Exercise VI: Debugging Il —
Walking through a program

| n Exercise V we looked at a program that had crashed and how to determine where it
had crashed. Thisexerciseisactually acollection of exercises intended to introduce
features of the Visual C++ debugger and the ways in which a programmer can walk
through the execution of a program in as much or as little detail as they choose.

Thereisazip file named €6.zip at the anonymous FTP server ftp.cs.umd.edu in the
/pub/egolub/V C.wor kbook directory. Download thisfile and extract the files which it
contains. Unzip those files to atemporary directory on your machine.

Launch Visual C++ on your computer. Create a new, empty, Win32 Console
Application named exercise6_1. Go to the project settings and disable the language
extensions as shown in Exercise Il. Go to your Windows environment and copy thefile
mainl.cpp that you extracted from €6.zip into the exercise6_1 directory. Return to the
Visual C++ environment and that file to the project. Compile and run the program. Y our
output should be the following:

M2 “C:\WINNT\Profiles\egolubiD esktopiPersonal\Visual C++ Workbook\exerciseb\Debugiexerciseb e . [H[E] B3

He r
Press any key to continueg

FigureVI.1

In Visual C++ double click on mainl.cpp in the FileView to bring that file into the
editor. Notice that there are actually four cout statements used to create the displayed
output. Inthisfirst main program for this exercise, we will observe the behavior of an
output stream.

Our goal isto have the program pause when it reaches the line of code that prints the
word World to the screen and observe what has been printed to the console so far. We
will then use the debugger’s tool s to step through the execution of that line of code and
the remaining lines of code to observe each step that happens.

First, we need to inform Visual C++ that we want the program to pause at thisline of
code when we are running the program viathe debugger. Thisis called inserting a

Visual C++ Workbook

breakpoint in the program. You caninstruct Visual C++ to insert (or later remove) a
breakpoint in either of the following ways:

- Position the mouse in the gray strip to the left of the source code so that it is
aligned with the line of code on which you want to set the breakpoint or
position the mouse over the line of code itself. Right click the mouse to bring
up the context menu and select the | nsert/Remove Breakpoint option

- Position the cursor somewhere on the line of code on which you want to set
the breakpoint and click on the breakpoint button (shown in Figure V1.2)

U

Figure V1.2

After specifying to Visual C++ to insert the breakpoint, a solid red circle will appear
next to the line of code with which the breakpoint is associated. In thisexample, your
screen should appear similar to that in Figure V1.3. If you insert a breakpoint in the
incorrect location, you can right click on the red circle and select Remove Breakpoint
from the context menu that appears.

*+.. exercigseb - Microsoft Yisual C++ - [mainl.cpp =]

File Edit View |nsett Project Build Took Window Help =lE x|
D@L b2 BRE R lw
Gilobals) [=[e giobal members) =I[g main =R HJ@) ! Ly
= #include <iostream. h> I—
WnlkSDa roject(s) s#First main program to be used in Exercise VI o
=1 exer
B int
T ¥ mainf) {
3N cout << "Hello':
L[] Resource Files cout ¢¢ " "
* cout << "World":
cout <¢ endl:
return 0
}
"[:EIassViewlFiIeViewl <]] .rv
Ready 2
Figure V1.3

Y ou can now start the program running in the debugger by using the Go command (see
page V-2). The program will execute normally until it arrives at the marked line of code.
At that point, execution of the program will be paused, but the program will still be
"alive" —the entire state of the program (variables, etc.) will remain and you will be able
to resume execution of the program asif it had not been stopped. At this point, Visua
C++ will be brought back to the foreground and should appear similar to Figure V1.4.

Page VI-2

Exercise VI — Debugging 11

., exerciseb - Microsoft Visual C++ [break] - [main1_cpp]

File Edit “iew Insett Project Debug Tools 'window Help -8 x|
Az e - o BER =Y
[Gilobals) =1 (40 global members) [& main =FE - HJ@] ! M
#include {iostream.h: =
s First main progran to be used in Exercise VI o
int
main{) {
cout << "Hello":
cout << " "
L+ cout << "World":
cout << endl;
return 0
H
A o
jl Egntext'lmam[] j ill rlame ‘Value
Hame |Va|ue i
cout HE
AT 2o 4 Locals 3, this 7 A0 b, wetehi f WatehZ T Wiatch3 3, wiatche /
Ready | Ln9.Col 21 |HEE|EDL\DVH|HEAD@
FigureVl1.4

The yellow arrow shows the line of code on which execution of the program was
stopped. At this point, the characters Hello and a blank character have been sent to the
standard output stream. However, as you may have experienced before in your
programming, output streams have buffers to which information is put before actually
being sent to the stream. Until that buffer is flushed either explicitly or by the internals of
the program, the information is not displayed. In this environment, we can observe this
by switching to the DOS console window in which our output is displayed. If you do
this, you will see an empty console window such asis shown in Figure V1.5.

