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Section 1.1

Section 1.1

1. (a) The temperature in the cup would not be uniform. It would be warmer near the center
and cooler near the edges. The average temperature would decrease more slowly if the
liquid were not mixed.

(b) Styrofoam would slow the rate of heat transfer, thus decreasing the value of k.

(c) If a metal spoon is used in place of a plastic one, more heat will be transferred to
the spoon. More importantly, the metal spoon will would also transfer heat to the
surrounding atmosphere having the net effect of increasing the surface area in contact
with the outside atmosphere. The effect is similar to that of adding a handle to the cup.

3. (a) We have

−dT

dt
= k(T − 10), T (0) = 68, k =

1
9

ln
(

58
47

)
.

(b) T (18) = 58e18 ln(58/47)/9 + 10 ≈ 48 degrees. This model predicts the pipes would not
freeze.

(c) We assumed that the outside temperature is constant. It is reasonable to expect that
the outside temperature would fall after sunset, which would lead the house to cool
faster. It would make sense to revise the estimate downward.

5. The governing equation is dy
dt = −kt. The solution is y(t) = Ce−kt. We are told that

y(29) = C/2; thus, k = ln 2/29. Therefore, y(30) = 0.488C; hence, approximately 49% is
still present. Solving for y(t) = C/100 yields t = 29 ln(100)/ ln 2 ≈ 192.67 years.

7. (a) We know that dy
dt = −ky and Q(t) = ky(t). Thus, dQ

dt = k dy
dt = −k2y = −kQ, which

shows that Q decays exponentially.

(b) Using the solution from Example 4, Q = kCe−kt, where C = 1 gram and k = 1.537 ×
10−10 yr−1. Thus, Q(0) = kC = 1.537 × 10−10 and Q(1.14 × 109) = 1.2899 × 10−10.
Alternatively, if we know that Q(t) = 1.537×10−10e−1.537×10−10t, Q(0) = 1.537×10−10,
and Q(t) = 1.2899 × 10−10, then we can solve Q(t) = 1.2899 × 10−10 for t to find
t = 1.14× 109.

9. The mathematical model is

dy

dt
= −ky, z =

y

y + w
, w =

9
17

[y(0)− y(t)].

The solution of the differential equation is y = y(0)e−kt. Thus,

z =
17

8 + 9ekt
.

11. (a) The initial value problem is

dy

dt
= −ky, y(t0) = Q0 + 10, k =

ln 2
3.8

for a dose at time t0 with Q0 the value of y just prior to the dose. We have y = Ae−kt

from the differential equation, and then A = (Q0 + 10)ekt0 , so

y = (Q0 + 10)ekt0e−kt.
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Chapter 1: Introduction

(b) For the interval from time 0 to time 6, we have Q0 = 0 and t0 = 0. From part (a),
y = 10e−kt. For the interval from time 6 to time 12, we have Q0 = 10e−6k and t0 = 6.
Then

y = 10(e−6k + 1)e6ke−kt = 10(1 + e6k)e−kt, 6 ≤ t ≤ 12.

Similarly,
y = 10(1 + e6k + e12k)e−kt, 12 ≤ t ≤ 18

and
y = 10(1 + e6k + e12k + e18k)e−kt, t ≥ 18.

See Figure 1.

5 10 15 20
t

2
4
6
8
10
12
14

Q

Figure 1: Exercise 1.1.11

13. (a) Let x be the amount owed and let p be the payment rate per month. Then

dx

dt
= kx− p, x(0) = 12000, x(60) = 0.

Let y = kx − p. The problem for y is then dy
dt = ky with y(0) = 12000k − p and

y(60) = −p. The differential equation and initial condition yield the solution y =
(12000k−p)ekt. The condition at t = 60 then yields (12000k−p)e60k = −p, from which
we obtain p = 12000k/(1− e−60k). Now, an interest rate of 5% means that the increase
in amount is .05x per year, or .05x

12 per month. Thus, k = 1/240 and

p =
50

1− e−1/4
≈ 226.04.

(b) $226.45. The error in the estimate is $0.41, which is about 0.2% of the correct answer.
The approximation is excellent.

15. The governing model is

dP

dt
= kP, P (0) = 203, P (30) = 281,

with population in millions of people and t = 0 in 1970. Then P (t) = Cekt. The two
additional conditions imply C = 203 and k = ln(281/203)/30 ≈ 0.0108. Thus P (80) = 483.
The actual population will probably be less because the birthrate is much less in 2000 than
in 1970 and will likely continue to decrease. This effect could be countered to some extent
by a high level of immigration, but the immigration rate is far less than the overall growth
rate of 1% per year.
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Section 1.2

Section 1.2

1. (a) ordinary, order 2.

(b) partial, order 2.

(c) ordinary, order 2.

3. φ = 2
5e−2t + 4e3t, φ′ = −4

5e−2t + 12e3t.

5. φ = 3 cos t + 1
10e3t, φ′ = −3 sin t + 3

10e3t, and φ′′ = −3 cos t + 9
10e3t.

7. φ = x3 − 2, φ′ = 3x2, and φ′′ = 6x.

9. φ =
√

1 + x2, φ′ = x/
√

1 + x2.

11. φ = t
2 − 1

4 + Ce−2t, φ′ = 1
2 − 2Ce−2t.

13. (a) Letting y = ert, we get r − 3 = 0 so r = 3.

(b) Letting y = ert, we get r2 + 3r + 2 = 0 so r = −2,−1.

(c) Letting y = ert, we get r2 + 4r + 4 = 0 so r = −2.

15. (a) Substituting y = Ae−2t, we get −2A + 3A = 1 so A = 1.

(b) Substituting y = Ae−2t, we get −2A− 2A = 1 so A = −1
4 .

(c) Substituting y = Ae−2t, we get −2A + 2A = 1 so there is no solution.

(d) e−2t is a solution of y′ + 2y = 0.

17. The equilibrium solution y = y∞ satisfies 0 = 2y2∞ − 2y∞. Thus, y∞ = 0 or y∞ = 1. The
solution y∞ = 0 is not part of the family 1/(1 + Ce2t).

19. Rewriting this as dt
dy = 1

4y and integrating, t = 1
4 ln y +C. Thus y = e4(t−C). Using the initial

condition, y = 3e4t.

21. Integrating both sides once, dy
dt = −3

2
1

(1+2t) + c1. The condition dy
dt (0) = 0 implies c1 = 3

2 .
Integrating again yields y = −3

4 ln(1 + 2t) + 3
2 t + c2. The condition y(0) = 1 implies c2 = 1.

23. Integrating both sides of the equation, y = − ln(| cos t|) + c. The initial condition implies
c = y0. Thus y(t) = − ln(| cos t|)+ y0. Since the argument of the logarithm must be positive,
this solution is valid on (−π/2, π/2).

25. Given that the initial condition is at x = 3, we write the solution as y =
∫ x
1

e−sds
s + C. We

then have C = 3 and

y =
∫ x

1

e−sds

s
+ 3.

27. (a)
dy

dx
=

2√
π

e−x2
with y(0) = 0.

(b) y =
√

π
2 et2 , y′ =

√
π

2 2tet2erf t +
√

π
2 et2 2√

π
e−t2 = 2ty + 1.

29. y = 1/(C − 2t), y′ = 2/(C − 2t)2. The initial condition implies C = 1/2 and y = 2/(1− 4t).
The denominator of the solution must be non-zero, so the interval of existence is (−∞, 1/4).
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Chapter 1: Introduction

31. y = 1/(1 + Ce2t), y′ = −2Ce2t/(1 + Ce2t)2. The initial condition implies C = −1/2; hence,

y =
2

2− e2t
.

The denominator of the solution must be non-zero, so the interval of existence is (−∞, ln 2/2).

33. y = −1/
√

C − 2t, y′ = −1/(C − 2t)3/2. The initial condition implies C = 1/4; hence,

y = − 16√
1− 8t

.

The argument of the square root must be non-negative, so the interval of existence is
(−∞, 1/8).

Section 1.3

1. The net force is F = −c1y − c2v. Thus

m
d2y

dt2
= −c1y − c2

dy

dt
.

