
Exercise VI I : Debugging I I I –
Tracing Constructors, Copy
Constructors and Destructors

This exercise is intended to introduce the user to the Visual C++ debugging
environment via a program that does not have any errors. In Exercise V, we saw that
once a program crashes, we can observe things such as the line on which the program has
terminated, the values in local variables or the program’s stack of activation records. In
Exercise VI, we saw that a debugging environment can be used for more than this. A
debugging environment can be used to walk through code and observe it as it is being
executed. In this exercise, we will use the commands shown in Exercise VI along with
an example program to observe how and when constructors, copy constructors and
destructors are invoked.

 There is a zip file named e7.zip at the anonymous FTP server ftp.cs.umd.edu in the
/pub/egolub/VC.workbook directory. Downloaded this file and extract the files which it
contains. Unzip those files to a temporary directory on your machine.

 Launch Visual C++ on your computer. Create a new, empty, Win32 Console
Application named exercise7. Go to the project settings and disable the language
extensions as shown in Exercise II. Go to your Windows environment and copy the files
that you extracted from e7.zip into the exercise7 directory. Return to the Visual C++
environment and add those files to the project. Compile and run the program. Your
output should be the following:

Figure VII.1

 This program creates several objects and pointers to objects of type one. The type one
itself is a simple class which serves no purpose other than to print tracing messages as
each method (eg: constructor, overloaded = operator) is invoked. In this exercise, we will
use the debugger to have our program pause at a specific line of code, and then walk
through the execution of that single line of code in great detail. This will give you more
practice using the features and functionality of the Visual C++ debugger. It might also

Visual C++ Workbook

Page VI I -2

provide more insight into the actual workings of the subject of our debugging exercise –
parameter passing and local variables in functions.

 The part of the program that we will be looking at in detail in this exercise is the line of
code *B = fun1(A); in the main program. If you look at the output of the program, this
one line of code generates the follow output statements:

copy constructor : one
copy constructor : one
copy constructor : one
destructor : one
destructor : one
= operator : one
destructor : one

Figure VII.2

 Our goal is to have the program pause when it reaches this line of code, and then use the
debugger's tools to step into the execution of that line of code to observe each step that
happens.

 First, we need to inform Visual C++ that we want the program to pause at this line of
code when we are running the program via the debugger. After specifying to Visual C++
to insert the breakpoint, your screen should appear similar to that in Figure VII.3.

Figure VII.3

Exercise VI I – Debugging I I I

Page VI I -3

 Take a few moments to read through the program and familiarize yourself with the main
function, the user defined function fun1() as well as the class one. Notice that part of the
main program has been commented out. That is there to use for your own further
explorations as desired.

 Now, start the program running in the debugger using the Go command. The last thing
to be printed to the console window when the breakpoint is reached will have been the
line ===4===. After making some observations about the current environment, we will
step into the execution of this line of code in great detail. It will be helpful at this point if
you take out a piece of paper on which to write some information - one of the things that
we will be observing is the order in which objects are created and destroyed. We will
observe this using the ability to watch the addresses of individual variables and objects as
we walk through the execution of the code.

 On the Watch 1 page, enter & A and B. This will enable us to make note of the
addresses at which the objects of type one that exist in this program are being stored.
Since A is an object, we need to use & A to observe the address of that object in memory.
Since B is a pointer to an array of objects, we only need to use B to observe the address
of the first array object in memory (since that is what a pointer stores).

 After adding these watch values, your window should look similar to Figure VII.4. We
will look back to this information while within the scope of the execution of this line of
code to see when and how A and B are being used.

Visual C++ Workbook

Page VI I -4

 Figure VII.4

 At this point, we are ready to step into this line of code. Press F11 to step into the first
function call that this line of code invokes. Figure VII.5 shows that the function into
which we step is the copy constructor for the class one. This is because the function
fun1() takes a by-value parameter of type one.

Exercise VI I – Debugging I I I

Page VI I -5

 Figure VII.5

 Notice that just as we saw in Exercise VI, once variables go out of scope (as A and B
have done) the watch panel shows error messages in the Value column. At this point, we
know based on our understanding of C++ that the variable within the scope of this
member function named obj is simply a reference to the object that was passed in (in this
case A). We can confirm that it is a reference to A by observing obj ’s address. Single
click on the Watch 2 tab and add a watch for & obj . The address shown for obj will be
the same as the one that had been shown for A. Something else that will be useful for us
to know is the address of the current object within this member function. To obtain that
information, add this to the watch list. Notice that since this is a pointer to the current
object, we do not place an & in front of it. If you were to use an & in front of it, that
would tell you the address of the pointer variable named this, rather than the address of
the current object. In order for this to have a value, we must be inside the execution of
the member function, so press F11 to step into the function. The address of the current
object is different than the address of A or B – this makes sense since the copy
constructor is being called on a newly created object. That newly created object is the
local parameter variable for this call to fun1().