Y& C:A\WINNT\Profiles\egolub\D esktop\Personal\Visual C++ Workbook\exerciseb\Debughexerciseb_exe [H[m] E3

Figure V1.5

We can now step through the program line by line and observe what happens after each
line. The command we will usein thisfirst experienceisthe Step Over command. This
command instructs the debugger to execute the line of code on which the program has
been paused in total, and then pause at the beginning of the next line of code that would
be executed. Y ou can instruct Visual C++ step over aline of code by pressing the F10

Page VI1-3

Visual C++ Workbook

key asingletime. Switch back to the Visua C++ window and press the F10 key asingle
time now. Now that you have instructed the debugger to step over the current line of
code, it has been executed and the yellow arrow will point to the next line of code that is
to be executed. In Figure V1.6 notice that the red circle still represents where we set the
breakpoint and that the yellow arrow is pointing to the next line of code that is expected.

‘+.. exerciseb - Microsoft Yisual C++ [break] - [mainl.cpp]

[File Edt View Inceit Project Debug Tools ‘indow Help =& x|

8 ad R G |

[Globals) =] & global members) =1 @main A -

2] 12l M | |[evercises = | [win3z Detug =l K28 LNEREL
#include <iostream.h> =

//First main program to be used in Exercise VI

//8et a breakpeint on the line that prints Werld.
// See what has been printed to the DO% window at that point.

int
mainil) |
cout << "Helleo";
cout << " "
9 cout << "World"™;
o cout << endl;
return 0; ||
}
T ;I_‘
ﬂ Contest: |main[] j i ?_9_[!!__9 ‘Value
Mame |Va|ue H
cout {...}

cstream: 1opere{. ..}

h Auto Locals) this b Wistchl £ Wateh2 a Watch2) uiatchd
Figure V1.6

Ln14, Col1

If you switch back to the console window, you will see that nothing has appeared yet.
Thisis because the output buffer still has not been flushed. Switch back to the Visual
C++ window and press F10 one more time to execute the current line of code.

M2 C:AWINNT\Profiles\egolub\Personal\Wisual C++ Workbook\exerciseG\D ebug\exerciseb_exe H=]
Hello Yorld

Figure V1.7

Page V-4

Exercise VI — Debugging 11

When endl is sent to the output buffer, in addition to sending a new line to the output
buffer, it causes the buffer to be flushed. We can confirm this by switching to the
console window, which will appear like the onein Figure VI.7. If you would like to
experiment with something later, you can modify this program so that rather than endl
the program uses '\’ to insert the end of line character. Y ou can then walk through the
execution and see when the output is flushed in that situation.

At this point, if you switch back to the Visual C++ window, the yellow arrow will be
pointing to the return statement at the end of our program. If you continue to use F10 to
step over the execution of code, you will reach the end of the main program and will be
brought into system code. Although thisis something we do not typically do, it isagood
exerciseto "accidentally" do it now to see how it appears and aso to see how to return to
familiar ground. Currently, the yellow arrow should be pointing to the return statement.
Press the F10 key twice now. Y our screen should look similar to Figure VI1.8. (Note:
Depending upon how Visual C++ was installed on your machine, you may get adiaog
box at this point asking you to give the path to afile CRTO.C. If thisoccurs, use your
system’s find tool to find location of that file on your hard drive, and use the interface
Visual C++ providesto identify that path. 1f you simply press Cancel, Visua C++ will
take you to the system-level code rather than the code shown in Figure V1.8 below.)