The order is 2.

3. (a) We model the earth by concentrating all of the mass at the center of the earth. The
distance between an object and the center of the earth is the radius of the earth, R, plus
the height of the object above the center of the earth, y.

(b) We must have Fg(0) = −mg and Fg(0) = − A
R2 , thus

A = mgR2.

(c) Assuming that gravity is the only force and h is the height of the balloon above the
earth’s surface,

m
d2y

dt2
= − mgR2

(R + y)2
,

where y(0) = h + R and y′(0) = 0. Yes, this can be solved by integrating both sides.
Assuming that gravity and air resistance are the only forces (air resistance modeled as
in Exercise 1.3.2),

m
d2y

dt2
= − mgR2

(R + y)2
− k

dy

dt

∣∣∣∣
dy

dt

∣∣∣∣ ,

where y(0) = h + R and y′(0) = 0. This problem cannot be solved by integrating both
sides.

5. Integrating both sides of the equation, y =
√

C − 2et. Using the initial condition, we find
C = 2 + y2

0; thus,

y =
√

2 + y2
0 − 2et, −∞ < t < ln

1 + y2
0

2
.

4



Section 1.3

7. Following the same steps as in Model Problem 1.3, we have

m
d2y

dt2
= −mg, y(0) = 0, y′(0) =

p

m
.

The solution is y = c1 + c2t − g
2 t2. The two initial conditions imply c1 = 0 and c2 = p/m.

The velocity y′ = p/m− gt is zero when t = p/(mg). Thus, the maximum height is

Y =
p2

2gm2
.

Of the three parameters, p is a property of the thrower, m is a property of the ball, and g is
a constant. Thus, doubling the strength of the thrower increases the height by a factor of 4;
similarly, doubling the mass of the ball decreases the height by a factor of 4.
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Chapter 2: Basic Concepts and Techniques

Section 2.1

1. (a) The first assumption makes the population constant rather than variable. The second
assumption means that contact between any two individuals is treated in the same way,
rather than having to keep track of the contact between different types of individuals.
The third assumption means that all contacts are treated equally. The fourth assumption
means that the recovery process is independent of history, that is, the probability of
recovery in any particular time interval does not depend on the amount of time the
individual has had the disease..

(b) Over a small period of time (say a summer), it is reasonable to model the population
as constant. It might be inappropriate over a longer time scale (for example a decade).
For the second assumption, the contact between people on a crowded city street is likely
to be fairly random and each person will have a similar number of contacts. If all of the
contact between people comes from shaking hands, then it reasonable to expect that a
predictable number of contacts between infected and healthy will result in new infections,
thus making assumption three hold. The last assumption will hold for a disease that
can be cured by the body at any time (possibly warts which may disappear of their own
accord at any time). It will not be true for diseases that have a natural progression, e.g.
flu or common cold. Nevertheless, this assumption is common in epidemiology models
and usually does not introduce significant error.

(c) Many (most) people are neither susceptible or infective, and this category is not present
in this model.

(d) The first two assumptions probably apply well to the common cold. The last two
assumptions are more questionable. There are certainly kinds of contact that promote
the spread of the common cold (e.g. kissing) and things individuals can do to reduce their
own infection rate (e.g. washing hands). This brings assumption three into question.
The common cold also has a natural progression (one recovers in 3-5 days). Depending
on the time scale of the problem, this may be a serious issue. An alternative modeling
option is to leave people in the population immediately after they are infected, but
before symptoms appear, for a few days and then remove them from contact with others
(while they are at home recovering). This is very different from assumption 4.

3. (a) From dh/dt = −k
√

h, we have the approximation

∆t ≈ − ∆h

k
√

h
= −

√
h

k

∆h

h
.

Thus, measurable changes in h occur in a time of roughly tr =
√

h0/k.

(b)
dt

dh
= − 1

k
√

h
(c) We have ∫ 0

h0

− 1
k
√

h
dh =

∫ 0

h0

dt

dh
dh =

∫ te

0
dt.

Integrating both sides yields te = 2
√

h0/k.
(d) The reference time is one-half of the amount of time for a bucket of depth h0 to empty.
(e) The substitution h = h0H yields the equation

√
h0

dH
dt = −k

√
H. From the formula

τ = t/tr, we obtain
d

dt
=

1
tr

d

dτ
;

6



Section 2.1

hence, the dimensionless differential equation is dH
dτ = −√H.

5. (a) The component of d2r
dt2

in the direction of T is s′′. The component of dr
dt in the direction

of T is s′. The component of gk in the direction of T is −g sin θ. Thus we get s′′ =
−bs′ − g sin θ, or

s′′ + bs′ + g sin θ = 0.

(b) We have that s = θL. Thus s′ = Lθ′ and s′′ = Lθ′′. Hence

θ′′ + bθ′ + (g/L) sin θ = 0.

(c) Let τ =
√

g/Lt. Then the equation becomes

θ′′ + aθ′ + sin θ = 0,

where a = b
√

L/g.

7. (a) The height of a satellite is on the order of the radius of the earth. With zr = R for the
length scale, we have tr = R/V for the time scale. Using z = RZ, we have

R
d2Z

dt2
= − g

(1 + Z)2
, Z(0) = 0, R

dZ

dt
(0) = V.

Then, from t = trτ , we have d
dt = V

R
d
dτ , and the problem becomes

d2Z

dτ2
= −gR

V 2

1
(1 + Z)2

, Z(0) = 0,
dZ

dτ
(0) = 1.

The quantity α = gR/V 2 is dimensionless.

(b) Writing α as R/(V 2/g), we see that V 2/g is a possible reference length.

(c) Let z = V 2Z/g and t = V τ/g. Substitution of the Z for z changes the differential
equation to

V 2

g

d2Z

dt2
= − g

(1 + α−1Z)2
.

Then d
dt = g

V
d
dτ yields

d2Z

dτ2
= − 1

(1 + α−1Z)2
.

Similarly, the initial conditions become Z(0) = 0 and dZ
dτ (0) = 1.

(d) α must be large.

(e) V must be considerably larger than
√

gR.

9. Rewriting gives dτ
dz = (1− z)−1e−pz/(1+βz). Integrating both sides yields

τZ =
∫ τZ

0
dτ =

∫ Z

0

1
1− z

e−pz/(1+βz) dz.

7



Chapter 2: Basic Concepts and Techniques

11. Since e−pz/(1+z) ≥ e−p we have
∫ 1

0

e−pz/(1+z)

1− z
dz ≥ e−p

∫ 1

0

dz

1− z
.

Due to the singularity in the integrand at z = 1,
∫ 1

0

dz

1− z
= lim

r→1−

∫ r

0

dz

1− z
= lim

r→1−
ln |1− r| = ∞.

13. (a) dQ
dt = rate in− rate out; hence,

dQ

dt
= 0r − Q

V
r = −Q

V
r.

(b) The solution is Q(t) = Q0e
−rt/V .

(c) Solve Q(t) = 0.1Q0, to find rt = V ln 10. For Lake Erie, t ≈ 5.88 years, and for Lake
Superior, t ≈ 425 years.

(d) Lake Erie can be cleaned up much more quickly than Lake Superior, given equal starting
levels.

15. (a) dQ
dt = rate in− rate out; hence,

dQ

dt
= C0r − Q

V
r, Q(0) = 0.

(b) Let u = Q− C0V . The problem of part (a) becomes

du

dt
= −ru

V
, u(0) = −C0V.

Hence, u = −C0V e−rt/V and then Q = C0V (1− e−rt/V ).

(c) For 0 ≤ t ≤ 20, we use the solution in part (b) to get C/C0 = 1 − e−rt/V (note that
the ratio of C to C0 approaches 1 if t is allowed to approach ∞). At t = 20 we have
Q(20) = −C0V e−20r/V + C0V . Using as an initial condition and the solution from
Exercise 13, Q = C0V e−rt/V (1 + e20r/V ). Therefore

C/C0 = e−rt/V (1 + e20r/V ) for 20 ≤ t ≤ 40.

(Note that the ratio of C to C0 approaches 0 as t approaches ∞.)

