
Exercise V: Debugging I – When
programs crash…

We are probably all familiar with the fact that during program development, programs
crash. In this exercise, we will use Visual C++ to explore a program that has an error that
will cause the program to crash.

 There is a zip file named e5.zip at the anonymous FTP server ftp.cs.umd.edu in the
/pub/egolub/VC.workbook directory. Downloaded this file and extract the files which it
contains. Unzip those files to a temporary directory on your machine.

 Launch Visual C++ on your computer. Create a new, empty, Win32 Console
Application named exercise5. Go to the project settings and disable the language
extensions as shown in Exercise II. Go to your Windows environment and copy the files
that you extracted from e5.zip into the exercise5 directory. Return to the Visual C++
environment and add those files to the project. Take a few minutes to look through the
program to get the basic idea of what the program does. Now, compile the program and
then run the program. It will crash and you should see two different windows on the
screen. The first (Figure V.I) is the console window which has the output of the program.
The second (Figure V.II) is an error message dialog box informing you where and why
(at a machine level) the program crashed. (Note: Different versions of Microsoft
Windows display different messages.)

Figure V.1

Figure V.2

 If you click on the Cancel button (don’t do that) another instance of Visual C++ would
be launched for debugging. It is better for us if we keep only a single instance of Visual

Visual C++ Workbook

Page V-2

C++ open for both organization as well as system usage. If you click on the OK button,
the program will continue to terminate. In this case, the error message dialog box shown
in Figure V.III will appear.

Figure V.3

 If you click on the Abor t button, the program will continue to terminate. That is what
we want to do at this time.

 Now that the program has terminated, the console window should still be on the screen,
with the Press any key to continue message displayed. Go ahead and press a key to
continue. You should now have been returned to the Visual C++ environment.

 We will now execute the program again, but this time we will do so in a manner that
executes the program inside the debugger. You can instruct Visual C++ to start the
program inside the debugger using the Go command in any one of the following ways:

- Go to the BUILD menu, go to the Star t Debug sub-menu and select Go
- Press the F5 key
- Single click on the go button (shown in Figure V.4)

Figure V.4

 This time, when the program crashes, you should see an error message dialog box
similar to the following:

Figure V.5

 When you click on the OK button, you will be returned to the Visual C++ environment,
with the program still active. You are now viewing the debugging environment. It
should look similar to Figure V.6 below. Although the program can not proceed any
further due to the error, in this situation, you can at least observe the state of the program
at the time the error was encountered. This will typically allow you (at a minimum) to

Exercise V – Debugging I

Page V-3

determine the line of code on which the program terminated. It is also often possible to
discover quite a bit more about the state of your program, as we will in this exercise.

Figure V.6

 The yellow arrow indicates the line on which the program encountered the problem. In
this case the line data[0] = r .data[0]; looks perfectly fine. However, the execution of
this line of code caused the program to crash. It is often useful to investigate the context
in which this line of code was executed. This context includes current variable values as
well as the program’s function stack.

 The lower left-hand corner of your Visual C++ environment should appear similar to the
lower left-hand corner of Figure V.6 above. If it does not, go to the VIEW menu, then to
the Debug Windows sub-menu and select Var iables.

 In this panel, the values of variables that are active in the current scope are displayed.
There are three different tabs in this panel; Auto, Locals and this. The Auto tab
represents a page on which Visual C++ will display the variables which it determines are
most likely to be of interest at the current time. This will typically be a list of any
variables that are being accessed by the current line of code. Notice that variables which
are pointers (such as this and data in the current method) display the address to which
they are pointing. Recall that data is a pointer, since we are using an int pointer to
indicate a dynamically allocated array of ints. To view the information at that address,

Visual C++ Workbook

Page V-4

one can click on the + sign to expand the information to be shown. However, just
looking at the actual address can be useful. For example, if the address is 0x00000000
then you can tell that it is a NULL pointer. Something else worth knowing is that if a
pointer’s value is 0xcccccccc, then it is a good guess that the pointer has never had its
value initialized to something other than the default value a new pointer is assigned. In
this example, data has such a value, implying that it was not initialized before we
attempted to use it in this line of code. This implies to us that the problem may not be in
this line of code. It might instead be in the lines previous to it, or possibly the way in
which this method has been used. Since this is an overloaded = operator, it is assumed
that both the left-hand side and right-hand side operands are valid objects. The fact that
the data member of the current object has not been initialized implies that the left-hand
side operand was not properly initialized.