File Edit View Insert Project Debug Tools \Window Help =] x|

AT Y T = =Tl
[Globals] ;” [A)l global members] ;” & main ;I g - |
@ B H oy Jjexen:ises L”Desktnp ﬂlwmaz Debug L” j| @ i ‘ ' oM ‘

#alse /* _WINMAIN_ */

#ifdef WERFLAG
_ winitenv = _wenviron;
mainret = wmain(__ arge, _ wargv, _wenviron);
#=l=e /* WERFLAG */
__initenv = enviren:
mainret = main{_ argec, _ argv, _snviren);
#endif /* WDRFLAG */ i

#endif /% _WINMAIN_ */
exit (mainret] ;

}

_ except ([_XeptFilter (GetExceptionCode (), GetExceptionInformatieni)))
%
* Bhould never reach here
*/ -
4 | »
:’:Il Conlest: [mainCATStarturl) = ﬂ Name [Value
Mame Value |A B
argec 1
argv 0x00300e60
initenv 0x00300dk0
WALV O0x00000000
winitenw 0x00000000
environ 0x00300db0
sl o N-r00000000 =
[Ao 4 Locals % this AT, wetcht £ Wiatch2 s Weatchd 3, Wiatchd 7
Rieady [Ln 208, Coll |REC|COL [0MA [READ,
FigureV1.8

What you are now seeing is the code that is inserted by Visual C++ as awrapper around
your code. This code establishes the console window and invokes your program within
that window. We are no longer at a place where we are interested in walking through the

Page VI1-5

Visual C++ Workbook

code being executed. In this case, the Go command can come in handy again. Recall
that we used the Go command to start the program in the debugger. It also servesthe
purpose of instructing the debugger to resume executing the program normally until the
next breakpoint isreached. If there are no more breakpoints (as will be the case here)
then it will run the program to completion. Use the Go command now.

The program has now completed its execution. There are two things worth noting at
this point; (1) the console window has closed automatically and (2) the editor is now
displaying the file in which we were last located during debugging. We can bring our

code back up in the editor window (if it is not currently displayed) by double clicking on
its name under FileView.

We are now ready to move to our second task in this exercise. Close the current project
and create a new project called exercise6 2. Go to your Windows environment and copy
the file main2.cpp that you extracted from e6.zip into the exercise6_2 directory. Return
to the Visua C++ environment and that file to the project and compileit. With this
second main function, we are going to observe conditiona statements via our debugger.

Recall that with a conditional statement, there is code that will not always be executed —
the execution depends on the test condition. In main2.cpp we have a program that asks
the user to enter a number and then either prints the word TRUE or the word FAL SE
based on whether the entered value was less than 15. Go the FileView and double click
on main2.cpp to bring that file into the editor. Insert a breakpoint on the line of code that
prints out the word TRUE as shown in Figure VI.9.

[File Edit Wew Inset Project Buld Tools Window Help

MEIES
BEEE Y =l)
[Globaks) =1 A global members) =1[@ main j@v| “@] ! @|
exercizef_2 leesktDp ;"Win32 Debug ;" ﬂ ‘ @ i |£| ‘ ! @J ‘
N ES| #include <iostream.h> =
@Workspace 'exerciseg
é---exercises_2 files //8econd main program to be used in Exercise VI
é---a Source Files)
. L @mainz.c nt
"CRP main() {
~[Header Files int i
.[aResource Files
cout << "Enter a number: ";
cin »» i:
if (i<1bB)
9 cout << "TRUE" << endl;
else
cout << "FALSE"™ << endl;
return 0;
i
| | —
B2 Classview I Fileiew H I LIL
Feady [13, Col3_RECCOL [OVA [FEAD 4|
FigureV1.9

Page VI1-6

Exercise VI — Debugging 11

Next, compile the project and begin running the program using the Go command to start
the debugger. The program will begin to run and the console window will appear in the
foreground with a prompt for you to enter anumber. Enter the number 10 and press the
enter key. At this point, the Visual C++ window will come to the foreground and appear
similar to Figure V1.10. The program has been paused on the line of code that is going to
print the word TRUE to the screen.