(d) In the course of the first 20 years, Lake Erie becomes ten times more polluted than Lake
Superior. After the cleanup begins, it takes about 6 years before the pollutant level
in Lake Erie is reduced to that of Lake Superior. By the 10-year mark after pollution
stops, Lake Erie is very clean, while Lake Superior has changed little from its (relatively
low) maximum. See Figure 2.

8



Section 2.1

10 20 30 40
t

0.2

0.4

0.6

0.8

1

Pollution Severity Ratio

10 20 30 40
t

0.02

0.04

0.06

0.08

0.1

Pollution Severity Ratio

Figure 2: Exercise 2.1.15

17. (a)
dQ

dt
= −kQ +

Q0

T
, Q(0) = 0

(b) Let y = kQ − Q0/T . The problem becomes dy
dt = −ky with y(0) = −Q0/T . Thus,

y = −Q0T
−1e−kt and

Q =
Q0

kT
(1− e−kt).

If this solution were correct for all time, Q would approach the equilibrium solution
Q0/kT .

(c) We have Q < Q0/kT for all time, and we want Q < QT . This is guaranteed to happen
if we choose T so that Q0/kT ≤ QT . Thus, we choose

T =
Q0

kQT
.

(d) The problem is
dQ

dt
= −kQ, Q(T ) =

Q0

kT
(1− e−kT ).

The differential equation yields Q = Ae−kt; then,

Ae−kT =
Q0

kT
(1− e−kT ).

Solving for A and substituting into the formula for Q yields the result

Q =
Q0

kT
(ekT − 1)e−kt, t > T.

(e) The indicated substitutions yield the results

y =
1
S

{
1− e−τ τ ≤ S

(eS − 1)e−τ τ ≥ S.
.

(f) Larger S means a greater total dose relative to the maximum safe amount. This means
that the graph has a later and lower peak, owing to the requirement that the drug be
administered over a longer time interval. See Figure 3.

9



Chapter 2: Basic Concepts and Techniques
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tau
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y

Figure 3: Exercise 2.1.17

Section 2.2

1. Separable. Evaluating
∫

dy =
∫

(t− 1) dt and using the initial condition yields

y =
1
2
t2 − t + 3.

3. Separable. Evaluating
∫

y−3 dy =
∫

dt and using the initial condition yields

y =

√
1

1− 2t
.

Note that the negative root does not satisfy the initial condition.

5. Separable. Evaluating
∫

y−2 dy =
∫

tet dt yields

y = − 1
(t− 1)et + C

.

7. Separable. Evaluating
∫

ey dy =
∫

(lnx/x) dx yields

y = ln
[
1
2
(lnx)2 + C

]
.

9. Separable. Evaluating
∫

y dy = − ∫
2x dx yields

y = ±
√

C − 2x2.

Both square roots are included because no initial condition is specified.

11. Separable. Evaluating
∫

y2/(1 + y3) dy =
∫

xex2
dx yields

y =
(

Ae3ex2
/2 − 1

)1/3

.

13. Evaluating
∫

y−2 dy =
∫

2t dt and using the initial conditions yields

y =
5

1− 5t2
.

The denominator of the solution can never be zero, so the interval of existence is (−1/
√

5, 1/
√

5).
See Figure 4.
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Section 2.2
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y

Figure 4: Exercises 2.2.13 and 2.2.15

15. Evaluating
∫

y−2 dy =
∫

cos t dt and using the initial conditions yields

y =
1

1− sin t
.

The denominator of the solution can never be zero, so the interval of existence is (−3π/2, π/2).
See Figure 4.

17. Evaluating
∫

y/(1 + y2) dy =
∫

1/x dx and using the initial conditions yields

y = −
√

5x2 − 1.

The positive root does not satisfy the initial condition. The argument of the square root
must be non-negative, so the interval of existence is [1/

√
5,∞). See Figure 5.

0.5 0.75 1.25 1.5 1.75 2
x

1

2

3

4

y

-1.5 -1 -0.5 0.5 1 1.5
x

1

2

3

4

y

Figure 5: Exercises 2.2.17 and 2.2.19

19. Differentiating gives dy
dx = 2x + 1

1+y
dy
dx . See Figure 5.

21. Differentiating gives ey dy
dx + y + x dy

dx = 2x. See Figure 6.

11



Chapter 2: Basic Concepts and Techniques

-4 -2 2 4
x

-4

-2

2

4

y

Figure 6: Exercise 2.2.21

23. (a) Evaluating
∫

(y − 2) dy =
∫

dt yields 1
2y2 − 2y = t + C. Completing the square then

yields (y − 2)2 = 2t + 2C + 4, or

y = 2±√2t + c,

where c = 2C + 4.

(b) Setting y(0) = a determines c = (a− 2)2. Thus

y = 2±
√

2t + (a− 2)2.

The argument of the square root must be non-negative, so the interval of existence is
[− (a−2)2

2 ,∞).

25. Differentiating, we find dy/dx = Aex = y; thus, the orthogonal family must satisfy dy
dx =

−1/y. Evaluating,
∫

ydy = − ∫
dx or

y = ±√c− 2x.

See Figure 7.
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Figure 7: Exercises 2.2.25 and 2.2.27
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Section 2.3

27. Differentiating, we find dy/dx = 2y/x; thus, the orthogonal family must satisfy dy/dx =
−x/(2y). Evaluating,

∫
2y dy =

∫ −x dx or y2 = c− x2/2. This is more conveniently written
as

2y2 + x2 = C2,

where we have used C2 rather than 2c because the constant must be nonnegative. See Figure
7.

29. Substituting v = ety, we find dv
dt = et(2t + 2). Thus, v = 2tet + C and y = 2t + Ce−t.

31. Substituting v = ety, we find dv
dt = (t2 + 2t)et. Thus, v = t2et + C and y = t2 + Ce−t.

33. Substituting y = xv, we find x dv
dx = 1. Thus, v = ln |x|+ C and y = x ln |x|+ Cx.

35. Substituting y = xv, we find x dv
dx = −v−1. Thus, v = ±

√
C − 2 ln |x| and y = ±x

√
C − ln x2.

37. Substituting v = (x − y)/2, we find dv
dx = (1 − v)/2. Thus, v = 1 − Ce−x/2 and y =

x− 2− Ce−x/2.

39. With v = y2 − x2, we have dv
dx = 2y dy

dx − 2x; combining this with the differential equation
yields dv

dx = −2x(v + 1). Thus, v = −1 + Ce−x2 − 1 and y2 = x2 − 1 + Ce−x2
.

41. Differentiating v(x) = y2(x)− x2 yields

dv

dx
= 2

(
y
dy

dx
− x

)
.

This equation is separable if and only if y dy
dx − x is separable; setting y dy

dx − x = f(x)g(v), we
obtain the requirement

y
dy

dx
= x + f(x)g(y2 − x2)

for some functions f and g. Note that both Exercises 39 and 40 are of the form

y
dy

dx
= xF (y2 − x2),

which appears to be quite different. However, setting f(x) = x and F (v) = 1 + g(v) in the
more general form recovers this special case.

Section 2.3

1. The differential equation is
dy

dt
=

2y − 5t + 3
t + 1

. See Figure 8.

