform flow with $\mathrm{S}_{\mathrm{o}}=0.001$?

Taking $\mathrm{n}=0.015$ from Table 10.1, $\mathrm{A}=2 \mathrm{y}^{2}$, and $\mathrm{R}_{\mathrm{h}}=1 / 2 \mathrm{y}$; Manning's formula is written as

$$
\mathrm{Q} \approx \frac{1.0}{\mathrm{n}} \mathrm{AR}_{\mathrm{h}}^{2 / 3} \mathrm{~S}_{\mathrm{o}}^{1 / 2} \quad \text { or } \quad 5 m^{3} / s=\frac{1.0}{0.015}\left(2 y^{2}\right)\left(\frac{1}{2} y\right)^{2 / 3}(0.001)^{1 / 2}
$$

This can be solved to obtain

$$
y^{8 / 3}=1.882 m^{8 / 3} \quad \text { or } \quad y=1.27 m
$$

The corresponding area and width are

$$
\mathrm{A}=2 \mathrm{y}^{2}=3.21 \mathrm{~m}^{2} \quad \text { and } \quad b=\frac{A}{y}=2.53 \mathrm{~m}
$$

Note: The text compares these results with those for two other geometries having the same area.

Specific Energy: Critical Depth

One useful parameter in channel flow is the specific energy E , where y is the local water depth.

Defining a flow per unit channel width as $\mathrm{q}=\mathrm{Q} / \mathrm{b}$ we write

$$
\mathrm{E}=\mathrm{y}+\frac{\mathrm{V}^{2}}{2 \mathrm{~g}}
$$

$$
E=y+\frac{q^{2}}{2 \mathrm{gy}^{2}}
$$

Fig. 10.8 Illustration of a specific energy curve, depth y vs. the specific energy E .

The curve for each flow rate Q has a minimum energy $\mathrm{E}_{\text {min }}$ that occurs at a critical water depth y_{c} corresponding to critical flow. For E>E Emin there are two possible states, one subcritical and one supercritical.
$\mathrm{E}_{\text {min }}$ occurs at

$$
\mathrm{y}=\mathrm{y}_{\mathrm{c}}=\left(\frac{\mathrm{q}^{2}}{\mathrm{~g}}\right)^{1 / 3}=\left(\frac{\mathrm{Q}^{2}}{\mathrm{~b}^{2} \mathrm{~g}}\right)^{1 / 3}
$$

The value of $E_{\text {min }}$ is given by

Fig. 10.8 Specific Energy Illustration

Depending on the value of $\mathrm{E}_{\mathrm{min}}$ and V , one of several flow conditions can exist.

For a given flow, if

$$
\begin{array}{ll}
E<E_{\min } & \text { No solution is possible } \\
E=E_{\min } & \text { Flow is critical, } y=y_{c}, V=V_{c} \text { Fr }=1
\end{array}
$$

$$
\mathrm{E}>\mathrm{E}_{\min }, \mathrm{V}<\mathrm{V}_{\mathrm{c}}
$$

Flow is subcritical, $\mathrm{y}>\mathrm{y}_{\mathrm{c}}, \mathrm{Fr}<1$, disturbances can propagate upstream as well as downstream

Flow is supercritical, $\mathrm{y}<\mathrm{y}_{\mathrm{c}}, \mathrm{Fr}>1$, disturbances can only propagate downstream within a wave angle given by

$$
\mu=\sin ^{-1} \frac{C_{o}}{V}=\sin ^{-1} \frac{(g y)^{1 / 2}}{V}
$$

Nonrectangular Channels

For flows where the local channel width varies with depth y, critical values can be expressed as

$$
A_{c}=\left(\frac{\mathrm{b}_{0} \mathrm{Q}^{2}}{\mathrm{~g}}\right)^{1 / 3} \quad \text { and } \quad \mathrm{V}_{\mathrm{c}}=\frac{\mathrm{Q}}{\mathrm{~A}_{\mathrm{c}}}=\left(\frac{\mathrm{g} \mathrm{~A}_{\mathrm{c}}}{\mathrm{~b}_{\mathrm{o}}}\right)^{1 / 2}
$$

where $b_{o}=$ channel width at the free surface.

These equations must be solved iteratively to determine the critical area A_{c} and critical velocity V_{c}.

For critical channel flow that is also moving with constant depth $\left(\mathrm{y}_{\mathrm{c}}\right)$, the slope corresponds to a critical slope S_{c} given by

$$
\mathrm{S}_{\mathrm{c}}=\frac{\mathrm{n}^{2} \mathrm{~g} \mathrm{~A}_{\mathrm{c}}}{\alpha^{2} \mathrm{~b}_{\mathrm{o}} \mathrm{R}_{\mathrm{h}, \mathrm{c}}}=\frac{n^{2} V_{c}^{2}}{\alpha^{2} R_{h, c}^{4 / 3}}=\frac{n^{2} g}{\alpha^{2} R_{h, c}^{1 / 3}} \frac{P}{b_{o}}=\frac{f}{8} \frac{P}{b_{o}}
$$

and $\quad \alpha=1$. for S I units and 2.208 for B. G. units

Example 10.6

Given: a 50°, triangular channel has a flow rate of $\mathrm{Q}=16 \mathrm{~m}^{3} / \mathrm{s}$.
Compute: (a) y_{c}, (b) V_{c},

(c) S_{c} for $\mathrm{n}=0.018$
a. For the given geometry, we have

$$
\begin{array}{ll}
P=2\left(y \csc 50^{\circ}\right) & A=2\left[y\left(1 / 2 y \cot 50^{\circ}\right)\right] \\
R_{h}=A / P=y / 2 \cos 50^{\circ} & b_{0}=2\left(y \cot 50^{\circ}\right)
\end{array}
$$

For critical flow, we can write

$$
\begin{gathered}
g A_{c}^{3}=b_{o} Q^{2} \quad \text { or } \quad g\left(y_{c}^{2} \cot 50^{o}\right)^{3}=\left(2 y_{c} \cot 50^{\circ}\right) Q^{2} \\
y_{c}=2.37 \mathrm{~m} \quad \text { ans. }
\end{gathered}
$$

b. With y_{c}, we compute

$$
\mathrm{P}_{\mathrm{c}}=6.18 \mathrm{~m} \quad \mathrm{~A}_{\mathrm{c}}=4.70 \mathrm{~m}^{2} \quad \mathrm{~b}_{\mathrm{o}, \mathrm{c}}=3.97 \mathrm{~m}
$$

The critical velocity is now

$$
V_{c}=\frac{Q}{A_{c}}=\frac{16 \mathrm{~m}^{3} / \mathrm{s}}{4.70 \mathrm{~m}}=3.41 \mathrm{~m} / \mathrm{s} \text { ans. }
$$

c. With $\mathrm{n}=0.018$, we compute the critical slope as

$$
S_{\mathrm{c}}=\frac{\mathrm{g} \mathrm{n}^{2} \mathrm{P}}{\alpha^{2} \mathrm{~b}_{\mathrm{o}} \mathrm{R}_{\mathrm{h}}^{1 / 3}}=\frac{9.81(0.018)^{2}(6.18)}{1.0^{2}(3.97)(0.76)^{1 / 3}}=0.0542
$$

