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XI.  TURBOMACHINERY 
 
This chapter considers the theory and performance characteristics of the 
mechanical devices associated with the fluid circulation. 
 
General Classification: 
 
Turbomachine -  A device which adds or extracts energy from a fluid. 
 
 Adds energy: Pump 
 Extracts energy: Turbine 
 
In this context, a pump is a generic classification that includes any device 
that adds energy to a fluid, e.g. fans, blowers, compressors. 
 
We can classify pumps by operating concept: 
 

1. Positive displacement 
2. Dynamic (momentum change) 

 
General Performance Characteristics 

 
Positive Displacement Pumps 
1. Delivers pulsating or periodic flow (cavity opens, fluid enters, cavity 

closes, decreasing volume forces fluid out exit opening). 
2. Not sensitive to wide viscosity changes. 
3. Delivers a moderate flow rate. 
4. Produces a high pressure rise. 
5. Small range of flow rate operation (fixed pump speed). 
Dynamic Pumps 
1. Typically higher flow rates than PDs. 
2. Comparatively steady discharge. 
3. Moderate to low pressure rise. 
4. Large range of flow rate operation. 
5. Very sensitive to fluid viscosity. 
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Typical Performance Curves (at fixed impeller speed) 
 

 
Fig. 11.2  Performance curves for dynamic and positive 

displacement pumps 
 
Centrifugal Pumps  
This is the most common turbomachine used in industry.  It includes the 
general categories of (a) liquid pumps, (b) fans, (c) blowers, etc. 
 
They are momentum change devices and thus fall within the dynamic 
classification. 
 
Typical schematic shown as 
 

 
Fig. 11.3  Cutaway schematic of a typical centrifugal pump 
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Writing the energy equation across the device and solving for hp – hf ,we 
have 
 

H = hp − hf = P2 − P1

ρ g
+ V2

2 − V1
2

2 g
+ Z2 − Z1 

 
where  H is the net useful head delivered to the fluid, the head that results in 
pressure, velocity, and static elevation change. 
 

Since for most pumps (not all),  V1 = V2  and  ∆Z  is small, we can write 

 

H ≅ ∆ P
ρg

 
Since friction losses have already been subtracted, this is 
the ideal head delivered to the fluid.  Note that velocity 
head has been neglected and can be significant at large 
flow rates where pressure head is small. 

 
The ideal power to the fluid is given 
by 

Pw = ρ Q g H 

 
 
The pump efficiency is given by η = Pw

BHP
= ρQ gH

BHP
= ρQ gH

ω T
 

 
where   BHP = shaft power necessary to drive the pump 
 ω  =  angular speed of shaft 
 T = torque delivered to pump shaft 
 
Note that from the efficiency equation, pump efficiency is zero at zero flow 
rate Q and at zero pump head, H. 
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Basic Pump Theory 
 
Development of basic pump theory begins with application of the integral 
conservation equation for moment-of-momentum previously presented in Ch. III. 
 
Applying this equation to a centrifugal pump with one inlet, one exit, and uniform 
properties at each inlet and exit, we obtain 
 

iiee VxrmVxrmT !! −=  

 
where T    is the shaft torque needed to drive the pump 

 V i , V e   are the absolute velocities at the inlet and exit of the pump 
 
Thus, the applied torque is equal to the change of angular momentum across the 
device. 
 

 

Fig. 11.4  Inlet and exit velocity diagrams for an idealized  
pump impeller 
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Since the velocity diagram is key to the analysis of the device,  we will discuss the 
elements of the diagram in detail. 

1. At the inner radius r1 we have two velocity components: 

a. the circumferential velocity due to the 
impeller rotation 

u1 = r1 ω  blade tip speed at inner radius 

b. relative flow velocity tangent to the 
blade 
w1  tangent to the blade angle   β1 

These combine to yield the absolute inlet 
velocity  V1  at angle  α1 

 

u1

w1 V1

Vn1

Vt1

α 1
β1

 

 
The absolute velocity can be resolved into two absolute velocity components: 

 
1. Normal ( radial ) component: 

 
Vn1 = V1 sinα1 = w1 sin β1 Note that for ideal pump design,  

Vn1 = V1 and α 1 = 90o  
 

2.  Absolute tangential velocity: 
 
Vt1 = V1 cosα 1 = u1 - w1 cos β1 again, ideally  Vt1 = 0  

 
It is also important to note that  Vn1   is used to determine the inlet flow rate, i.e.,  

 
Q = A1Vn1 = 2π r1 b1 Vn1  

 

where   b1   is the inlet blade width. 
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Likewise for the outer radius r2  we have the following: 

a. the circumferential velocity due to the 
impeller rotation 

u2 = r2 ω  blade tip speed at outer radius 

b. relative flow velocity tangent to the 
blade 
w2  tangent to the blade angle   β2 

These again combine to yield the absolute 
outlet velocity  V2  at angle  α2 

 

u2

w2
V2

Vt2

α 2
β2

Vn2

 