.. exerciseb_2 - Microsoft Yisual C++ [break] - [C:A...\exercisebimain2.cpp]

Eile Edit Yiew Insert Project Debug Tools Window Help ;li'ﬂ

AR =R D =

[Globals) =1 121 glabal members] =] & main B |2

&y E Hjsz Elbeskon w32 Debug = EE AR
=

cout << "Enter a number: "
cin =» 1

if (4«15
=] cout << "TRUE" << endl;
else

cout << "FALSE" << endl:

return 0}

L _Id
N 3
ill Egntexl:lmam[] j ill ?l__a_r_n__e E!\r'alue

Name Yalue i

B cout {eo}

i 10

AT, Aute { Locals & this 7 AT, watch f wiateh2 % Watcha), Watehe /

Ereak at location breakpoint [Ln13.Col1 [REC[COL[OVR [READ él

Figure V1.10

Press F10 to instruct the debugger to step over thisline of code and bring us to the next
line of code that isto be executed. Notice that the yellow arrow is now pointing at the
line that says else. However, if you press F10 again, it does not take us to the contents of
the else, but rather jumps over them to the return statement. Thisis becausein an
if-then-else conditional, only one or the other will have its body executed. Now that you
are at the return statement, use the Go command to resume execution of the remainder of
the program.

Without making any changes, use the Go command to begin running the program in the
debugger again. Thistime, when prompted for a number, enter the number 20. Notice
that after you entered the number, the program continued on until completion — it did not
stop at the breakpoint that existsin the program. The reason isthat the line of code on
which the breakpoint is set was never executed.

We are now ready to moveto our third task in this exercise. Close the current project
and create a new project called exercise6_3. Go to your Windows environment and copy
the file main3.cpp that you extracted from €6.zip into the exercise6_3 directory. Return
to the Visual C++ environment and that file to the project. Now add main3.cpp to the
project and compileit. With this third main function, we are going to observe function

Page VI-7

Visual C++ Workbook

calls viaour debugger and explore another command within the debugger — the step into
command.

First, set a breakpoint on the first cout statement in the main function. 'Y our window
should appear similar to Figure VV1.11.

., exerciseb_3 - Microsoft Visual C++ - [main3_cpp *]

Bl File Edit ¥iew Inset Project Build Tools Window Help

=1
Blsad|r me(o- o mEE W kN
(Glabas) @l gctamenters) 5] @ main =l v| “@ g B |
exercizeb 3 L”Desklop ;”Wim32 Debug ;" ;I | @ Iﬁl | ! @ |
== #include <icstream.h> =
Hworkspace 'exe)) })
é--exercise6_3 //Third main program to be used in Exercise VI
E‘a iour?e Ell_ void printInt (int 1) |
; maln3cp cout << "The integer was " << 1 << "." << endl;
~-[QHeader Fil y
‘. JResource F
int
main () |
& cout << "Abkout to call function." << endl;
printInt (10} ;
cout << "Back from calling function." << endl;
return 0;
}
KN 0 o
B2 ClassView Fi\eViewI 14 | _'IL
Ready |
FigureVI.11

Begin running the program in the debugger. The program will pause when it is about to
execute that first cout statement. Use F10 to step over each of the three lines of code in
the main function. When you are positioned at the return statement, use the Go
command to run the program to completion. Notice that with the step over command,
each line of code appeared to be executed as asingle entity. However, each of these
three lines has several components. The cout statements have several callsto the
overloaded << operator and the line of code between them calls the user defined
function printint(). Itisoften useful to step into aline of code that is about to be

executed in order to observe the details. To do thiswe can use F11 to step into the
current line of code.

Begin running the program again using the Go command, but this time when you reach
the breakpoint, pressthe F11 key once. Thiswill step into thefirst call to the
<< operator. (Note: Aswastrue previousy with the file CRTO.C, Visua C++ might ask
you to identify the path to OSTREAM.CPP on your system — use same technique to do
s0.) Y our window should appear similar to Figure VVI.12. Notice that you are now
looking at the actual code for the ostream << operator.

Page VI1-8

Exercise VI — Debugging 11

'+, exerciseb_3 - Microsoft Yisual C++ [break] - [C:\.__\CRTA\SRCAOSTREAM_CPP]

@ File Edt View Insert Project Debug Tools Window Help = 1'
QI EHI | Rl - | mEE ﬂ““‘
Glohals] [=][& global members) =] @main e |

& % | [EL “] eeeee Fe3 =t][winaz ebug = EIEI e @‘
}

// note: called inline by unsigned char * and signed char * wersions:
ogtream& ostream::operator<<(coenst char * =)
=
if (opfxi)) {
writepad ("7, =) J
osfx();
i
return *this;

}

ogtream& ostream::flush()
{
lock ()
lockbuf () ;
if (bp->sync()==ECF)
state |= ilos::failbit:

N _>l;I

ﬂ Context; Iostleam: operators <[const char ¥ j —:l Name ‘Value

Hame Value
= 0x00426058 "About to call
function. "

A I Ao {Locals) this AT, wetch £ Wiatch2 T Watchd 3, Wiatchd 7/

Ready [TnEA,Cal12 RECCOL [0V [READ,

FigureV1.12

In this case, stepping into the execution of the line of code really isn't going to help us
during debugging. However, it is good to experience stepping into a system function so
that we know what it looks like and also so that we can see how to step back out of it.

