Exercise VIII: Debugging IV —
Tracing Infinite L oops

By this exercise you should be fully comfortable using the Visual C++ debugging
environment. In this exercise, we will be working with a program that has an error that
will cause the program to get trapped in infinite loops. We will see anew command
within the debugger that will alow us to manually pause a program that is running as
well as one that will allow us to run the program up until a specific line of code without
needing to insert a breakpoint.

Thereisazip file named €8.zip at the anonymous FTP server ftp.cs.umd.edu in the
/pub/egolub/V C.wor kbook directory. Downloaded this file and extract the fileswhich it
contains. Unzip those files to atemporary directory on your machine.

Launch Visua C++ on your computer. Create a new, empty, Win32 Console
Application named exercise8. Go to the project settings and disable the language
extensions as shown in Exercise Il. Go to your Windows environment and copy the files
that you extracted from €8.zip into the exercise8 directory. Returnto the Visual C++
environment and add those files to the project. Compile the program.

The program will request the input of three positive integers. After entering three
values, your program should get stuck in an infinite loop! An important question that you
might ask at this point is"How can | tell that it is stuck in an infinite loop and not
working hard at doing itsjob?" This question must be answered in part by ones
knowledge of the task being performed by the program and how long that task is
expected to take to complete. In this exercise, the program will generate some rational
numbers and insert them into a set — this should occur quite quickly. However, in redlity,
it is sometimes difficult to know whether a program isin an infinite loop or just doing a
particularly long task. If aprogram isrunning for along time and you are not sure which
isthe case, you might want to start it running in the debugger. Thiswill enable you to
observe the program's state after some time to see whether it appears to be making
progress towards an end goal. This exerciseisintended to introduce how to accomplish
this rather than when to use the tool.

Before starting the program, familiarize yourself with the Rational and Rational Set
classes and look over the main function briefly to get the general idea of what it is
attempting to accomplish. Now, begin running the program normally. Enter 3, 4 and 5
asthe three positive integers. Y our screen should now appear similar to Figure VIII.1. It
will continue to appear thisway. The program is stuck in aloop. You can help confirm
this by using your mouse to move the console window around the screen — you will
probably notice avery slow refresh rate. Since we began running the program normally,
there is nothing to do at this point except to use Control+C to stop the program's
execution. Ideally, wewould like to be able to pause the execution and observe the state



Visual C++ Workbook

of the program, and perhaps walk through some of the execution of the program to help
determine what is happening.

(7] =] S
File Edit ¥iew Inset Project Build Tool Window Help —|& ﬂ
8 - T, (B 2 | Gy [rational L™
[ 151obals) = ][ i global members) x| & main =@ - & 1 LM
exercised :l' ’— & "C:AWINNT \Profiles\egolub\Personal\Wisual C++ Workbook\exercise8\Debug\exercised. exe” M= E3 1=l -m

B Workspac pived
- P llFlease enter three positive integers:z3 4 5§
ol exerci

=iy Bour
[#]1 Ra

#] Ra
=44 Head
Era
Era
(dReso

int a, b, <
cout << "Please enter three pozitive integers:";
cin »» a »» b »» o

B2 Classview | [2] Filsview ingertionValue=0; LIL‘

Ready Ln 19, Col 42

Figure VIIl.1

Thistime, start the program running in the debugger using the Go command. Again,
enter 3, 4 and 5 asthe values. The program will once again become trapped in aloop.
However, thistime, your screen will appear slightly differently. In Figure VI111.2, notice
that the menu bar of Visua C++ in the background has DEBUG listed.

Page VIII1-2



ExerciseVIII —Debugging IV

., exercised - Microsoft isual C++ [run] - [C:\._ \exerciseB\main.cpp] 9 [=] B |

” Eile Edit ¥iew Inset Project Debug Tools Window Help —|& il
(@ zm@ | e o DR | Gt
JJE ""'5“ C:AWINMT \Profiles\egolub\Personal\Wisual C++ Workbook\exerciseB\Debugiexercised. exe [_ [O]x]
| g 2N
mel ' lease enter three positive integers:3 4 5 j
iks _>l_I
]|
A

Hame [Value

suto £ Locals ), this A, watehi Wwatchz  Watch3 , Watche

Ready ['Ln19.Col 42 [REC [COL [OvA |HEAD@

Figure VI1I1.2

If you bring Visual C++ to the foreground, you can then go to the DEBUG menu and
select the Break option. Thiswill pause the program’s execution and allow us to use al
of the debugger commands to which we have previously been introduced.

