
Exercise I I I : Projects with
Multiple Files and Classes

A project will typically be composed of multiple files rather than just one. Each class in
a project will usually have two files associated with it; the source file and header file. In
this exercise we will look at adding multiple files to a project, both from scratch and by
using existing files.

 For this exercise, we will create some of our own source code and header files, but will
also use some that have already been written. In order to obtain these prewritten files,
you need Internet access, an FTP program and an unzip program. The FTP program I
recommend for PC users is WS FTP, but any FTP program will do. The unzip program I
recommend for PC users is WinZip, but again, any unzip program will do. If you do not
have an FTP and unzip program installed on your machine, you can find and download
such programs by going to a site such as www.download.com and searching for them.

 The prewritten files which will be used in this exercise are located at the anonymous
FTP site ftp.cs.umd.edu in the /pub/egolub/VC.workbook directory in a file named
e3.zip. You should create a temporary download directory if you do not already have
one. Connect to the FTP site using anonymous as your login ID and your e-mail address
as your password. Download this file using binary transfer mode and unzip it.
Remember where you placed these files since we will need to use them later.

 Launch Visual C++ on your computer. Create a new, empty, Win32 Console
Application named exercise3. Go to the project settings and disable the language
extensions as shown in Exercise II. Add a C++ source file named exercise3.cpp to this
project using the techniques showed in Exercise II. Enter the program shown in
Figure III.1 in exercise3.cpp.

#include <iostream.h>
#include "class1.h"

int
main() {
class1 x,y,z;

 cin >> x >> y >> z;

 cout << x << " " << y << " " << z << endl;

 return 0;

}

Figure III.1

 Notice that this program uses objects of type class1 and includes class.h at the top.
You will now need to add new files called class1.h and class1.cpp to the project. First,
let’s add class1.h to the project.

Visual C++ Workbook

Page I I I -2

 Go to the PROJECT menu, go to the Add To Project submenu and select New….
This time, however, single click on C/C++ Header File from the presented list. In the
text entry box labeled File name: enter the name class1.h and press OK . A file named
class1.h has now been created in your project’s directory, added to the project and opened
in the editor panel in Visual C++. Enter the code shown in Figure III.2 in class1.h.

#ifndef class1_h
#define class1_h
#include <iostream.h>

class class1 {
 int first, second;
public:
 class1(int=0, int=0);
 class1(const class1&);
 ~class1();

 friend istream& operator >> (istream&, class1&);
 friend ostream& operator << (ostream&, class1);
};

#endif

Figure III.2

 You can now compile exercise3.cpp to confirm that these two files work together. Note
that you have not created class1.cpp yet, so you can not attempt to compile the entire
project. You can only compile exercise3.cpp. To accomplish this, double click on
exercise3.cpp under the FileView, go to the BUILD menu and select Compile
exercise3.cpp. This is called partial compilation – exercise3.cpp will be compiled and if
there are no errors, an object file will be created for that file. When we compile an entire
project, each source file is compiled to an object file, and then all of the object files are
linked to create the executable.

 Next, add another C++ source file to your project, and call this one class1.cpp. Enter
the code shown in Figure III.3 in class1.cpp.

#include "class1.h"

class1::class1(int f, int s){
 first=f; second=s;
}

class1::class1(const class1& obj){
 first=obj.first; second=obj.second;
}

class1::~class1(){
}

istream& operator >> (istream& is, class1& obj){
 is >> obj.first >> obj.second;
 return is;
}

ostream& operator << (ostream& os, class1 obj){
 os << obj.first << ":" << obj.second;
 return os;
}

Figure III.3

Exercise I I I – Projects with Multiple Files and Classes

Page I I I -3

 Now, all components of the project as it is currently designed have been created. You
can now compile the full project to create an executable file. Do so, and run the program.
The program expects a total of six integers to be entered by the user.

 We are now ready to add in the final part of this exercise. In exercise3.cpp, prior to the
return statement, add the following line of code:

 funWithRationals();

Figure III.4

 This is a call to a function that is implemented in the file fwr .cpp. That file is among
the files you downloaded at the beginning of this exercise. Try to recompile the project
now. Visual C++ should inform you that funWithRationals is an undeclared identifier.
Now enter the line of code:

#include "fwr.h"

Figure III.5

at the top of exercise3.cpp right under the include directive for iostream.h. Attempt to
compile the project again. This time, Visual C++ should inform you that there is no such
file as fwr .h. It is now time to make use of those files you downloaded. First, from your
Windows environment, copy or move those files from their temporary location into the
exercise3 directory.

 Now that the files are in the exercise3 directory, once again attempt to compile the
project. This time, fwr .h will be automatically added to the External Dependencies
folder under the FileView, but the project will still not create an executable during the
linking stage since not the function funWithRationals() was never implemented as far as
Visual C++ is concerned. If you fully expand the FileView tree, it will appear similar to
the following:

Figure III.6

Visual C++ Workbook

Page I I I -4

 To add existing files to the project, go to the PROJECT menu and move your mouse to
the Add To Project sub-menu. From the Add To Project sub-menu, select Files….
You should now be presented with a dialog box similar to the following:

Figure III.7

 To add the files fwr .h, fwr .cpp, rational.h and rational.cpp to the project, while
holding down the Control key, single click on each of their names. Then, release the
Control key and click on the OK button. Once again, attempt to compile to project to an
executable. This time, Visual C++ has all of the resources it requires, and an executable
is created.

 The program that you have created now requires a total of nine integers to be entered by
the user. Run the program now.

 Now that we have created this project, we can revisit the ClassView to see how it
displays information about the classes within a project. Single click on the ClassView
tab to bring up the ClassView page.

Figure III.8

 When the ClassView first comes up, the tree should be fully collapsed as it is in
Figure III.8. Expand the first level of the tree by single clicking on the + next to
exercise3 classes.

Exercise I I I – Projects with Multiple Files and Classes

Page I I I -5

Figure III.9

 We now see the names of the classes that are part of this project. If you single click on
the + signs next to either class name (class1 or rational) that part of the tree will expand
to display the members of that class. Notice that none of the standalone functions such as
main() or funWithRationals() or the non-member operators appear.

 If you have not done so yet, single click on the + sign next to rational to expand that
part of the tree. Notice (as shown in Figure III.10) that the icons next to each component
represent information such as whether a member is data (blue block) or a function (purple
block), and whether it is private (a lock appears) or public (no extra icon).

Figure III.10

 For any classes that you expanded, single click on the – sign next to the class name to
collapse that part of the tree so that your ClassView appears as it had in Figure III.9.
Now, single click on the + sign next to the Globals folder.

Visual C++ Workbook

Page I I I -6

Figure III.11

 Any functions that are part of the project, but are not members of any class within the
project will be placed in the Globals folder under ClassView. We will revisit ClassView
again in Exercise X to see some if its other uses.

 Congratulations! You have now compiled and executed your third exercise.

 This exercise will be the foundation of the next few exercises as well. In each of these
exercises, we will begin by instructing you to create a new project, and copy the source
and header files from this exercise into that project’s directory. This is done so that each
exercise may be self-contained.

 To leave the Visual C++ environment, go to the FILE menu and select Exit.

