
Exercise VI I I : Debugging IV –
Tracing Infinite Loops

By this exercise you should be fully comfortable using the Visual C++ debugging
environment.  In this exercise, we will be working with a program that has an error that
will cause the program to get trapped in infinite loops.  We will see a new command
within the debugger that will allow us to manually pause a program that is running as
well as one that will allow us to run the program up until a specific line of code without
needing to insert a breakpoint.

  There is a zip file named e8.zip at the anonymous FTP server ftp.cs.umd.edu in the
/pub/egolub/VC.workbook directory.  Downloaded this file and extract the files which it
contains.  Unzip those files to a temporary directory on your machine.

  Launch Visual C++ on your computer.  Create a new, empty, Win32 Console
Application named exercise8.  Go to the project settings and disable the language
extensions as shown in Exercise II.  Go to your Windows environment and copy the files
that you extracted from e8.zip into the exercise8 directory.  Return to the Visual C++
environment and add those files to the project.  Compile the program.

  The program will request the input of three positive integers.  After entering three
values, your program should get stuck in an infinite loop!  An important question that you
might ask at this point is "How can I tell that it is stuck in an infinite loop and not
working hard at doing its job?"  This question must be answered in part by ones
knowledge of the task being performed by the program and how long that task is
expected to take to complete.  In this exercise, the program will generate some rational
numbers and insert them into a set – this should occur quite quickly.  However, in reality,
it is sometimes difficult to know whether a program is in an infinite loop or just doing a
particularly long task.  If a program is running for a long time and you are not sure which
is the case, you might want to start it running in the debugger.  This will enable you to
observe the program's state after some time to see whether it appears to be making
progress towards an end goal.  This exercise is intended to introduce how to accomplish
this rather than when to use the tool.

  Before starting the program, familiarize yourself with the Rational and RationalSet
classes and look over the main function briefly to get the general idea of what it is
attempting to accomplish.  Now, begin running the program normally.  Enter 3, 4 and 5
as the three positive integers.  Your screen should now appear similar to Figure VIII.1.  It
will continue to appear this way.  The program is stuck in a loop.  You can help confirm
this by using your mouse to move the console window around the screen – you will
probably notice a very slow refresh rate.  Since we began running the program normally,
there is nothing to do at this point except to use Control+C to stop the program's
execution.  Ideally, we would like to be able to pause the execution and observe the state



Visual C++ Workbook

Page VI I I -2

of the program, and perhaps walk through some of the execution of the program to help
determine what is happening.

Figure VIII.1

  This time, start the program running in the debugger using the Go command.  Again,
enter 3, 4 and 5 as the values.  The program will once again become trapped in a loop.
However, this time, your screen will appear slightly differently.  In Figure VIII.2, notice
that the menu bar of Visual C++ in the background has DEBUG listed.



Exercise VI I I  – Debugging IV

Page VI I I -3

Figure VIII.2

  If you bring Visual C++ to the foreground, you can then go to the DEBUG menu and
select the Break option.  This will pause the program’s execution and allow us to use all
of the debugger commands to which we have previously been introduced.

  At this point, we can not predict exactly where within the program’s execution it will
pause.  (Note: If Visual C++ asks for the path to a file, use the same technique discussed
in Exercise VI in reference to CRT0.C to identify that path.)  With the crash in Exercise
V and the breakpoints in Exercises VI and VII this workbook was able to walk through
the programs in the same way as they appeared on your screen.  Here, however, we are
unable to do this.  Also, since the program may have been executing lower level code at
the time you selected to break, you might see something similar to Figure VIII.3, Figure
VIII.4 or Figure VIII.5 on-screen.  Each of these figures shows one of many different
places at which your program could have paused.

  Your screen will probably appear different than any of these three, but it should appear
similar in nature.  The important thing to understand is that you have paused the program
in the middle of its execution.  If we have paused at a point in the program execution
which is not user-written code (eg: Rational, RationalSet or main()), it is usually our
goal to return to code that we ourselves wrote, and then walk through the code starting
from that point.  To accomplish this, go to the Context pop-up menu located in the lower
left-hand panel.  Single click on the menu to bring it up, and scroll through the activation
stack until you see a function that is part of the Rational or RationalSet class or the main
function itself.



Visual C++ Workbook

Page VI I I -4

Figure VIII.3

Figure VIII.4



Exercise VI I I  – Debugging IV

Page VI I I -5

Figure VIII.5

  In the example from Figure VIII.5, the activation stack was several layers deep (as
shown in Figure VIII.6) but in this case, I can choose to single click on the entry for
Rational::Rational(int,int) to bring up that function.