At this point, we can not predict exactly where within the program’s execution it will
pause. (Note: If Visual C++ asksfor the path to afile, use the same technique discussed
in Exercise VI in reference to CRTO.C to identify that path.) With the crash in Exercise
V and the breakpointsin Exercises VI and VI this workbook was able to walk through
the programs in the same way as they appeared on your screen. Here, however, we are
unable to do this. Also, since the program may have been executing lower level code at
the time you selected to break, you might see something similar to Figure V111.3, Figure
VI1I1.4 or Figure VI1I1.5 on-screen. Each of these figures shows one of many different
places at which your program could have paused.

Y our screen will probably appear different than any of these three, but it should appear
similar in nature. The important thing to understand is that you have paused the program
in the middle of its execution. If we have paused at a point in the program execution
which is not user-written code (eg: Rational, Rational Set or main()), it isusually our
goal to return to code that we ourselves wrote, and then walk through the code starting
from that point. To accomplish this, go to the Context pop-up menu located in the lower
left-hand panel. Single click on the menu to bring it up, and scroll through the activation
stack until you see afunction that is part of the Rational or Rational Set class or the main
function itself.

Page VII1-3



Visual C++ Workbook

. exercised osoft Yisual C++ [break] - [| WCIBNCRTA\SRCANEW.CPP]

File Edit Wiew Inzert Project Debug Tool: Window Help

BEEd L mel o DR et =l'n
Rational L" (&l elass members) L" & “Rational LI "".ﬁ ~ |
23 L] <y Jjaxercisas L"Desktop L"W’inSZ D ebug ;"

#endif /¥ WINHEAD */
volid * operator new( unsigned int chb )
{

E{}I void *res = _nh_mallec( ck, 1 )

return res;

}
KN | +
ﬁ antaxl:loperator new(unsigned int] j ﬁ N_ﬁ!r_l_e E!\ll"alue
Name !Value i
chk ‘g
AT, Ao Locals  this £ A, waten1 {iatehz T, wiatch3 B watchd
Fieady [ Ln24 Coll  [REC[COL[OVR [READ )

Figure VIII.3

. exercised osoft Yisual C++ [break] WCIBNCRTASRCAMALLOC.|
File Edit Yiew Insert Project Debug Tools Window Help —|& 5[
B EEHE s ee|o- o DR et =
Raticral L" [&ll class mermbers] L" & “Rational LI "':g hd |
sk iy ! oty JJEXE[EiSES L"Desklup L"W'in32 Debug jl LI | &
if { _ active heap == _ V&6 HEAP ) :I
{
if ( =ize <= _ =bh thresheold )
i

ErBifdef M7
_mlock{ _HEAP LOCE );

_try |
#endif /* WMT */
pvReturn = _ sbh_allec_bleck(sizs);
#ifdef _MT =
:):II anlaxl.I_heap_a\luc_base[uns\gned int) ﬂ :):ll :Name E!Value
Name Value
skbh threshell01la
size 44
A, Ao £ Locals & this / A wstent {Weatch2 i uiatehd % Watchd /
Ready [Lni54 Coll [RECCOL [0VA [READ 4|

FigureVIIl.4

Page VIIl-4



ExerciseVIII —Debugging IV

., exerciseB - Microsoft Visual C++ [break] - [C:\._AVC98\CRTASRCAMALLOC.C]

File Edit Yiew Insert Pioject Debug Tools Window Help =& x|
O ESHE B | D E R Gyt o m)
Rational L"[AH class members] L" & ~Rational ;I "\ - |
@ b ! <y JJEXEIEISEE L"Desktnp L"WII’GE Debug jl LI | @ lhad
if ( _ active_heap == _ V& _HEAP ) j
i
if ( zize <= _ sbh_threshold )
i
Erfifdef M7 i
_mlock ([ HEAP LOCK );
_try |
#endif /* _MT */
pvReturn = _ sbh_alloc_block(size);
#ifdef _MT =
| . - |=
A Cantext I_heap_a\Inc_hase[unswgned int] J o !vlame E!Value
Name Value
sbh thresholl0la
size 44
A, Ao £ Locals & this / A wstent {Weatch2 i uiatehd % Watchd /
Fieady [T 54 Col 1 [REC [COL [0VF [READ 4

Figure VI1I1.5

In the example from Figure V1I1.5, the activation stack was several layers deep (as
shown in Figure VI11.6) but in this case, | can choose to single click on the entry for
Rational::Rational(int,int) to bring up that function.