3. From the solution y = 2t + Ce−t, we see that solutions approach y = 2t as t →∞. The plot
of the slope field, solutions curves, and isoclines are as shown. The isocline is the dashed
curve. See Figure 8.
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Figure 8: Exercises 2.3.1 and 2.3.3

5. From the solution y = t2 + Ce−t, we see that solutions approach y = t2 as t →∞. The plot
of the slope field, solutions curves, and isoclines are as shown. The isocline is the dashed
curve. See Figure 9.
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Figure 9: Exercises 2.3.5 and 2.3.7

7. This problem cannot be solved by any of the methods in a differential equations course.
Mathematica gives a solution in terms of Bessel functions with imaginary arguments, while
Maple gives a solution in terms of Airy functions. The slope field and solution curves can still
be generated numerically. Note from the plot that the solutions seem to be approaching the
y =

√
5t nullcline as t → ∞. This behavior can be confirmed by the method at the bottom

of page 82 of the text. The guess t ≈ 0.2y2 yields the approximate behaviors y = ±√5t, for
which dy

dt = ±
√

5/4t. Since the omitted term vanishes as t → ∞, the formulas y = ±√5t

capture the possible long-term behaviors. Neither of the guesses dy
dt ≈ t nor dy

dt ≈ −0.2y2 yield
a consistent approximation. Note that there do not appear to be solutions that approach
y = −√5t. Both the graph and the analysis are needed to obtain the correct long-term
behavior result. See Figure 9.
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Section 2.3

9. The solution of the initial value problem is y = 5/(1 − 5t2) on the interval (−√0.2,
√

0.2),
and the solution approaches infinity at the endpoints of the interval. See Figure 10.
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Figure 10: Exercises 2.3.9 and 2.3.11

11. The solution of the initial value problem is y = 1/(1− sin t) on the interval [−3π/2, π/2], and
the solution approaches infinity at the endpoints of the interval. The isoclines are y = 0 and
t = −π/2. See Figure 10.

13. The solution of the initial value problem is y = −√5x2 − 1; thus, y approaches −√5x as
x →∞. There are no isoclines. See Figure 11.
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Figure 11: Exercises 2.3.13 and 2.3.15

15. The solution of the differential equation is y = x ln |x| + Cx. The long-term behavior as
x →∞ is y ≈ Cx. The isocline is the dashed curve in the plot. See Figure 11.

17. The solution of the differential equation is y = ±x
√

C − ln x2. Individual solution curves are
bounded in x. The isoclines are the dashed lines in the plot. See Figure 12.
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Figure 12: Exercises 2.3.17 and 2.3.19

19. Let v(x) = x + y(x). Then

dv

dx
= 1 +

dy

dx
= 1 + x + y = 1 + v.

This equation is separable, but it is also linear with constant forcing, and it is easy to solve
with the substitution v = u− 1, after which we obtain the solution

y = Aex − 1− x

with the long-term behavior y ≈ Aex. The isocline is the dashed curve in the plot. See Figure
12.

21. The zero isoclines are i = 0 and i = 1 − 1/R0. If the initial condition is I(0) > 0, then all
solutions converge toward the value i = 1− 1/R0. See Figure 13.

tau

1-1�R 0

i

Figure 13: Exercise 2.3.21

Section 2.4

1. f = y1/3(x + 1)−1 and ∂f
∂y = 1

3y−2/3(x + 1)−1. f is not continuous at x = −1 and ∂f
∂y is not

continuous at x = −1 and y = 0. Theorem 2.4.1 guarantees a unique solution if (x0, y0) is
chosen so that x0 6= −1 and y0 6= 0.
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Section 2.4

3. f =
√

25− t2 − y2(t + y + 1)−1 and ∂f
∂y = (t2 − 25 + ty− y)(25− t2− y2)−1/2(t + y + 1)−2. f

is not continuous at y = −t− 1 and 25− t2 − y2 < 0 and ∂f
∂y is not continuous at y = −t− 1

and 25− t2 − y2 ≤ 0. Theorem 2.4.1 guarantees a unique solution if (t0, y0) is chosen so that
y0 6= −t0 − 1 and y2

0 + t20 ≤ 25.

5. We have
p1 =

x

(x− 2)(x + 1)
, p2 =

1
(x− 2)(x + 1)

.

These functions are not continuous at x = 2 and x = −1, so the guaranteed interval of
existence from Theorem 2.4.2 is (−1, 2).

7. We have
p1 =

ex

cosx
, g =

x

cosx
.

These functions are not continuous at x = π/2 + nπ for n ∈ Z, so the guaranteed interval of
existence from Theorem 2.4.2 is (−π/2, π/2).

9. This is a linear equation, so Theorem 2.4.2 applies. We have

p1 = 2x
dy

dx
, g = − ln(1− x).

Then g is not continuous for x < 1, so the guaranteed interval of existence from Theorem
2.4.2 is (−∞, 1).

11. (a) This is a linear equation, so Theorem 2.4.2 applies. We have

p1 = − 2x

1− x2
, p2 =

n(n + 1)
1− x2

.

These functions are not continuous at x = ±1, so the guaranteed interval of existence
from Theorem 2.4.2 is (−1, 1).

(b) Yes, any initial condition where x0 = ±1.

(c) If n = 0 then the equation is

(1− x2)
d2y

dx2
− 2x

dy

dx
= 0.

The zeroth degree solution of this that satisfies y(1) = 1 is y = 1. If n = 1, then the
equation is

(1− x2)
d2y

dx2
− 2x

dy

dx
+ 2y = 0.

To find the first degree solution of this problem, let y = ax + b. Substituting into the
equation and using the initial condition shows a = 1 and b = 0. Thus, y = x. If n = 2,
then the equation is

(1− x2)
d2y

dx2
− 2x

dy

dx
+ 6y = 0.

To find the second degree solution of this problem, let y = ax2 + bx + c. Substituting
into the equation and using the initial condition shows a = 3/2, b = 0 and c = −1/2.
Thus, y = 3

2x2 − 1
2 . If n = 3, then the equation is

(1− x2)
d2y

dx2
− 2x

dy

dx
+ 12y = 0.

17



Chapter 2: Basic Concepts and Techniques

To find the third degree solution of this problem, let y = ax3+bx2+cx+d. Substituting
into the equation and using the initial condition shows a = 5/2, b = 0, c = −3/2 and
d = 0. Thus, y = 5

2x3 − 3
2x.

(d) No, The initial condition does not satisfy the hypotheses of Theorem 2.4.1 or Theorem
2.4.2, so those theorems do not apply.

13. (a) Evaluating
∫

h−1/2 dh =
∫ −2 dt, we find

√
h = −t + c. The initial condition shows

c = 2. Thus h = (2− t)2.

(b) At t = 2, the height of the water is zero; thus, the bucket is empty.

(c)

h =
{

(2− t)2, t ≤ 2
0, 2 < t

(d) The function (2 − t)2 satisfies the differential equation for −∞ < t < 2 and the zero
function satisfies the differential equation for t > 2. It remains to check the differential
equation at t = 2. Note

lim
t→2−

dh

dt
= 0, lim

t→2+

dh

dt
= lim

t→2+
(2t− 4) = 0.

These limits agree, and therefore dh
dt (2) = 0 =

√
h(2). The piecewise-defined function of

part (c) satisfies the differential equation for all t.

(e) No, Theorem 2.4.1 says nothing about this initial value problem since the initial condi-
tion occurs when t0 = 0.

(f) See Figure 14.
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Figure 14: Exercises 2.4.13 and 2.4.15

15. (a) We have

f =
t

x− 1
,

df

dx
= − t

(x− 1)2
.

Thus f and df
dx are not continuous at x = 1. The hypotheses of Theorem 2.4.1 are not

satisfied, so the theorem says nothing.

18



Section 2.5

(b) Evaluating
∫

(x− 1) dx =
∫

t dt yields

x2

2
− x +

t2

2
+ C,

and the initial condition yields C = −1/2. From the quadratic formula, we obtain the
solutions x = 1± t. Both of these functions solve the initial value problem.

(c) See Figure 14.

(d) No, Theorem 2.4.1 does not apply.

19. Let z(x, t) = x/(2
√

kt). Note that ∂z/∂t = −x/(4
√

kt3) = −z/(2t) and ∂z/∂x = 1/(2
√

kt).
From y(x, t) = erf (z(x, t)), we have

∂y

∂t
=

(
− z

2t

)(
2√
π

e−z2

)
= − z√

π t
e−z2

,
∂y

∂x
=

(
1

2
√

kt

) (
2√
π

e−z2

)
=

1√
πkt

e−z2
,

and

k
∂2y

∂x2
= k

(
1

2
√

kt

)(
− 2z√

πkt
e−z2

)
= − z√

π t
e−z2

=
∂y

∂t
.

21.
dy

dx
= c1

d

dx
Ai (x) + c2

d

dx
Bi (x)

and
d2y

dx2
= c1

d2

dx2
Ai (x) + c2

d2

dx2
Bi (x) = c1xAi (x) + c2xBi (x) = xy.

