
Exercise IV: Input and Output
File Redirection

The output of a program will often be more that can fit in a single window without
scrolling off screen. Additionally, our input files are often quite large. It is often useful
to be able to redirect input from a text file and output to a text file. In this exercise, we
will do both of these.

 Launch Visual C++ on your computer. Create a new, empty, Win32 Console
Application named exercise4. Go to the project settings and disable the language
extensions as shown in Exercise II. Go to your Windows environment and copy the files
class1.h and class1.cpp from the exercise3 directory into the exercise4 directory. Return
to the Visual C++ environment and add these files to exericse4. Create a new C++
source code file named exercise4.cpp and enter the following code:

#include <iostream.h>
#include "class1.h"

int
main() {
int num;

 cout << "Enter a number: ";
 cin >> num;
 for (int i=0; i<num; i++)
 for (int j=0; j<num; j++)
 cout << class1(i,j) << endl;

 return 0;

}

Figure IV.1

 Compile the project and create an executable file.

 Run the program and enter the integer 4 when prompted by the program. Your console
should appear similar to the following:

Figure IV.2

Visual C++ Workbook

Page IV-2

 Press some key to continue.

 Now, run the program again, but this time, enter 16 as the number when prompted.
Your console should now appear similar to the following:

Figure IV.3

 The output of the program scrolled off the screen, so we were unable to view it. This is
one time when redirecting the output to a file can be useful. Another place where output
file redirection is useful is when you are given an output that your program needs to
match. If you redirect the output to a file, you can then use a utility such as Windiff (see
Appendix B) to compare your output to the given one.

 One question to address is "Where should we put the input and output files?" Ideally,
the place to put them would be the project directory. However, in order for file
redirection to work consistently while working on your computer (possibly in mutliple
applications at the same time) you need to specify the full path to these files. For this
reason, I recommend creating a directory such as C:\IOfiles to use for this purpose. In
this exercise, I will assume that you have created such a directory, and that you will place
all input files there as well as look there for your output files.

 To specify input and/or output redirection, go to the PROJECT menu and select
Settings…. You should see a dialog box similar to the one in Figure IV.4. Since it is
rare that one would use redirection in a release of a product, but rather would use this
when testing one, you will need to go to the Debug tab (as shown in Figure IV.5) to
specify redirection.

 You specify the redirection instructions in the Program arguments: text entry box in
the same way you would if running a program from the command line; using < and >
with file names. For our current program, we would like to redirect the output to a file
called e4.out in C:\IOfiles. To accomplish this, type > C:\IOfiles\e4.out in the text
entry box as shown in Figure IV.6.

Exercise IV – Input and Output File Redirection

Page IV-3

Figure IV.4

Figure IV.5

Figure IV.6

 Now, when run your program again, all messages will be redirected to the output file.
This means that you will not see the prompt to enter an integer nor will you see the
prompt to press any key to continue. Run the program now. Don’t forget that you do
need to enter an integer (use 16) and then after waiting until you think the program is
done press a key to continue.

Visual C++ Workbook

Page IV-4

 To view the output, you need to view the file C:\IOfiles\e4.out. This can be done
through Visual C++ easily by adding that file to the project. Go through the steps to add
a file to the project, but this time when you are supposed to select the file to add, go to the
File name: text entry box, and explicitly enter the name of the file, then click the OK
button.

Figure IV.7

 If you now look at the FileView for the project, e4.out has been added to the bottom of
the list. Since the suffix is not known as a Visual C++ component, it is not placed into
any of the folders such as Source Code or Header Files. If you double click on e4.out,
the file will be opened in the editor. You may now scroll through the file to view any
part of the program’s output.

 Up until now, all the files that were part of the project had been exclusively updated by
us in the editor while working on the project. However, if you view e4.out, and then run
the program again, the program (which is running as an independent process) will be
modifying the file as well. We will want to assure that the file in the editor is updated
each time the file is modified by the program. Visual C++ will see that the file has been
modified based on file dates. We can specify whether Visual C++ automatically
refreshes the file or asks us whether we want it to refresh the file by going to the TOOLS
menu and selecting Options. On the Editor tab, there is a checkbox labeled Automatic
reload of externally modified files.

Figure IV.8

Exercise IV – Input and Output File Redirection

Page IV-5

 If you check that box, the modified files will automatically reload. If you leave the box
unchecked, then if a file is modified, Visual C++ will ask if you want to refresh it with a
dialog similar to the following:

Figure IV.9

 In many ways, it is more convenient to have the files automatically refreshed, so for the
exercises in this workbook, we ask that you check that box now.

 Now that you have checked that box, run the program again, using an input value other
than 16 so that you can observe that the e4.out file is being refreshed.

 In addition to redirecting the output of a program to a file, it is often desirable to redirect
the standard input to a program from a text file. This can be done using the same basic
technique as output redirection. Go to the same text entry box in which you typed the
> C:\IOfiles\e4.out directive. If you type in < C:\IOfiles\e4.in before that, then the
contents of C:\IOfiles\e4.in will be used for the standard input to the program. Do that
now.

Figure IV.10

 As with e4.out, we will want to be able to edit e4.in within the IDE. However, since the
file has not been created yet, we can’t use the technique of adding an existing file to the
project. Instead, to begin the process you use the option of adding a new file to the
project, but rather than selecting C++ Source File or C/C++ Header File, single click on
Text File. Next, go to the Location: text entry box, delete what is already there and
enter C:\IOFiles\. Finally, enter the name e4.in in the File name: text entry box.

 At this point, the file e4.in has been created in the C:\IOFiles directory, has been added
to the project and has been opened in the editor. Enter an integer (such as 4 or 16) to be
used as input to your program in e4.in. When you run the program, the contents of this

Visual C++ Workbook

Page IV-6

file will be used as the standard input for the program. However, it is important to note
that after the program has terminated, it will still expect the user to press a key to
continue. This will not be taken from the redirected input file. The result is that when
you run the program, the console window will appear totally blank and sit there waiting
unless you press a key (such as the space bar).

 Now, run the program a few times with different inputs.

 Congratulations! You have now compiled and executed your fourth exercise.

 To leave the Visual C++ environment, go to the FILE menu and select Exit.