Y ou will find that you will occasionally step into aline of code and then decide that you
would rather have stepped over it. To step over aline of code that you stepped into, you
can use the step out command by depressing the Shift key and then pressing F11 with
the Shift key held down (Shift+F11). Doing thiswill execute the remainder of the
function which you stepped into, and return you to the line of code which invoked it.

Now you have been returned to the line of code which invoked the << operator, but the
line of code has not finished running yet — only the first call to the << operator has run.
If you were to use F11 again, you would step into the second call to the << operator.
Rather than doing that, use F10 to step over the remainder of thisline of code. That will
bring you to the call the printInt().

Now that the yellow arrow is positioned at the call to printint() press F11 to step into
that function call. The yellow arrow indicating the line of code about to be executed has
now jumped to the beginning of the printint() function. We can now step through each
line of code in this function as we choose — either using F10 or F11. We leave this
choice to you. Continue step through this program until it has run to completion in any
way that you choose. The important thing isthat after completing this task, you should
be comfortable with stepping over, into and back out of code.

Page VI1-9

Visual C++ Workbook

We are now ready to move to our fourth task in this exercise. Close the current project
and create a new project called exercise6_4. Go to your Windows environment and copy
the file main4.cpp that you extracted from €6.zip into the exercise6_4 directory. Return
to the Visual C++ environment and that file to the project. Now add main4.cpp to the
project and compileit. With this fourth main function, we are going to observe the
execution of code within aloop viaour debugger. We will also experiment with
reference -vs- value parameters as well aslooking at the address of a variable in memory
using watch lists.

In main4.cpp add a breakpoint to the line of code within the while loop that calls
printlnt() and begin running the program using the debugger. The program will pause
when it getsto that line of code. Use F5 to resume execution of the program. Notice that
the program pauses once again on that same line. However, thistime you are in the
second iteration of theloop. Each time aline of code with a breakpoint is reached, the
debugger will pause.

Notice that in Figure V1.13 (the first time we hit the breakpoint) the value of
loopControl as displayed in the lower |eft-hand panel isO whilein Figure V1.14 (the
second time we hit the breakpoint) is 1. Each time you press F5 to resume running the
program, the program will come back to pause at the same line of code and the value of
loopControl will reflect the iteration of the loop. After pressing F5 afew timesto
observe the behavior, you can press Shift+F5 to stop the execution of the program.

Page VI1-10

Exercise VI — Debugging 11

. exerci

[Fle Edit View Inset Project Debug Tools ‘Window Help ==l x|
B EEd@ | e | B G =
[Gilobals] =] 8l globial members) =1| & main =lH - |
& 1 2L M J]ege.c‘sea_a El[=ekien = |[inz Debug =

#include <iostream.h>

//Fourth main program to be used in Exercise VI

vold printInt{int 1) {
cout << "The integer was " << 1 << "." << endl;
}

int
mainil |
int leopControl=0;

while {(loopControl<l10}{

(=] printInt (loopControl) ;
loopControl++; |

return 0; hd
4 | »

x| -
K Context: Imaln[]

L«
x

3 !vlal_n_g |Value

Name !Value
loopControl 0

[T, Ao 4 Locale) this £ AT, wimteh {ieatehz %, uatehd § Watchd f

Break at location break point [Ln14,Col1[REC[COL[OVR [READ

FigureV1.13

. exerci

[Fle Edit View Inset Project Debug Tools ‘Window Help ==l x|
B @ me 2 | DR =
[Gilobals] =] 8l globial members) =1| & main =lH - |
2 1 M) Jjexelc\seﬁ_d [=l[Desktop =] [#in32 Debug =1l