Section 2.5

1.
Approximation Solution |Error|

t ∆t = 0.1 y(t) ∆t = 0.1
0.1 2.000 2.010 0.010
0.2 2.020 2.037 0.017
0.3 2.058 2.082 0.024
0.4 2.112 2.141 0.029

3.
Approximation Solution |Error|

t ∆t y(t) ∆t
0.02 0.01 0.005 0.02 0.01 0.005

0.1 5.206 5.234 5.248 5.263 0.057 0.029 0.015
0.4 16.45 19.34 21.61 25.00 8.55 5.64 3.39

Halving the step size reduces the error by about one half at t=0.1; the improvement at t=0.4
is less. See Figure 15. The first plot is for step size 0.02, the next for step size 0.01, and
the last graph is for step size 0.005. The approximations are the data points marked with
squares.
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Figure 15: Exercise 2.5.3 with step sizes 0.02, 0.01 and 0.005 respectively.

5.
Approximation Solution |Error|

t ∆t y(t) ∆t
0.2 0.1 0.05 0.2 0.1 0.05

2 3.571 3.514 3.486 3.459 0.112 0.055 0.027

The error is approximately cut in half if the step size is cut in half, with the error magnitude
approximately 0.54∆t. See Figure 16. The first plot is for step size 0.2, the second is for step
size 0.1, and the last is for step size 0.05. The approximations are the data points marked
with squares.
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Figure 16: Exercise 2.5.5 with 10, 20 and 40 steps respectively.

7. See Figure 17.

Approximation Solution |Error|
t ∆t y(t) ∆t

0.2 0.1 0.05 0.2 0.1 0.05
2 4.232 4.618 4.822 5.033 0.801 0.415 0.211
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Figure 17: Exercise 2.5.7 with 10, 20 and 40 steps respectively.

9. The solution of the initial value problem is

y =
1

1− sin t
, −3π

2
< t <

π

2
.

The solution ceases to exist at t = π/2; however, the numerical approximation scheme always
yields a finite slope at the points tn. Therefore, the Euler approximation “jumps” across the
line t = π/2 and begins to follow a different solution curve. See Figure 18.
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Figure 18: Exercise 2.5.9 with 40, 80 and 160 steps respectively.

11. (a) Euler’s method on the interval [0, 1] estimates that the value of y for step size 0.025
when t = 1 is 0.4789.

(b) Euler’s method on the interval [0, 1] estimates that the value of y for step size 0.0125
when t = 1 is 0.4846.

(c) Let ya be the answer from part a and yb be the answer from part b. The assumption on
the error leads us to the equation y(1) − ya = 2(y(1) − yb). If we solve for y(1) we get
y(1) = 2yb − ya ≈ 0.4903. Of course this answer is not the exact value of y(1), but it is
the best answer that can be given from the available data.
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Section 2.6

1.

Approximation Solution |Error|
t Euler Mod. Euler rk4 y(t) Euler Mod. Euler rk4

0.2 2.0200 2.0400 2.0374 0.0174 0.0026
0.4 2.1122 2.1448 2.1408 2.1406 0.0286 0.0040 0.0002

Each approximation for t = 0.2 uses two evaluations of the derivative function, and each
approximation for t = 0.4 uses four evaluations of the derivative function. The very large
differences in accuracy are due to the differences in the methods.

3. (a)-(e)

Approximation Solution |Error|
t ∆t y(t) ∆t

0.05 0.025 0.0125 0.05 0.025 0.0125
0.1 5.2613 5.2629 5.2631 5.2632 0.00187 0.00027 0.00004
0.4 21.70 23.74 24.61 25.00 3.30 1.26 0.39

For the modified Euler method, halving the step size reduces the error by about one-sixth at
t=0.1; the error at t=0.4 is reduced by roughly one-third. (Theoretically, the error should
be reduced by roughly one-quarter.) Given the same number of function evaluations, the
modified Euler results are much better than the Euler results. See Figure 19.
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Figure 19: Exercise 2.6.3 with step size 0.05, 0.25, and 0.0125 respectively
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(f)

Approximation Solution |Error|
t ∆t y(t) ∆t

0.1 0.05 0.1 0.05
0.1 5.26320 5.26316 5.26316 4.6 ×10−5 3.4 ×10−6

0.4 24.13 24.87 25.00 0.87 0.13

Halving the step size reduces the error by about one-fourteenth at t=0.1; the error at t=0.4
is reduced by roughly one-sixth. (Theoretically, the error should be reduced by roughly
one-eighth.)

5. The Modified Euler and rk4 methods are better at tracking the sudden increase in slope as
t → π/2 and roughly comparable to each other. Neither is able to identify that the solution
does not exist for t ≥ π/2. See Figures 20 and 21.
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Figure 20: Exercise 2.6.5c with 20, 40, and 80 steps respectively
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Figure 21: Exercise 2.6.5e with 20, 40, and 80 steps respectively
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7. Increasing the heat liberated by the reaction makes the reaction accelerate faster and approach
completion earlier. The following graphs are generated using rk4 with a step size of 0.001
and 2000 steps. See Figures 22 and 23.
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Figure 22: Exercise 2.6.7 with β = 0 and β = 1 respectively.
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Figure 23: Exercise 2.6.7 with β = 2 and β = 4 respectively.
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Section 3.1

1. The solution is y = c1 cos t + c2 sin t. The initial conditions imply y = − cos t−√3 sin t. The
amplitude is 2 and the phase shift is δ = 4π/3. Thus, y = 2 cos(t− 4π/3). See Figure 24.
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Figure 24: Exercises 3.1.1 and 3.1.3

3. The solution is y = c1 cos
√

3t + c2 sin
√

3t. The initial conditions imply y = cos
√

3t −
1√
3
sin
√

3t. The amplitude is 2/
√

3 and the phase shift is δ = −π/6. Thus, y = 2√
3
cos(

√
3t+

π/6). See Figure 24.

5. The solution is y = c1 cos
√

5t + c2 sin
√

5t. The initial conditions imply y = −2 cos
√

5t −
6√
5
sin
√

5t. The amplitude is
√

56/5 and the phase shift is δ = π − arcsin(−3/
√

14). Thus,

y =
√

56
5 cos(

√
5t− δ). See Figure 25.
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Figure 25: Exercise 3.1.5

7. The spring is governed by y′′ + 0.1ky = 0, where k is the spring constant. Thus y =
c1 cos

√
0.1k t + c2 sin

√
0.1k t. The period of motion is 2π

√
10/k. Since this must be 1,

k = 40π2. Any resulting oscillation will always be of period 1.

9. The spring is governed by my′′ + ky = 0, where m is the mass and k is the spring constant.
Thus y = c1 cos

√
k/m t + c2 sin

√
k/m t. The information about the period tells us that

5
√

k = 2π
√

m. Adding two pounds to the end of the spring gives us the equation (m +
1/16)y′′ + ky = 0, where m is the original mass and k is the spring constant. Thus y =
c1 cos

√
k/(m + 1/16) t + c2 sin

√
k/(m + 1/16) t. The information about the period tells us

that 7
√

k = 2π
√

(m + 1/16). Eliminating k and solving for m in these two equations yields
m = 25/(16 · 24) ≈ 0.065.
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Chapter 3: Homogeneous Linear Equations

11. The spring constant is k = 4 · 980. Thus we have y′′ + 196y = 0. The solution is y =
c1 cos 14t + c2 sin 14t. The initial conditions y(0) = −2 and y′(0) = −1 result in the solution

y = −2 cos 14t− 1
14

sin 14t.

The period is π/7 and the amplitude is A =
√

785/14. From cos δ = −28/
√

785 and sin δ =
−1/

√
785, we have δ = π − arcsin(−1/

√
785) ≈ 3.177.

13. The mass is m = w/g = 1/16 and the spring constant is k = w/∆L = 4, so the governing
equation is y′′ + 64y = 0. The initial conditions are y(0) = 1/4 and y′(0) = 1, and the
corresponding solution is

y =
1
4

cos 8t +
1
8

sin 8t.

