
Exercise IX: Templates

In this exercise we will see one way in which a template class can be used within Visual
C++. The technique that will be shown is required if you are using a separate header and
implementation file for your template class. If you fully implement the template class
within the header file, then the steps taken in this exercise are not required.

 There is a zip file named e9.zip at the anonymous FTP server ftp.cs.umd.edu in the
/pub/egolub/VC.workbook directory. Downloaded this file and extract the files which it
contains. Unzip those files to a temporary directory on your machine.

 Launch Visual C++ on your computer. Create a new, empty, Win32 Console
Application named exercise9. Go to the project settings and disable the language
extensions as shown in Exercise II. Go to your Windows environment and copy the files
that you extracted from e9.zip into the exercise9 directory. Return to the Visual C++
environment and add the following files to the project: main.cpp, Rational.h,
Rational.cpp, Set.h, SetTypes.cpp. Notice that you do not add Set.cpp to the project.
It is very important that you do not add that file to this project. At this point, if you go to
FileView and fully expand that tree, your Visual C++ window should appear similar to
Figure IX.1.

Figure IX.1

Visual C++ Workbook

Page IX-2

 Double click on SetTypes.cpp in the FileView panel to view that file in the editor.
This file is a wrapper file that will enable Visual C++ to create all of the required
versions of the Set template class even though it is compiled independent of the files that
use it. If the Set template class had been fully defined within the Set.h header file, then
each module that used a Set, and therefore included Set.h would have included the entire
template class, and Visual C++ would have been able to create the required version at
that time. However, since we have implemented the Set template class in Set.cpp, we
need some way of instructing the compiler to generate the appropriate versions of the
class. The use of the SetTypes.cpp wrapper is one such technique.

 Now, compile the project. Notice that a new folder has been added to the FileView tree
named External Dependencies. If you expand this folder, you will see that Set.cpp has
been added to the project by Visual C++ when it detected that it was included by
SetTypes.cpp but was not a member of the project yet. You are required to create the
project in this manner so that when you make changes to Set.cpp, that file is recompiled
appropriately.

 If your own projects require template classes, you should either fully implement them
within the header files or use the wrapper technique showed in this exercise.

 Congratulations! You have now completed your templates exercise.

 To leave the Visual C++ environment, go to the FILE menu and select Exit.