#include <iostream.h>

//Fourth main program to be used in Exercise VI

vold printInt (int 1) |
cout << "The integer was " << 1 << "." << endl;
}

int
maini) |
int leopControl=0;

while {loopControl<10}{
=] printInt {(loopContral) ;
loopControl++t; —

]

return 0; hd
4 | »

T - =HIE!
T Context Imaln[] J 3 Plame E!Value
Hame !Value ; :
loopControl 1
A I Ao 4 Locals & this /£ AT, wstch { Weatch2 T uiatehd B Watchd /
Break at location breakpaint | Ln14.Col1 |REC[COL[OVR [READ

FigureV1.14

Page VI-11

Visual C++ Workbook

At this point, you should be in the editing environment of Visual C++. Start the
program running using the debugger again. When you arrive at the first breakpoint, you
will beinserting anew watch in the watch panel in the lower right-hand corner of your
screen. The watch panel should have four tabs labeled Watch 1 through Watch 4. The
first thing you will add is awatch for the address of the variable named loopControl in
Watch 1. To accomplish this, single click in the empty text entry box at the top of the
Watch 1 page and then type & loopControl into that box and press the enter key. After
doing this, your watch panel should appear similar to Figure VI1.15. The address shown
in the Value column is the address of the variablein virtual memory. The actual value
is dependent on several things, so it might not be the same value as the one shown in the
screen shots. However, since in our exercises we will be looking at issues such as
whether two variables have the same memory, the exact memory location will not be our
direct concern. At thistime, please make a note of the address of loopControl.

‘+., exercigeb_4 - Microsoft Visual C++ [break] - [C:\...\exercige6\maind.cpp]

|| Fie £dt vew et Poiect Debug Teos Window HH 5|y
B SEE s e DEE G N
Glabals) (=][(A global merbers) =] @ main - |
oy 0 ELD JleﬁelciseE_tt [[Desktcp = [winaz Debug = = (N N N E ‘

#include <iostream.h>

//Fourth main program te be used in Exercise VI

vold printInti{int 1) {
cout << "The integer was " << 1 << "." << endl:
}

int
maini) {
int leopControl=0;

while (loopControel<l0){
=] printInt (loopContrall ;
loopControl++t; —

}

return 0; had
N 3

ill Context: Imaln[] j ill Mame ‘Value |
B &loopControl Ox0012ff7c

Mame |Va|ue
loopControl 0

[Iy e Cocals T, this (A I, veston iiateha T Wiiatchd §, wiatehd J

Ready

Figure V1.15

Next, use F11 to step into the execution of thisline of code. When you are taken to the
printlnt() function, use F10 to walk to the cout statement. At thispoint if you look at
the Watch 1 page, you will see an error message in the Value column for loopControl.
This makes sense since the variable loopContr ol does not exist within the scope of this
function. At this point, let'slook at the address of the local variablei. Singleclick on the
tab labeled Watch 2 to bring up another page on which watches can be added. Add a
watch for &i to the Watch 2 page. Notice that the address of i is different than the
address of loopControl. Sincei isaby-value parameter, this should not come as a
surprise.

Page VI1-12

Exercise VI — Debugging 11

Now that you have seen how by-value parameters |ook, stop the program using
Shift+F5 and edit the printInt() function so that the integer is passed in by-reference.
Now, compile the modified program and start running it using the debugger. When you
reach the first breakpoint single click on the Watch 1 tab and make a note of the address
of loopControl. Next, use F11 to step into the function call once again. Now, single
click on the Watch 2 tab and look at the address of i. Notice that thistime it has the
same address as loopControl does in the main function.

Our final experiment with main4.cpp will be to modify the printint() function to be
recursive (though silly). Edit your main4.cpp so that the printlnt() function appears as
theonein Figure VI.16.

void printInt(int i) {
if (i==0)
cout << "The integer was " << i << "." << endl;
el se
printint(i-1);

Figure V1.16

After making this change, compile the program again and start running it using the
debugger. Thefirst two times the breakpoint is reached, use F5 to resume the execution
of the program. Thethird timeit isreached (loopControl will have the value 2) use F11
to step into the function call. Now that you have stepped into printint(), use F10 to step
over each line of code until you are returned to the main function. After control returns
to the main function, use F5 to resume execution of the program once again. When it
reaches the breakpoint again, use F11 to step into the function call one moretime. This
time, when in printint() use F11 to step into each line of code. By doing this, we can
observe recursion in action. Notice that when you get to the recursive call to printint()
and use F11 to step into it, you arrive at the beginning of the function once more.
However, if you go to Watch 2 and look at the address of i, it is different each time
printint() callsitself. Thisisexactly what we would expect, since each activation record
will haveits own local variable calledi. If you want to step out of the callsinto
printint() recall that you can use Shift+F11 to do so.

