
Exercise VI : Debugging I I –
Walking through a program

I n Exercise V we looked at a program that had crashed and how to determine where it
had crashed. This exercise is actually a collection of exercises intended to introduce
features of the Visual C++ debugger and the ways in which a programmer can walk
through the execution of a program in as much or as little detail as they choose.

 There is a zip file named e6.zip at the anonymous FTP server ftp.cs.umd.edu in the
/pub/egolub/VC.workbook directory. Download this file and extract the files which it
contains. Unzip those files to a temporary directory on your machine.

 Launch Visual C++ on your computer. Create a new, empty, Win32 Console
Application named exercise6_1. Go to the project settings and disable the language
extensions as shown in Exercise II. Go to your Windows environment and copy the file
main1.cpp that you extracted from e6.zip into the exercise6_1 directory. Return to the
Visual C++ environment and that file to the project. Compile and run the program. Your
output should be the following:

Figure VI.1

 In Visual C++ double click on main1.cpp in the FileView to bring that file into the
editor. Notice that there are actually four cout statements used to create the displayed
output. In this first main program for this exercise, we will observe the behavior of an
output stream.

 Our goal is to have the program pause when it reaches the line of code that prints the
word World to the screen and observe what has been printed to the console so far. We
will then use the debugger’s tools to step through the execution of that line of code and
the remaining lines of code to observe each step that happens.

 First, we need to inform Visual C++ that we want the program to pause at this line of
code when we are running the program via the debugger. This is called inserting a

Visual C++ Workbook

Page VI -2

breakpoint in the program. You can instruct Visual C++ to insert (or later remove) a
breakpoint in either of the following ways:

- Position the mouse in the gray strip to the left of the source code so that it is
aligned with the line of code on which you want to set the breakpoint or
position the mouse over the line of code itself. Right click the mouse to bring
up the context menu and select the Inser t/Remove Breakpoint option

- Position the cursor somewhere on the line of code on which you want to set
the breakpoint and click on the breakpoint button (shown in Figure VI.2)

Figure VI.2

 After specifying to Visual C++ to insert the breakpoint, a solid red circle will appear
next to the line of code with which the breakpoint is associated. In this example, your
screen should appear similar to that in Figure VI.3. If you insert a breakpoint in the
incorrect location, you can right click on the red circle and select Remove Breakpoint
from the context menu that appears.

Figure VI.3

 You can now start the program running in the debugger by using the Go command (see
page V-2). The program will execute normally until it arrives at the marked line of code.
At that point, execution of the program will be paused, but the program will still be
"alive" – the entire state of the program (variables, etc.) will remain and you will be able
to resume execution of the program as if it had not been stopped. At this point, Visual
C++ will be brought back to the foreground and should appear similar to Figure VI.4.

Exercise VI – Debugging I I

Page VI -3

Figure VI.4

 The yellow arrow shows the line of code on which execution of the program was
stopped. At this point, the characters Hello and a blank character have been sent to the
standard output stream. However, as you may have experienced before in your
programming, output streams have buffers to which information is put before actually
being sent to the stream. Until that buffer is flushed either explicitly or by the internals of
the program, the information is not displayed. In this environment, we can observe this
by switching to the DOS console window in which our output is displayed. If you do
this, you will see an empty console window such as is shown in Figure VI.5.

Figure VI.5

 We can now step through the program line by line and observe what happens after each
line. The command we will use in this first experience is the Step Over command. This
command instructs the debugger to execute the line of code on which the program has
been paused in total, and then pause at the beginning of the next line of code that would
be executed. You can instruct Visual C++ step over a line of code by pressing the F10

Visual C++ Workbook

Page VI -4

key a single time. Switch back to the Visual C++ window and press the F10 key a single
time now. Now that you have instructed the debugger to step over the current line of
code, it has been executed and the yellow arrow will point to the next line of code that is
to be executed. In Figure VI.6 notice that the red circle still represents where we set the
breakpoint and that the yellow arrow is pointing to the next line of code that is expected.

Figure VI.6

 If you switch back to the console window, you will see that nothing has appeared yet.
This is because the output buffer still has not been flushed. Switch back to the Visual
C++ window and press F10 one more time to execute the current line of code.

Figure VI.7

Exercise VI – Debugging I I

Page VI -5

 When endl is sent to the output buffer, in addition to sending a new line to the output
buffer, it causes the buffer to be flushed. We can confirm this by switching to the
console window, which will appear like the one in Figure VI.7. If you would like to
experiment with something later, you can modify this program so that rather than endl
the program uses ’\n’ to insert the end of line character. You can then walk through the
execution and see when the output is flushed in that situation.