 
The exit absolute velocity can also be resolved into two absolute velocity 
components: 

 

1. Normal ( radial ) component: 
 

Vn2
= V2 sinα 2 = w2 sin β2 = Q

2π r2 b2

 
Note that Q is the same as for the 
inlet flow rate 

 
2.  Absolute tangential velocity: 

 

Vt 2 = V2 cosα 2 = u2 - w2 cos β2  
 

Vt 2 = u2 -
Vn2

tan β2
= u2 - Q

2π r2 b2 tan β2
 

 

where         Q = A1Vn1
= 2π r1 b1 Vn1

= A2Vn2
= 2π r2 b2 Vn2  

 
Again,  each of the above expressions follows easily from the velocity diagram, 
and the student should draw and use the diagram with each pump theory problem.  
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We can now apply the moment - of – momentum equation. 
 

 T = ρQ r2 *Vt 2 − r1 * Vt1{ }    (again  Vt1 is zero for the ideal design) 

 

For a sign convention, we have assumed that Vt1  and Vt2  are positive in the 
direction of impeller rotation. 

 
The “ ideal” power supplied to the fluid is given by 

 

Pw = ωT = ρQ ω r2 Vt2 − ωr1 Vt1{ }  

or 

Pw = ωT = ρQ u2 Vt2 − u1 Vt1{ } = ρ Qg H 

 
Since these are ideal values, the shaft power required to drive a non-ideal pump is 
given by 

BHP =
Pw

ηp
 

 
The head delivered to the fluid is 

H =
ρQ u2 Vt2

− u1 Vt1{ }
ρQ g

=
u2 Vt 2

− u1 Vt1{ }
g

 

 

For the special case of purely radial inlet flow 
 

H* =
u2 Vt 2

g
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From the exit velocity diagram, substituting for Vt2 we can show that 
 

H = u2
2

g
− ωQ

2πb2 g tan β2
 has the form   C1  -  C2 Q 

 

where: C1  =   
u2

2

g
 C1=shutoff head, the head produced at zero flow, Q = 0 

 

Example  11.1: 
A centrifugal water pump operates at the following conditions: 

speed = 1440 rpm,  r1 = 4 in, r2 = 7 in,  β1 = 30o, β2 = 20o, b1 = b2 = 1.75 in 
Assuming the inlet flow enters normal to the impeller (zero absolute tangential 
velocity): 
find:  (a) Q, (b)  T, (c) Wp, (d) hp, (e) ∆P 
 

ω = 1440 rev
min

2π
60

= 150.8 rad
s

 

Calculate blade tip velocities: 
 

u1 = r1 ω = 4
12

ft150.8 rad
s

= 50.3 ft
s

 

 

u2 = r2 ω = 7
12

ft150.8 rad
s

= 88 ft
s

 

 

Since the design is ideal, at the inlet 

α1 = 90o,    Vt1 = 0 

Vn1 = U1 tan 300 = 50.3 tan 30o = 29.04 ft/s 

Q = 2π r1 b1 Vn1  
30Þ 30Þ90Þ

V   =  V1 1n
w1

r1
•
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Q = 2π 4
12

ft1.75 ft 29.04 ft
s

= 8.87 ft3

s
 

Q = 8.87 ft3

s
60 s

min
7.48 gal

ft3 = 3981 gal
min

 

This is the flow rate for ideal design or Vt1 = 0 and a1 = 90˚. 
Repeat for the outlet: 
 

Vn2 = Q
2π r2 b2

=
8.87 ft3

s
2π 7

12
ft 1.75

12
ft

 

Vn2 =16.6 ft
s

 

w2 =
Vn2

sin 20o = 16.6 ft/s
sin 20o = 48.54 ft

s
 

20Þ 20Þ
u2r2

•

w2
V2

α2

 

 
 

Vt 2
= u2 - w2 cos β2 = 88 − 48.54cos20o = 42.4 ft

s
 

 
We are now able to determine the pump performance parameters.  Since for the 
centrifugal pump, the moment arm  r1  at the inlet is zero, the momentum equation 
becomes 
 

T = ρQ r2 *Vt2{ } = 1.938slug
ft3 8.87 ft3

s
7

12
ft 42.4 ft

s
= 425.1ft − lbf  

This is the ideal torque delivered to the fluid. 
 
Ideal power delivered to the fluid: 

P = ωT = 150.8 rad
s

425.1ft − lbf = 64,103ft − lbf
s

=116.5hp   
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Note that for a real (non-ideal) pump the input power (motor size) required would 
be greater proportional to the efficiency of the pump.   

Head produced by the pump (ideal): 
 

H = P
ρ gQ

= 64,103ft − lbf/s

62.4 lbf
ft3 8.87 ft3

s

= 115.9 ft  

 

Pressure increase produced by the pump: 
 

∆ P = ρgH = 62.4 ft3

s
115.9 ft = 7226psf = 50.2psi  

 


	Typical schematic shown as