The amplitude is A =
√

5/8 and the phase shift is δ = arcsin(1/
√

5). See Figure 26.
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Figure 26: Exercise 3.1.13

15. (a) The linear approximation of sin θ near θ = 0 is sin θ ≈ θ. Thus θ′′+ g
Lθ = 0, from which

we can immediately identify the period as 2π
√

L/g.

(b) We can multiply the equation by 2dθ/dt to obtain

2
dθ

dt
+

2g

L

dθ

dt
sin θ = 0.

Integrating both sides of this equation yields (dθ/dt)2 − (2g/L) cos θ = C. The initial
conditions combine to yield C = −(2g/L) cos A; we therefore arrive at the equation

(
dθ

dt

)2

=
2g

L
(cos θ − cosA).

(c) The right side of the equation of part (b) is positive as θ decreases from A to 0, so the
equation makes sense. We choose the negative square root since θ is decreasing. We also
know that θ = A when t = 0 and θ = 0 when t = T/4. From part (a), the linear period
is T0 = 2π

√
L/g, so we have F defined by T = 2π

√
L/g F . Combining this information

yields the problem

dt

dθ
= −

√
L

2g

1√
cos θ − cosA

, t(A) = 0, t(0) =
π

2

√
L

g
F.
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Section 3.2

(d) Multiplying the differential equation dt/dθ = G(θ) by dθ and integrating over the interval
0 ≤ θ ≤ A yields

∫ t(A)
t(0) dt =

∫ A
0 G(θ) dθ. Using the function G and values t(0) and t(A)

from part (c) yields, after simplification,

F =
√

2
π

∫ A

0

dθ√
cos θ − cosA

.

(e) Let x = cos θ. Then dx = − sin θ dθ = −√1− x2 dθ. The limits of integration become
x = 1 and x = cosA. We therefore have

F =
√

2
π

∫ 1

b

dx√
x− b

√
1− x2

, b = cosA.

(f) As of this writing, Maple 9.5 has a bug in its “assume” command. The statement
“assume(b >0,b <1); getassumptions b;” yields the output “{b::RealRange(-∞,Open(1))}”,
which is wrong. Instead, it is necessary to use “assume(b,RealRange(Open(0),Open(1));”.
Once this has been done correctly, the formula for F from part (e) yields the response

F :=
2EllipticK

(√
2−2b
2

)

π
Mathematica returns a long solution that includes hypergeometric functions as well
as elliptic functions. In general, computer algebra systems have a lot of predefined
functions, some of which only specialists would recognize. This really doesn’t make any
difference, as the integrals can always be calculated numerically. Numerical calculation is
preferable for those cases where the predefined function is slow to compute. Whenever
you get a messy formula, it is always a good idea to obtain graphs using both the
formula and numerical approximation; if the results are different, it becomes necessary
to determine which is correct.

(g) We have A = πa/180 and b = cos(πa/180) along with the integral of part (e) or the
formula of part (f). See Figure 27.
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Figure 27: Exercise 3.1.15

Section 3.2

1. 


2 3 −4
1 −2 −2
1 3 0

∣∣∣∣∣∣

−8
−4

2


 ∼=




1 3/2 −2
0 1 0
0 0 1

∣∣∣∣∣∣

−4
0
3


 ∼=




1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣

2
0
3




Therefore, x = 2, y = 0, z = 3 is the unique solution.
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3. 


2 1 −2
3 2 2
5 4 3

∣∣∣∣∣∣

10
1
4


 ∼=




1 1/2 −1
0 1 10
0 0 1

∣∣∣∣∣∣

5
−28

3


 ∼=




1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣

1
2

−3




Therefore, x = 1, y = 2, z = −3 is the unique solution.

5. 


2 6 1
1 2 −1
5 7 −4

∣∣∣∣∣∣

8
−2

5


 ∼=




1 3 1/2
0 1 3/2
0 0 1

∣∣∣∣∣∣

4
6
6


 ∼=




1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣

10
−3

6




Therefore, x = 10, y = −3, z = 6 is the unique solution.

7. 


1 −2 3
4 3 1
2 7 −5

∣∣∣∣∣∣

−7
5

19


 ∼=




1 −2 3
0 11 −11
0 11 −11

∣∣∣∣∣∣

−7
33
33




The matrix is singular, so there cannot be a unique solution.

9. 


1 1 −1 0
1 1 1 1

−1 1 0 1
1 0 2 1

∣∣∣∣∣∣∣∣

−1
2
1
3


 ∼=




1 1 −1 0
0 1 −3 −1
0 0 1 3/5
0 0 0 1

∣∣∣∣∣∣∣∣

−1
−4
8/5
1


 ∼=




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

∣∣∣∣∣∣∣∣

0
0
1
1




Therefore, w = 0, x = 0, y = 1, z = 1 is the unique solution.

11. ∣∣∣∣∣∣

0 3 2
1 0 4

−1 0 −3

∣∣∣∣∣∣
= −3

∣∣∣∣
1 4

−1 −3

∣∣∣∣ = −3(−3 + 4) = −3.

13. ∣∣∣∣∣∣

2 0 3
1 7 2
4 6 2

∣∣∣∣∣∣
= 2

∣∣∣∣
7 2
6 2

∣∣∣∣ + 3
∣∣∣∣

1 7
4 6

∣∣∣∣ = −62.

15. ∣∣∣∣∣∣∣∣

1 −2 1 2
4 0 5 0
0 1 6 1
1 1 −1 5

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣

1 0 13 4
4 0 5 0
0 1 6 1
1 0 −7 4

∣∣∣∣∣∣∣∣
= −

∣∣∣∣∣∣

1 13 4
4 5 0
1 −7 4

∣∣∣∣∣∣
= −

∣∣∣∣∣∣

0 20 0
4 5 0
1 −7 4

∣∣∣∣∣∣

= 20
∣∣∣∣

4 0
1 4

∣∣∣∣ = 320.

17. Ignoring the value of c for the moment, we have

(
1 1
2 c

∣∣∣∣
3
7

)
∼=

(
1 1
0 c− 2

∣∣∣∣
3
1

)
.

The matrix is singular if c = 2. Otherwise, we can easily solve the decoupled system that
remains:

y =
1

c− 2
, x = 3− y =

3c− 7
c− 2

.
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19. Ignoring the value of c for the moment, we have



1 2 1
2 0 −3
0 c 4

∣∣∣∣∣∣

4
6
0


 ∼=




1 2 1
0 −4 −5
0 c 4

∣∣∣∣∣∣

)
∼=




1 0 −3/2
0 1 5/4
0 0 16−5c

4

∣∣∣∣∣∣

3
1/2
−c/2




∼=



1 0 −3/2
0 1 5/4
0 0 16− 5c

∣∣∣∣∣∣

3
1/2
−2c


 .

The matrix is singular if c = 16/5. Otherwise, we can easily solve the decoupled system that
remains:

z =
−2c

16− 5c
, y =

1
2
− 5

4
z =

8
16− 5c

, x = 3 +
3
2
z =

48− 18c

16− 5c
.

21. The augmented matrix is
(

1 −3
2 −6

∣∣∣∣
0
0

)
∼=

(
1 −3
0 0

∣∣∣∣
0
0

)
.

The system reduces to the single equation x− 3y = 0, so a one-parameter family of solutions
is x = 3c, y = c.

Section 3.3

1. y = t3 − t, y′ = 3t2 − 1, y′′ = 6t, so L[y] = 2t2 + 4t.

3. y = e−t cos t, y′ = −e−t cos t− e−t sin t, y′′ = 2e−t sin t, so L[y] = 2e−t(sin t + cos t).

5. y = c1e
−2t, y′ = −2c1e

−2t, y′′ = 4c1e
−2t, so L[y] = 6c1e

−2t.

7. y = c1 cos 2t, y′ = −2c1 sin 2t, y′′ = −4c1 cos 2t, so L[y] = −6c1 sin 2t.