 At this point, if you switch back to the Visual C++ window, the yellow arrow will be
pointing to the return statement at the end of our program. If you continue to use F10 to
step over the execution of code, you will reach the end of the main program and will be
brought into system code. Although this is something we do not typically do, it is a good
exercise to "accidentally" do it now to see how it appears and also to see how to return to
familiar ground. Currently, the yellow arrow should be pointing to the return statement.
Press the F10 key twice now. Your screen should look similar to Figure VI.8. (Note:
Depending upon how Visual C++ was installed on your machine, you may get a dialog
box at this point asking you to give the path to a file CRT0.C. If this occurs, use your
system’s find tool to find location of that file on your hard drive, and use the interface
Visual C++ provides to identify that path. If you simply press Cancel, Visual C++ will
take you to the system-level code rather than the code shown in Figure VI.8 below.)

Figure VI.8

 What you are now seeing is the code that is inserted by Visual C++ as a wrapper around
your code. This code establishes the console window and invokes your program within
that window. We are no longer at a place where we are interested in walking through the

Visual C++ Workbook

Page VI -6

code being executed. In this case, the Go command can come in handy again. Recall
that we used the Go command to start the program in the debugger. It also serves the
purpose of instructing the debugger to resume executing the program normally until the
next breakpoint is reached. If there are no more breakpoints (as will be the case here)
then it will run the program to completion. Use the Go command now.

 The program has now completed its execution. There are two things worth noting at
this point; (1) the console window has closed automatically and (2) the editor is now
displaying the file in which we were last located during debugging. We can bring our
code back up in the editor window (if it is not currently displayed) by double clicking on
its name under FileView.

 We are now ready to move to our second task in this exercise. Close the current project
and create a new project called exercise6_2. Go to your Windows environment and copy
the file main2.cpp that you extracted from e6.zip into the exercise6_2 directory. Return
to the Visual C++ environment and that file to the project and compile it. With this
second main function, we are going to observe conditional statements via our debugger.

 Recall that with a conditional statement, there is code that will not always be executed –
the execution depends on the test condition. In main2.cpp we have a program that asks
the user to enter a number and then either prints the word TRUE or the word FALSE
based on whether the entered value was less than 15. Go the FileView and double click
on main2.cpp to bring that file into the editor. Insert a breakpoint on the line of code that
prints out the word TRUE as shown in Figure VI.9.

Figure VI.9

Exercise VI – Debugging I I

Page VI -7

 Next, compile the project and begin running the program using the Go command to start
the debugger. The program will begin to run and the console window will appear in the
foreground with a prompt for you to enter a number. Enter the number 10 and press the
enter key. At this point, the Visual C++ window will come to the foreground and appear
similar to Figure VI.10. The program has been paused on the line of code that is going to
print the word TRUE to the screen.

Figure VI.10

 Press F10 to instruct the debugger to step over this line of code and bring us to the next
line of code that is to be executed. Notice that the yellow arrow is now pointing at the
line that says else. However, if you press F10 again, it does not take us to the contents of
the else, but rather jumps over them to the return statement. This is because in an
if-then-else conditional, only one or the other will have its body executed. Now that you
are at the return statement, use the Go command to resume execution of the remainder of
the program.

 Without making any changes, use the Go command to begin running the program in the
debugger again. This time, when prompted for a number, enter the number 20. Notice
that after you entered the number, the program continued on until completion – it did not
stop at the breakpoint that exists in the program. The reason is that the line of code on
which the breakpoint is set was never executed.

 We are now ready to move to our third task in this exercise. Close the current project
and create a new project called exercise6_3. Go to your Windows environment and copy
the file main3.cpp that you extracted from e6.zip into the exercise6_3 directory. Return
to the Visual C++ environment and that file to the project. Now add main3.cpp to the
project and compile it. With this third main function, we are going to observe function

Visual C++ Workbook

Page VI -8

calls via our debugger and explore another command within the debugger – the step into
command.

 First, set a breakpoint on the first cout statement in the main function. Your window
should appear similar to Figure VI.11.

Figure VI.11

 Begin running the program in the debugger. The program will pause when it is about to
execute that first cout statement. Use F10 to step over each of the three lines of code in
the main function. When you are positioned at the return statement, use the Go
command to run the program to completion. Notice that with the step over command,
each line of code appeared to be executed as a single entity. However, each of these
three lines has several components. The cout statements have several calls to the
overloaded << operator and the line of code between them calls the user defined
function pr intInt(). It is often useful to step into a line of code that is about to be
executed in order to observe the details. To do this we can use F11 to step into the
current line of code.