Figure VIII.6



Visual C++ Workbook

Page VI I I -6

  After doing so, the line of code that is in the process of being executed will be indicated
with a green triangle (as shown in Figure VIII.7).  Occasionally, the green triangle will
actually indicate the line of code after the one currently being executed.

Figure VIII.7

  At this point we want to use a new command, Run to Cursor , to instruct the debugger
to execute the program behind the scenes until it reaches the location at which the cursor
is currently located – in this case by the green triangle.  This allows us to jump out of
how many ever levels down in the code the program had been when we had paused.  You
can instruct the debugger to Run to Cursor  in either of the following ways:

- Go to the DEBUG menu and select Run to Cursor
- While holding down the Control key, press the F10 key

  Once you have done this, you can use the commands previously introduced to walk
through the code.  For this part of the exercise, use F10 to step over the individual lines
of code for a while until you arrive at a point where you appear to be trapped within a
loop.  You should find yourself trapped in the first while loop of the program.  Use F10
as many times as required to bring the yellow arrow to the while statement itself as
shown in Figure VIII.8.



Exercise VI I I  – Debugging IV

Page VI I I -7

Figure VIII.8

  The loop control variable is inser tionValue, and the loop should terminate once this
value is no longer less than 100.  From this point, we should walk through this loop
several times to observe the behavior of inser tionValue.  One way to accomplish this
would be to insert a cout statement within the loop, but via the debugger we will want to
add inser tionValue to Watch 1 and observe its changes.  However, since
inser tionValue is an object with several pieces of data, we want to make sure that all of
the desired data is shown.  In this case, the numerator and denominator of the rational
number is stored in a two-element array or integers.  In order for us to see both of these
values, we will need to add inser tionValue.data[0] as well as inser tionValue.data[1] to
the watch list.  Notice that we are able to ignore the fact that data is a private member
when building our watch list.  If we had tried to do this with cout statements, we would
not have been able to directly access the data array.  Add those two to the watch list now.

  Use F10 to step over the lines of code within the loop.  You should notice something
interesting about the value of inser tionValue – it doesn't change from 0.  This would
appear to be the problem.  Now that the problem has been identified, we can attempt to
correct it.  In this case, the problem is that the formula will always stay at 0 if it starts
from 0.  We should now change the starting value of inser tionValue from 0 to 1.
Remember, this is an example that has been contrived to allow us to experiment with the
debugger.

  Before actually changing the code, it would probably be best to stop the debugger, since
we will typically want to start the program over again once we have made our correction.
We have already seen the Shift+F5 can be used to stop the debugger.  Make your
modification and compile the program again.



Visual C++ Workbook

Page VI I I -8

  Once again, start the program running in the debugger using the Go command and enter
3, 4 and 5.  This time, the program will get further before getting trapped in a loop.
Figure VIII.9 shows what the contents of the console window should be this time
through.

Figure VIII.9

  Once again, we can go to the DEBUG menu and select Break to pause the program and
observe its state.  As in the previous example, you might find yourself in one of many
places in the program.  Go to the Context pop-up menu and select main() to return to the
main program.  Then Run to Cursor  and use F10 to step over lines of code until your
window appears similar to Figure VIII.10 with the yellow arrow pointing to the while
statement.

Figure VIII.10



Exercise VI I I  – Debugging IV

Page VI I I -9

  Notice that the while loop is set to terminate when the value of inser tionValue is equal
to 42.  The current value (in Figure VIII.10) for inser tionValue is 7290.  It would appear
that something went wrong with our test.  Since we have already gone past the point
where the test would have failed, continuing to step through the program would not help
us.  Instead, stop the debugger and insert a breakpoint on the while loop (shown in Figure
VIII.11) and start the program running using the debugger again.

Figure VIII.11

  Now, when we get to this loop, we can step over each execution of the loop and observe
what happens when inser tionValue approaches the point at which the loop was meant to
terminate.  Since the error might be in the != operator  of the Rational class, we want to
observe the value of inser tionValue in Watch 1, so that when it becomes 42, we can step
into the while test rather than over it.  However, after stepping through the loop several
times, you should notice that the value of inser tionValue jumped from 38 to 45.  The
loop did not terminate because the termination condition was never met.

  Again, since we have now determined the cause of our problem, we can stop the
debugger and determine how to correct the problem.  Let’s assume that the correct
solution is to change the test from != to <.  Make that change and run the program once
more in the debugger.  This time, the program ran to completion.

  Congratulations!  You have now compiled and executed your fourth and final
debugging exercise.

  To leave the Visual C++ environment, go to the FILE menu and select Exit.