Again, take this opportunity to explore the debugger using this program and do not
proceed on to the fifth and final task of this exercise until you are comfortable with
stepping over, into and back out of lines of code.

We are now ready to move to our fifth and final task in this exercise. Close the current
project and create anew project called exercise6 5. Go to your Windows environment
and copy the file main5.cpp that you extracted from €6.zip into the exercise6 5
directory. Returnto the Visual C++ environment, add that file to the project and compile
it. With thisfifth main function, we are going to observe the execution of a program with
abug intentionally inserted via our debugger. Thisisa contrived example, so the
"expected” output of the program appearsin Figure V1.17.

Page VI1-13

Visual C++ Workbook

Original =0 and Mdified=14
Original =14 and Modi fi ed=80
Origi nal =80 and Modi fi ed=177

FigureV1.17
Take amoment to read through the program as given to familiarize yourself with it.
Noticethat | have placed each if and else on its own line to assist in observing the
execution of the code within the debugger since the debugger will only tell which line
(not which part of the line) is being executed.

If you run the program normally, you will see that the output does not match what we
expected to have printed. The information printed by the first call to the doStuff()
function is correct, but the subsequent call leads to errors.

Let us assume that we would like to use the debugger to assist usin finding the problem.
At this point, we need to decide where a good place to insert a breakpoint would be. We
could insert a breakpoint at the output statement, but by that point, we are past the point
where the error has occurred. The doStuff() function has several mathematical
computations within it, and it is a good guess that the error isin one of these. It might be
useful to see which computation is used in the second call to the function, since we know
from the output that this is where the problem appears to occur. For this exercise, we will
insert abreakpoint at the call to the doStuff() function. (Aswith the previous tasks, you
are encouraged to experiment on your own later using this example.)

After inserting the breakpoint at the call to doStuff(), your window should appear
similar to Figure V1.18.

Page VI-14

Exercise VI — Debugging 11

‘t. exerciseb_B - Microsoft Yisual C++ - [main5.cpp *]

Bl File Edit ¥iew Inset Project Build Tools Window Help

— =] x|
BlEeRE | neor - DB @ kN
Globals) [=1[&1 giobal members) =1[¢ doStuff R =% v| “@ [! T1‘Iﬂ|
exercizef_5 L”Desklup L”Win32 Debug L" LI | @ [| ! @|
—————— x| #include <iostream.h> =
B Workspace Texe . . ‘ .
& Bexerciset 5 //Fifth main program to he used in Exercise VI
B8 source Fil void doStuff (int &i) {
- Bmains.cpl | [0 potasi;
[DHeader Fil
‘. JResource F if (i<10)
1=14-1;
else
if (1<20)
1=30-1i*5;
else
1=87+1;
cout << "Original=" << hold << " and Modified=" << i << endl;
H
int
main() {
int loopControl=0;
while {loopControl<100})
9 degtuff (loepControl);
return 0;
| | | ! I
B3 Classtiew Fi\eViewI |4] | » =

[[nS,Cai6 |[FEC |COL [OvA

READ,

FigureV1.18

Start the program running in the debugger using the Go command. When it reaches the
breakpoint for the first time, use F11 to step into the function call. Onceinside doStuff()
use F10 to step over each line and observe which computation is used. When you get to
the output statement, use F5 to resume execution of the program until the next breakpoint
isreached. When the breakpoint is reached again, the program is about to enter the
doStuff() function for the second time — thisis where the error occurs. Step into the

function and determine which computation isused. Y ou now know the line of code that
has the error.

The error on that lineis that there should have been parenthesis around 30-i in the
formula. Stop the debugger using Shift+F5 and modify the program to have the correct
formula. Now, compile the modified program and run in normally. Notice that when

you ran it normally, the program did not pause at the breakpoints — they are only used
when the program is run using the Go command.

Congratulations! Y ou have now completed your second debugging exercise.

To leave the Visual C++ environment, go to the FIL E menu and select Exit.

Page VI1-15