 Begin running the program again using the Go command, but this time when you reach
the breakpoint, press the F11 key once. This will step into the first call to the
<< operator . (Note: As was true previously with the file CRT0.C, Visual C++ might ask
you to identify the path to OSTREAM.CPP on your system – use same technique to do
so.) Your window should appear similar to Figure VI.12. Notice that you are now
looking at the actual code for the ostream << operator .

Exercise VI – Debugging I I

Page VI -9

Figure VI.12

 In this case, stepping into the execution of the line of code really isn’t going to help us
during debugging. However, it is good to experience stepping into a system function so
that we know what it looks like and also so that we can see how to step back out of it.
You will find that you will occasionally step into a line of code and then decide that you
would rather have stepped over it. To step over a line of code that you stepped into, you
can use the step out command by depressing the Shift key and then pressing F11 with
the Shift key held down (Shift+F11). Doing this will execute the remainder of the
function which you stepped into, and return you to the line of code which invoked it.

 Now you have been returned to the line of code which invoked the << operator , but the
line of code has not finished running yet – only the first call to the << operator has run.
If you were to use F11 again, you would step into the second call to the << operator .
Rather than doing that, use F10 to step over the remainder of this line of code. That will
bring you to the call the pr intInt().

 Now that the yellow arrow is positioned at the call to pr intInt() press F11 to step into
that function call. The yellow arrow indicating the line of code about to be executed has
now jumped to the beginning of the pr intInt() function. We can now step through each
line of code in this function as we choose – either using F10 or F11. We leave this
choice to you. Continue step through this program until it has run to completion in any
way that you choose. The important thing is that after completing this task, you should
be comfortable with stepping over , into and back out of code.

Visual C++ Workbook

Page VI -10

 We are now ready to move to our fourth task in this exercise. Close the current project
and create a new project called exercise6_4. Go to your Windows environment and copy
the file main4.cpp that you extracted from e6.zip into the exercise6_4 directory. Return
to the Visual C++ environment and that file to the project. Now add main4.cpp to the
project and compile it. With this fourth main function, we are going to observe the
execution of code within a loop via our debugger. We will also experiment with
reference -vs- value parameters as well as looking at the address of a variable in memory
using watch lists.

 In main4.cpp add a breakpoint to the line of code within the while loop that calls
pr intInt() and begin running the program using the debugger. The program will pause
when it gets to that line of code. Use F5 to resume execution of the program. Notice that
the program pauses once again on that same line. However, this time you are in the
second iteration of the loop. Each time a line of code with a breakpoint is reached, the
debugger will pause.

 Notice that in Figure VI.13 (the first time we hit the breakpoint) the value of
loopControl as displayed in the lower left-hand panel is 0 while in Figure VI.14 (the
second time we hit the breakpoint) is 1. Each time you press F5 to resume running the
program, the program will come back to pause at the same line of code and the value of
loopControl will reflect the iteration of the loop. After pressing F5 a few times to
observe the behavior, you can press Shift+F5 to stop the execution of the program.

Exercise VI – Debugging I I

Page VI -11

Figure VI.13

Figure VI.14

Visual C++ Workbook

Page VI -12

 At this point, you should be in the editing environment of Visual C++. Start the
program running using the debugger again. When you arrive at the first breakpoint, you
will be inserting a new watch in the watch panel in the lower right-hand corner of your
screen. The watch panel should have four tabs labeled Watch 1 through Watch 4. The
first thing you will add is a watch for the address of the variable named loopControl in
Watch 1. To accomplish this, single click in the empty text entry box at the top of the
Watch 1 page and then type & loopControl into that box and press the enter key. After
doing this, your watch panel should appear similar to Figure VI.15. The address shown
in the Value column is the address of the variable in vir tual memory. The actual value
is dependent on several things, so it might not be the same value as the one shown in the
screen shots. However, since in our exercises we will be looking at issues such as
whether two variables have the same memory, the exact memory location will not be our
direct concern. At this time, please make a note of the address of loopControl.

Figure VI.15

 Next, use F11 to step into the execution of this line of code. When you are taken to the
pr intInt() function, use F10 to walk to the cout statement. At this point if you look at
the Watch 1 page, you will see an error message in the Value column for loopControl.
This makes sense since the variable loopControl does not exist within the scope of this
function. At this point, let’s look at the address of the local variable i. Single click on the
tab labeled Watch 2 to bring up another page on which watches can be added. Add a
watch for & i to the Watch 2 page. Notice that the address of i is different than the
address of loopControl. Since i is a by-value parameter, this should not come as a
surprise.