 Since nothing of interest happens within this copy constructor, we can step back out of it
using Shift+F11. At this point, the debugger returns us to the line of code that we had
just stepped into. However, this line of code is still in the process of being executed. To
continue stepping into its execution, press F11 once again. We will now actually step
into the call to fun1(). This shows us how the copy constructor is called on the by-value
parameter before the body of the function is jumped to.

Visual C++ Workbook

Page VI I -6

 If you press F11 at this point, the debugger will step into the function itself. At this
point, single click on the Watch 3 tab and enter & param on the page so that we know
the address of the parameter. Notice that the address of param is the same as the address
of the current object when the copy constructor was previously called. This is because
that call to the copy constructor was invoked to initialize this parameter.

 At this point, your window should appear similar to Figure VII.6. The line of code that
is about to be executed is the declaration of the local variable named local. It will be
created and initialized with the value in the object param. Press F11 to step into the
constructor that is called to initialize this new object.

Figure VII.6

 Since we gave an object of type one as the initial value of this new type one object, the
initialization of local is done by a call to the copy constructor. Press F11 to step into the
body of the copy constructor. The last time we were inside the copy constructor, we set
up Watch 2 to show the address of the current object as well as the parameter. If you
single click on the Watch 2 tab, we can observe those values for the current invocation of
the copy constructor. Notice that the address of the parameter obj is the address of
param in fun1() and the address of the current object is one we have not seen before.
That is because this is a new object, and the object that was passed in to provide the
initial value was param.

Exercise VI I – Debugging I I I

Page VI I -7

 At this point, we can use Shift+F11 to step out of the copy constructor and return to
fun1(). After stepping out of the copy constructor, the yellow arrow will be pointing to
the declaration of local. Press F11 once – since the declaration of local is finished, doing
so will take us to the next line of code to be executed. That line is the return statement.
This return statement will have many stages to be executed. Before doing so, note that
you have the address of the object param as well as the object local. Since both of these
objects are local to the function fun1(), we will soon observe when these objects are
destroyed.

 Press F11 to step into the execution of the return statement. Doing this takes us into
the copy constructor once again. The reason is that the object being returned is being
sent by-value. This means that an object will be temporarily created to hold this
information. This object has no name associated with it, so I will refer to it as FRED as
needed. If you press F11, you will enter the body of the copy constructor, and be able to
observe the address of FRED in Watch 2. Notice that this is another new address and
note it down.

 Press Shift+F11 to step out of the copy constructor. This will return you to the return
statement. Press F11 to continue stepping into the execution of this line of code. Doing
so will take you into the first of several calls to the destructor for class one. Since non-
dynamic objects are destructed in the reverse order of creation, we expect local to be
destroyed first, followed by param followed by FRED. To confirm which object is
being destroyed, use F11 to step into the function and look at the value of this in Watch
2. As expected, the object being destroyed is local. Realize that this is why we do not
return local variables by-reference.

 Press Shift+F11 to step out of the destructor. This will return you once more to the
return statement. Press F11 to continue stepping in the execution of this line of code.
Doing so brings us to another destructor call. This time, the address of the current object
is the address of param.

 Press Shift+F11 to step out of the destructor. This will return you once more to the
return statement. Press F11 to continue stepping into the execution of this line of code.
Doing so brings us to the end of the function fun1() and we are ready to return from this
function call. Notice that FRED has not been destroyed yet.

 Press F11 to continue stepping through the program. Doing so returns us to the line on
which we started this – the call to fun1(). Our function has completed its execution now,
and FRED has been returned. If you press F11 to continue to step into the execution of
this line of code, you will find yourself in the = operator of the one class. Press F11 to
step into the body of the = operator . Since Watch 2 is displaying the addresses of the
current object and an object named obj within the current scope, we can use Watch 2 to
determine what the left-hand operand (current object) and right-hand operand (obj) to the
= operator were. As expected, the current object's address is the same as the address
which B points to in the main function and the address of obj is the address of FRED.

Visual C++ Workbook

Page VI I -8

 Press Shift+F11 to step out of the = operator . This will return us once again to the line
on which we began. If you press F11 once more to continue the execution of this line of
code, the destructor gets called. This is the destruction of the object (FRED) that had
been temporarily allocated when returning from fun1(). Looking at the address of the
current address under Watch 2 will confirm that FRED is now being destructed.

 If you now press Shift+F11 to step out of the destructor, you will finally move on to the
next line of code in the main function.

 This program’s main function has a wide range of examples to experiment with to
become more familiar with the debugger as well as the actions of constructors, copy
constructors and destructors in a program. When tracing through a program "for real" it
will often be useful (especially in programs with dynamic memory allocation) to be able
to use the watch panel to track the objects being accessed.

 Congratulations! You have now compiled and executed your third debugging exercise.

 To leave the Visual C++ environment, go to the FILE menu and select Exit.