*.. exercised - Microsoft Visual C++ [break] - [C:\__ASRC\Inte\MEMSET. ASH]

File Edit “iew Insett Project Debug Tools ‘window Help == x|
3 EHE | Be o o O EE Gyt w
Rational L”[AII clags members) L" & simplify LI "‘:( - ‘
@ ' < JJEXEICISEE L”Desklnp L”Wmi}? Debug L"
mo v ecx, edx ; move original count to ecx j
and edx, 3 ; prepare in edx byte count (for tail leop)
=zhr ecH, 2 ; adjust ecx to be dword count
jz tail ; jump if it was less then 4 bytes
rep stosd
main leop tail:
test edx, edx ; if there is no tail bytes,
jz finish ; we finish, and it's time to leave ]
; Set remaining bytes
=] ol

E| Cantext: [ memaet(] j 2l[Name |Va|ue
4 — - AlfT T
N _nhh_malloc_dbafunsigned int, int, int, const char *, int) - ] H
ame
1 _nh_malloc{unsigned int, int)
operator newlunsigned int] J
Rational: A ationalint, int]
R ational operator{int] D
A Auto 4 Locals % this /£ A watent {Wiateh2 b Wateh3 % Wiatchd /
Ready |

Figure VI1I1.6

Page VII1-5



Visual C++ Workbook

After doing so, the line of code that isin the process of being executed will be indicated
with agreen triangle (as shown in Figure V111.7). Occasionally, the green triangle will
actually indicate the line of code after the one currently being executed.

., exerciseB - Microsoft Visual C++ [break] - [Rational.cpp]

File Edit Miew Inset Project Debug Tools Window Help =& x|
B EHO | B o DR Gt =)
F ational ﬂl [&ll class members) L” @ Rational ;I - |
& iy ] <My “eﬁelcwse& ;”Dasktop ;"W'\nSZ Crebug ;” LI | &
#include "Rational.h” =
Rational::Rational (int num, int denom) { s
data = new int[Z2];

data[0] = num;

datal[l] = denom:

simplify () ;

}
Eational::Rational (const Rationale r) |

data = new int[2];

P R =
el | _>l_I
jl Ciontert IHaliDnaI:HaliDnaI[inL i) d ill !f!f_!?]? :!Value

Name Value i
data Oxcoococoo
denom 1
num 0
thisg 0x0012fel4d
A5, suto { Locals B, this £ A, watehi Wwatchz  Watch3 , Watche
Ready [ Ln4. Coll [REC |COL [OvR |HEAD/A

Figure VIII1.7

At this point we want to use a new command, Run to Cursor, to instruct the debugger
to execute the program behind the scenes until it reaches the location at which the cursor
is currently located — in this case by the green triangle. This alows us to jump out of
how many ever levels down in the code the program had been when we had paused. Y ou
can instruct the debugger to Run to Cursor in either of the following ways:

- Gotothe DEBUG menu and select Run to Cursor
- While holding down the Control key, pressthe F10 key

Once you have done this, you can use the commands previously introduced to walk
through the code. For this part of the exercise, use F10 to step over the individual lines
of code for awhile until you arrive at a point where you appear to be trapped within a
loop. You should find yourself trapped in the first while loop of the program. Use F10
as many times as required to bring the yellow arrow to the while statement itself as
shown in Figure V111.8.

Page VIl1-6



ExerciseVIII —Debugging IV

., exercise8 - Microsoft Visual C++ [break] - [main.cpp]

B File Edit Wiew Inset Project Debug Tools “indow Help =18 x|
e I S L T =]
[Gilabals) =] (@ glabal members) =l & main =HE -
@ i ﬁ_ﬂ ' M Jjexercises L"Desktup ;"W’\nEZ Debug ;” j| @ liad
int a, b, <; j
cout << "Please enter three positive integers:™;
cin »» oa »» b »» o
insertionvalue=0; J
=p while (insertionvalue < 100) {
gl+=insertionvValue;
insertionValus=inserticonvalue® (ath) *c;
}
cout << "Het 1 has : ":
g P T S S _’ILI
x| i =
a antexl.lmam[] J N ?!_9_!1]_9 ‘Value
Name ‘Value E
insertionvalus {...}
A, Ao Locals ' this A0, watehd fWatehZ  Wiatch3 3, wiatche /
Ready [Ln24,Coll |REC [COL|OVR [READ 4
Figure VI11.8

The loop control variableisinsertionValue, and the loop should terminate once this
valueis no longer lessthan 100. From this point, we should walk through this loop
several timesto observe the behavior of insertionValue. One way to accomplish this
would beto insert a cout statement within the loop, but via the debugger we will want to
add insertionValueto Watch 1 and observe its changes. However, since
insertionValueis an object with several pieces of data, we want to make sure that all of
the desired datais shown. In this case, the numerator and denominator of the rational
number is stored in atwo-element array or integers. In order for usto see both of these
values, we will need to add insertionValue.data[0] as well asinsertionValue.data[1] to
the watch list. Notice that we are able to ignore the fact that data is a private member
when building our watch list. If we had tried to do this with cout statements, we would
not have been able to directly access the data array. Add those two to the watch list now.