Exercise VI – Debugging I I

Page VI -13

 Now that you have seen how by-value parameters look, stop the program using
Shift+F5 and edit the pr intInt() function so that the integer is passed in by-reference.
Now, compile the modified program and start running it using the debugger. When you
reach the first breakpoint single click on the Watch 1 tab and make a note of the address
of loopControl. Next, use F11 to step into the function call once again. Now, single
click on the Watch 2 tab and look at the address of i. Notice that this time it has the
same address as loopControl does in the main function.

 Our final experiment with main4.cpp will be to modify the pr intInt() function to be
recursive (though silly). Edit your main4.cpp so that the pr intInt() function appears as
the one in Figure VI.16.

void printInt(int i) {
if (i==0)

cout << "The integer was " << i << "." << endl;
else

printInt(i-1);
}

Figure VI.16

 After making this change, compile the program again and start running it using the
debugger. The first two times the breakpoint is reached, use F5 to resume the execution
of the program. The third time it is reached (loopControl will have the value 2) use F11
to step into the function call. Now that you have stepped into pr intInt(), use F10 to step
over each line of code until you are returned to the main function. After control returns
to the main function, use F5 to resume execution of the program once again. When it
reaches the breakpoint again, use F11 to step into the function call one more time. This
time, when in pr intInt() use F11 to step into each line of code. By doing this, we can
observe recursion in action. Notice that when you get to the recursive call to pr intInt()
and use F11 to step into it, you arrive at the beginning of the function once more.
However, if you go to Watch 2 and look at the address of i, it is different each time
pr intInt() calls itself. This is exactly what we would expect, since each activation record
will have its own local variable called i. If you want to step out of the calls into
pr intInt() recall that you can use Shift+F11 to do so.

 Again, take this opportunity to explore the debugger using this program and do not
proceed on to the fifth and final task of this exercise until you are comfortable with
stepping over , into and back out of lines of code.

 We are now ready to move to our fifth and final task in this exercise. Close the current
project and create a new project called exercise6_5. Go to your Windows environment
and copy the file main5.cpp that you extracted from e6.zip into the exercise6_5
directory. Return to the Visual C++ environment, add that file to the project and compile
it. With this fifth main function, we are going to observe the execution of a program with
a bug intentionally inserted via our debugger. This is a contrived example, so the
"expected" output of the program appears in Figure VI.17.

Visual C++ Workbook

Page VI -14

Original=0 and Modified=14
Original=14 and Modified=80
Original=80 and Modified=177

Figure VI.17
 Take a moment to read through the program as given to familiarize yourself with it.
Notice that I have placed each if and else on its own line to assist in observing the
execution of the code within the debugger since the debugger will only tell which line
(not which part of the line) is being executed.

 If you run the program normally, you will see that the output does not match what we
expected to have printed. The information printed by the first call to the doStuff()
function is correct, but the subsequent call leads to errors.

 Let us assume that we would like to use the debugger to assist us in finding the problem.
At this point, we need to decide where a good place to insert a breakpoint would be. We
could insert a breakpoint at the output statement, but by that point, we are past the point
where the error has occurred. The doStuff() function has several mathematical
computations within it, and it is a good guess that the error is in one of these. It might be
useful to see which computation is used in the second call to the function, since we know
from the output that this is where the problem appears to occur. For this exercise, we will
insert a breakpoint at the call to the doStuff() function. (As with the previous tasks, you
are encouraged to experiment on your own later using this example.)

 After inserting the breakpoint at the call to doStuff(), your window should appear
similar to Figure VI.18.

Exercise VI – Debugging I I

Page VI -15

Figure VI.18

 Start the program running in the debugger using the Go command. When it reaches the
breakpoint for the first time, use F11 to step into the function call. Once inside doStuff()
use F10 to step over each line and observe which computation is used. When you get to
the output statement, use F5 to resume execution of the program until the next breakpoint
is reached. When the breakpoint is reached again, the program is about to enter the
doStuff() function for the second time – this is where the error occurs. Step into the
function and determine which computation is used. You now know the line of code that
has the error.

 The error on that line is that there should have been parenthesis around 30-i in the
formula. Stop the debugger using Shift+F5 and modify the program to have the correct
formula. Now, compile the modified program and run in normally. Notice that when
you ran it normally, the program did not pause at the breakpoints – they are only used
when the program is run using the Go command.

 Congratulations! You have now completed your second debugging exercise.

 To leave the Visual C++ environment, go to the FILE menu and select Exit.