9. Let g = 2t2 + 4t; then y = t3 − t solves L[y] = g.

11. (a) y1 = 1, y′1 = 0, y′′1 = 0, and y′′′1 = 0. y2 = t, y′2 = 1, y′′2 = 0, and y′′′2 = 0. y3 = e2t,
y′3 = 2e2t, y′′3 = 4e2t, and y′′′3 = 8e2t.

(b) y = c1 + c2t + c3e
2t.

13. (a) y1 = et, y′1 = et, and y′′1 = et. y2 = tet, y′2 = et + tet, and y′′2 = 2et + tet.

(b) y = c1e
t + c2te

t.

15. (a) (−∞,∞).

(b) y1 = e−2t, y′1 = −2e−2t, and y′′1 = 4e−2t. y2 = e3t, y′2 = 3e3t, and y′′2 = 9e3t.

(c) W =
∣∣∣∣

e−2t e3t

−2e−2t 3e3t

∣∣∣∣ = 5et 6= 0, so this is a linearly independent set of solutions.

(d) W = 5et and W ′ = 5et = W .

(e) y = c1e
−2t + c2e

3t.

(f) The initial conditions yield y = 1
5(e3t − e−2t).

(g) (−∞,∞).
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Chapter 3: Homogeneous Linear Equations

17. (a) (0,∞).

(b) y1 = x2, y′1 = 2x, and y′′1 = 2. y2 = x2 lnx, y′2 = 2x lnx + x, and y′′2 = 2 lnx + 3.

(c) W =
∣∣∣∣

x2 x2 ln x
2x 2x lnx + x

∣∣∣∣ = x3 6= 0 on (0,∞), so this is a linearly independent set of

solutions.

(d) W = x3 and W ′ = 3x2 = 3
xW .

(e) y = c1x
2 + c2x

2 ln x.

(f) The initial conditions yield y = x2 − 3x2 ln x.

(g) (0,∞).

19. (a) (−∞,∞).

(b) y1 = 1, y′1 = 0, y′′1 = 0, and y′′′1 = 0. y2 = t, y′2 = 1, y′′2 = 0, and y′′′2 = 0. y3 = e−2t,
y′3 = −2e−2t, y′′3 = 4e−2t, and y′′′3 = −8e−2t.

(c) W =

∣∣∣∣∣∣

1 t e−2t

0 1 −2e−2t

0 0 4e−2t

∣∣∣∣∣∣
= 4e−2t 6= 0, so this is a linearly independent set of solutions.

(d) W = 4e−2t and W ′ = −8e−2t = −2W .

(e) y = c1 + c2t + c3e
−2t.

(f) The initial conditions yield y = 1.

(g) (−∞,∞).

Section 3.4

1. The characteristic polynomial is r2 + 4r + 3. The characteristic values are r = −1,−3. The
solution is y = c1e

−t + c2e
−3t.

3. The characteristic polynomial is r2−4. The characteristic values are r = 2,−2. The solution
is y = c1e

2t + c2e
−2t.

5. The characteristic polynomial is r3 + 5r2 + 4r. The characteristic values are r = 0,−1,−4.
The solution is y = c1 + c2e

−t + c3e
−4.

7. The characteristic polynomial is r2 + 5r + 6. The characteristic values are r = −2,−3. The
general solution is y = c1e

−2t + c2e
−3t. The initial conditions give y = 6e−2t − 4e−3t. The

long time approximation is 6e−2t. See Figure 28.

9. The characteristic polynomial is r2 + 2r − 8. The characteristic values are r = 2,−4. The
solution is y = c1e

2t + c2e
−4t. The initial conditions give y = 8

3e2t + 4
3e−3t. The long time

approximation is 8
3e2t. See Figure 28.
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Section 3.5
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Figure 28: Exercises 3.4.7 and 3.4.9

11. (a) Given the equation y′′+ by′+4y = 0, the critical amount of damping occurs when there
is exactly one characteristic value. The characteristic value is r = (−b ± √b2 − 16)/2.
This will have only one solution when b = 4.

(b) We are considering the equation y′′ + 8y′ + 4y = 0, with y(0) = 1 and y′(0) = 0. The
characteristic polynomial is r2 + 8r + 4. The characteristic values are r = −4 ± 2

√
3.

The general solution is y = c1e
(−4+2

√
3)t + c2e

(−4−2
√

3)t. The initial conditions yield
y = 3+3

√
3

6 e(−4+2
√

3)t + 3−2
√

3
6 e(−4−2

√
3)t.

(c) For any initial conditions, the solution is y = c1e
(−4+2

√
3)t+c2e

(−4−2
√

3)t. We have y = 1
at time 0 and y ≈ c1e

(−4+2
√

3)t as t → ∞. The solution will reach 0 at a finite time if
c1 < 0. The critical case is where c1 = 0. The solution is then y = e(−4−2

√
3)t, from

which we have y′(0) = −4− 2
√

3. The requirement is s > 4 + 2
√

3 ≈ 7.46.

Section 3.5

1. The characteristic equation is r2 + 5 = 0. The characteristic values are r = ±√5i. The
general solution is y = c1 cos

√
5t + c2 sin

√
5t.

3. The characteristic equation is r2 − 4r + 8 = 0. The characteristic values are r = 2± 2i. The
general solution is y = e2t(c1 cos 2t + c2 sin 2t).

5. The characteristic equation is r3−r = 0. The characteristic values are r = 0,±1. The general
solution is y = c1 + c2e

t + c3e
−t.

7. The characteristic equation is r2 + 4r + 5 = 0. The characteristic values are r = −2± i. The
general solution is y = e−2t(c1 cos t + c2 sin t). The initial conditions yield

y = e−2t(2 cos t + 4 sin t).

The amplitude is A =
√

20, so the envelope is ±√20e−2t. See Figure 29.

9. The characteristic equation is r2 + 2r + 6 = 0. The characteristic values are r = −1 ±√5i.
The general solution is y = e−t(c1 cos

√
5 t + c2 sin

√
5 t). The initial conditions yield

y =
2√
5
e−t sin

√
5 t.

The amplitude is A = 2√
5
, so the envelope is ± 2√

5
e−t. See Figure 29.
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Figure 29: Exercises 3.5.7 and 3.5.9

11.

W [eα cosβt, eα sinβt] =
∣∣∣∣

eαt cosβt eαt sinβt
αeαt cosβt− βeαt sinβt αeαt sinβt + βeαt cosβt

∣∣∣∣ = βe2αt.

13. Given the equation y′′ + by′ + 4y = 0, the critical amount of damping occurs when there is
exactly one characteristic value. The characteristic value is r = (−b ± √

b2 − 16)/2. This
will have only one solution when b = 4. We are considering the equation y′′ + 2y′ + 4y = 0,
with y(0) = 1 and y′(0) = 0. The characteristic polynomial is r2 + 2r + 4. The characteristic
values are r = −1±√3i. The general solution is y = e−t(c1 cos

√
3 t+ c2 sin

√
3t). The initial

conditions yield

y = e−t

(
cos

√
3 t +

1√
3

sin
√

3t

)
.

See Figure 30.
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Figure 30: Exercise 3.5.13

Section 3.6

1. The characteristic polynomial is r2 − 4r + 4 = (r − 2)2. The characteristic value is r = 2.
The general solution is y = (c1 + c2t)e2t. The initial conditions yield

y = (2− 3t)e2t.
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3. The characteristic polynomial is r3−6r2+13r = r(r2−6r+13). The characteristic values are
r = 0, 3± 2i. The general solution is y = c1 + e3t(c2 cos 2t + c3 sin 2t). The initial conditions
yield

y = 1 + 2e3t cos 2t.

5. Let y2 = exv(x). Then y′2 = ex(v′ + v) and y′′2 = ex(v′′ + 2v′ + v). Substituting into the
differential equation for y yields xv′′ − 2v′ = 0. A solution of this equation is v = x3; thus,
we have y2 = x3ex. The general solution is

y = c1e
x + c2x

3ex.

7. Let y2 = exv(x). Then y′2 = ex(v′ + v) and y′′2 = ex(v′′ + 2v′ + v). Substituting into the
differential equation for y yields v′′ − exv′ = 0. A solution of this equation is v′ = exp(ex);
thus, we have v =

∫ x
0 exp(es) ds and y2 = ex

∫ x
0 exp(es) ds. The general solution is

y = c1e
x + c2e

x

∫ x

0
exp(es) ds.