Use F10 to step over the lines of code within theloop. Y ou should notice something
Interesting about the value of insertionValue — it doesn't change from 0. This would
appear to be the problem. Now that the problem has been identified, we can attempt to
correct it. In this case, the problem isthat the formulawill always stay at O if it starts
from 0. We should now change the starting value of insertionValue from O to 1.
Remember, thisis an example that has been contrived to allow us to experiment with the
debugger.

Before actually changing the code, it would probably be best to stop the debugger, since
we will typically want to start the program over again once we have made our correction.
We have already seen the Shift+F5 can be used to stop the debugger. Make your
modification and compile the program again.

Page VIII-7



Visual C++ Workbook

Once again, start the program running in the debugger using the Go command and enter
3,4 and 5. Thistime, the program will get further before getting trapped in aloop.
Figure V111.9 shows what the contents of the console window should be thistime

through.

"'& C:AWINNT\Profiles\egolub\Personal\¥isual C++ Workbook\exerciseB\D ebug\exercised_ exe [_ O]

Please enter three positive integers:3 4 5
Set 1 has = (32(1> 1,1 3571
Set 2 has @ (92(1> 2,1 441 8/1 16/1 32,1 64-1 128/1 256-/1

Figure VI1I1.9

Once again, we can go to the DEBUG menu and select Break to pause the program and
observeits state. Asin the previous example, you might find yourself in one of many
placesin the program. Go to the Context pop-up menu and select main() to return to the
main program. Then Run to Cursor and use F10 to step over lines of code until your
window appears similar to Figure V111.10 with the yellow arrow pointing to the while

statement.

*+., exercised - Microsoft ¥isual C++ [break] - [main.cpp]

Eile Edit ¥iew Inset Project Debug Tools Window Help =] x|
2= Ea - M B G ‘lalional -1

[ 151obals) = ][ i global members) x| & main [ =

& i 1 (2] M ||[erercised =l = ][win32 Detug =1 =N

S2.print {cout) ;
cout << endl;

insertionValue=3;
while (insertionWValue l= 42) {
53+=insertionvalue;

=p insertionvalue=insertionvalue+7;
}
cout << "Set 3 has : " J
3. print {cout) ;
nnnnnnnnn a1 -
e | ;I_‘
ﬁ Contest: |main[] ﬂ ﬂ' Hame |Value
Name [Value insertionvalue.datal[0] 7290
insertionvalue{...!} insertionValue.datall] 1
23 {0}
b Aute {Cocals b this b, Wistch1 4 Watehz y Watcha & Watehe
Ready Ln 45, Col 1
Figure V111.10

Page VII1-8



ExerciseVIII —Debugging IV

Notice that the while loop is set to terminate when the value of insertionValueis equal
to 42. The current value (in Figure V111.10) for insertionValueis 7290. It would appear
that something went wrong with our test. Since we have already gone past the point
where the test would have failed, continuing to step through the program would not help
us. Instead, stop the debugger and insert a breakpoint on the while loop (shown in Figure
V111.11) and start the program running using the debugger again.

'+, exercise8 - Microsoft Visual C++ - [main.cpp ]

BlcHE 2o DA Feo i

(Globalz) T=[ (A0 giobal members) = & main R % " H@ 4 ! LU ‘

exercised ;"Desktop ;”W’in32 Debug jl ;l | @ \ﬁl | ! @ |
—————— || S2+=insertionvalue; j

T wWorkspace 'exe insertionvalue=insertionValue*2;
o-Elexercise8 fi i
g Fil
Ea +our<.:e 1 cout << "get 2 hazs @0 "
@ 82, print (cout)
Rational cout << endl;

ader Fil insertionValue=3;

[ Rational | [@ while (insertionvalus l= 42) {
ElRational 83+=insertionvalue;

{JResource F insertionvalue=insertionValue+7;

1

cout << "Set 3 has : "
83.print {cout)
cout << endl;

Y — 2
B3 Clagsview Fi\eViewI 4] | _'I_

| Ln43,Cal32 [REC|COL|[OVR [READ 4
FigureVII11.11

Now, when we get to this loop, we can step over each execution of the loop and observe
what happens when insertionValue approaches the point at which the loop was meant to
terminate. Since the error might be in the != operator of the Rational class, we want to
observe the value of insertionValue in Watch 1, so that when it becomes 42, we can step
into the while test rather than over it. However, after stepping through the loop several
times, you should notice that the value of insertionValue jumped from 38 to 45. The
loop did not terminate because the termination condition was never met.

Again, since we have now determined the cause of our problem, we can stop the
debugger and determine how to correct the problem. Let’s assume that the correct
solution isto change the test from !=to <. Make that change and run the program once
more in the debugger. Thistime, the program ran to completion.

Congratulations! 'Y ou have now compiled and executed your fourth and final
debugging exercise.

To leave the Visual C++ environment, go to the FIL E menu and select Exit.

Page VII1-9