 From within the = operator, we can not know much about the left-hand operand which
invoked the = operator. We would need to see the line of code that invoked the operator.
When a program is running, each time a function or method is invoked, it is placed on the
top of the program stack and executes. When it is done, it is popped off of that stack, and
control is returned to the previous item on the stack at the place where it had invoked the
routine that just terminated. We want to move up one level in the program stack to see
how the = operator was invoked.

 There is a pop-up list labeled Context: that can be used to display the program stack as
well as move through that stack. In Figure V.6, we see that the current location is the =
operator of the rational class. By viewing the full list, we can determine from where this
operator was invoked, as well as from where the function or method that invoked it was
itself invoked, all the way back up to our main function. The view this, single click on
the arrow at the right of the box. Figure V.7 shows this list as it appears for the current
program.

Figure V.7

 In this case, the = operator was invoked in the copy constructor of the rational class.
We can go to the line of code that invoked the = operator by moving our mouse over the
item in the list rational::rational(const rational&) and single clicking on that option.
Your screen should now appear similar Figure V.8.

Exercise V – Debugging I

Page V-5

Figure V.8

 After selecting rational::rational(const rational&) from the context list, Visual C++
displays the file which contains the method, and indicates where control would return to
in this routine with a green triangle. This will either be the line of code that executed the
call from which we are tracing back, or the line right after it. In this case, the green
triangle points to the line after it. The line which invoked the = operator was (* this) = r ;.
Although the green arrow might point to the line which invoked a call or the one after it,
you can usually tell which is the case by looking to see which line actually invokes the
routine from which you are tracing back (in this case the = operator).

 At this point, we have quite a bit of information; the left hand operand of the = operator
was not initialized and the line that invoked the = operator is (* this) = r ; in the copy
constructor of the rational class. The left hand operand of (* this) = r ; is * this. In a
method of a class, * this refers to the current object. In a copy constructor, we are
creating a brand new current object. Looking at this code further, we see that nothing is
done previous to this call to the = operator, which in turn means that if any components
of the current object are dynamically allocated components, they will not have been
properly allocated yet. We know that the program terminated when we attempted to
access the memory pointed to by the data pointer. However, we now also know that the
data pointer has not been explicitly set to point to anything. This corresponds to what we
had previously observed as a possible problem when we saw that the pointer data had the
value 0xcccccccc.

Visual C++ Workbook

Page V-6

 Now that we have determined what the problem most probably was (data was not
initialized by the copy constructor before we tried to use it in the = operator) we can stop
the debugger, go back to looking at the program to determine the correct way to initialize
the data pointer.

 You can instruct Visual C++ to stop the degugger in one of the following ways:

- Go to the DEBUG menu, and select Stop Debugging
- While holding down the Shift key, press the F5 key

This will return you to the editing environment of Visual C++. The file that you were
last viewing will be in the foreground of the editor, and the cursor will be positioned at
the same line it had been left at during the debugging session.

 We can now look at the program and determine how to correct the error we have now
detected. The error was that the dynamically allocated array (data) was not initialized by
the copy constructor before we tried to actually assign information to that array. This is a
common error made by beginning C++ programmers. It is important to remember that
the copy constructor will often need to do much of the same initialization as the
constructor does. To correct this problem, we can add the line data = new int[2]; to the
beginning of the copy constructor. This allocates the two-dimensional array that we later
access.

 Add that line of code and recompile the program. After it has been recompiled, you can
execute the program again to determine whether that fixed the problem. Since it may not
have, you might want to start running the program using the debugger so that if it does
crash again, we are already in the debugging environment. There is no harm in running it
using the debugger, so even if the program has no problems, there is no loss in doing this.

 Adding that line of code should have corrected the problem.

 Congratulations! You have now compiled and executed your first debugging exercise.

 To leave the Visual C++ environment, go to the FILE menu and select Exit.