9. Let y2 = x−1/2(sinx)v(x). Then y′2 = (x−1/2 sinx)v′ + (x−1/2 cosx − 1
2x−3/2 sinx)v and

y′′2 = (x−1/2 sinx)v′′+(2x−1/2 cosx−x−3/2 sinx)v′+[−x−3/2 cosx+(3
4x−5/2−x−1/2) sin x]v.

Substituting into the differential equation for y yields (sinx)v′′ + 2(cosx)v′ = 0. A solution
of this equation is v′ = − csc2 x; thus, we have v′ = cotx and y2 = x−1/2 cosx. The general
solution is

y = c1x
−1/2 sinx + c2x

−1/2 cosx.

11. Let y2 = ex2
v(x). Then y′2 = ex2

v′ + 2xex2
v and y′′2 = ex2

v′′ + 4xex2
v′ + (8x2 + 4)ex2

v.
Substituting into the differential equation for y yields v′′ + 2xv′ = 0. A solution of this
equation is v =

∫ x
0 e−s2

ds; thus, we have y2 = ex2
erf (x). The general solution is

y = c1e
x2

+ c2 erf (x).

13. Let y = e−tv(t). Then y′2 = e−t(v′−v), y′′2 = e−t(v′′−2v′+v), and y′′′2 = e−t(v′′′−3v′′+3v′−v).
Substituting into the differential equation for y yields v′′′ = 0; thus, we have v = c1+c2t+c3t

2.
The general solution is

y = (c1 + c2t + c3t
2)e−t.

Section 3.7

1. Let x = et. The differential equation in terms of t is 2y′′ − y′ − 3y = 0. The characteristic
equation is 2r2 − r − 3 = 0. The characteristic values are r = 3

2 ,−1. The general solution is
y = c1e

3t/2 + c2e
−t = c1x

3/2 + c2x
−1. The initial conditions yield y = 2x3/2 − x−1. As x → 0

the solution behaves like 1/x. See Figure 31.

3. Let x = −et. The differential equation in terms of t is y′′ − 4y′ + 4y = 0. The characteristic
equation is r2 − 4r + 4 = 0. The characteristic values is r = 2. The general solution is
y = (c1 + c2t)e2t = c1x

2 + c2x
2 ln(−x). The initial conditions yield y = 2x2 + 7x2 ln(−x). As

x → 0 the solution behaves like 7x2 ln(−x). See Figure 31.
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Figure 31: Exercises 3.7.1 and 3.7.3

5. Let y = xr. Then the differential equation becomes r2 − r + β = 0. The solution of this is
r = (1

2 ±
√

1− 4β)/2. In order for the solution to vanish as x → 0, we need the real part of
r to be positive for both roots. If 1 − 4β ≤ 0, this is always true. If 1 − 4β > 0, we need
1−√1− 4β > 0 which implies β > 0. Thus we need β > 0.

7. We begin with the equation md2y
dt2

+ bdy
dt + ky = 0. Then dy

dt =
√

k/mdy
dτ and d2y

dt2
= (k/m)d2y

dτ2 .
Substituting these and the expression for β into the equation, we get y′′ + 2βy′ + y = 0. β is
the damping coefficient relative to the critical damping value.

9. (a) With λ = 0, the equation is r2 d2y
dr2 + r dy

dr − ν2y = 0. The guess y = rm yields the
characteristic equation m2 = ν2. The solution is y = c1r

ν + c2r
−ν if ν 6= 0 and

y = c1 + c2 ln r if ν = 0.

(b) Let x = λr. The equation becomes x2 d2y
dx2 + x dy

dx + (x2 − ν2)y = 0. The solution of this
is y = c1Jν(x) + c2Yν(x) = c1Jν(λr) + c2Yν(λr).

11. Let y = xrf . Then y′ = rxr−1f +xrf ′ and y′′ = r(r−1)xr−2f +2rxr−1f ′+xrf ′′. Substituting
these into the equation yields

x2f ′′ + (2r − 1)xf ′ + (x2 + r2 − 2r)f = 0.

For this to be an equation of Bessel type, the coefficient of f ′ must be x. Thus r = 1.
The equation is then a Bessel equation with ν = 1. Thus f = c1J1(x) + c2Y1(x) and
y = c1xJ1(x) + c2xY1(x).

34



Section 4.1

Section 4.1

1. We must solve the equation 0.001v′ + v = 1.5 Let y = v − 1.5. Then y′ + 1000y = 0 and
y(0) = −1.5. The solution of this problem is y = −1.5e−1000t. Therefore, v = 1.5−1.5e−1000t.
The current is

i = 10−3y′ = 1.5e−1000t.

3. We must solve the equation 0.04v′′+0.4v′+v = 10. Let y = v−10. Then y′′+10y′+25y = 0,
y(0) = −10, and y′(0) = 0. The solution of this problem is y = (−50t− 10)e−5t. Therefore,
v = 10 + (−50t− 10)e−5t. The current is

i = 0.01y′ = 250te−5t.

5. We must solve the equation v′′ + 0.2v′ + v = 20. Let y = v − 20. Then y′′ + 0.2y′ + y = 0,
y(0) = 0, and y′(0) = 100i(0) = 100. The solution of this problem is y = 100β−1e−0.1t sinβt,
where β =

√
0.99 ≈ 1. Therefore, v = 20 + 100β−1e−0.1t sinβt. The current is

i = 0.01y′ = e−0.1t(cosβt− 0.1β−1 sinβt).

7. (a) Li′ + Ri = E, i(0) = i0.

(b) Let k = E/R and y = i− k. The problem becomes Ly′ + Ry = 0 with y(0) = i0 − k.

(c) The solution of this problem is y = (i0 − k)e−Rt/L.

(d) i =
E

R
+

(
i0 − E

R

)
e−Rt/L.

(e) The steady state current is E/R.

(f) Without the capacitor there will be no oscillations in current. If the capacitor is added
then the steady state solution for the current must be zero.

9. (a) When the switch is closed, we have an RL series circuit with R = 2.6, L = 0.0058, and
E = 12. The initial condition is i0 = 0. By Exercise 7, we have i = (E/R)(1−e−RT/L) ≈
4.615(1−e−448t) and vL = Li′ = Ee−RT/L ≈ 12e−448t. Note that the current approaches
E/R as t →∞; also, vR approaches E and vL approaches 0.

(b) When the switch is opened, we have an RLC series circuit with R = 2.6, L = 0.0058,
C = 0.0005, and E = 12. The initial conditions are v(0) = E − vR(0) − vL(0) = 0
and v′(0) = C−1i(0) = E/(RC). We therefore have (approximately) the initial value
problem

0.0000029v′′ + 0.01508v′ + v = 12, v(0) = 0, v′(0) = 796.

The solution of this problem is v = 12 + e−224t(497 sin 18568t − 12 cos 18568t). From
vL = Lv′′, we obtain

vL ≈ −497e−224t sin 18568t.

(c) Most of the time, the switch is open and the voltage drifts from 12 down to 0. When
the switch is closed, the voltage becomes −497e−224t sin 18568t. The amplitude of the
oscillation is given by the envelope ±497e−224t. This means that closing the switch
almost immediately causes an oscillating voltage of amplitude almost 500 volts. This
spike is further amplified in the ignition coil, creating an enormous static charge at the
spark plug gap. This charge jumps the gap, somewhat like a miniature bolt of lightning.
The switch opens very quickly, reducing the voltage in the primary coil back to 12.
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11. (a) The system is critically damped when L0 = 1.
(b) We have the problem Lv′′+ 2v′+ v = 1, with v(0) = 0 and v′(0) = 0. Setting y = v− 1,

we have Ly′′ + 2y′ + y = 0, with y(0) = −1 and y′(0) = 0. For the overdamped L = 0
case, we have v = 1− e−t/2 and i = 1

2e−t/2. The other cases are underdamped, and we
obtain

y = −e−t/L

(
cos

√
L− 1
L

t +
1√

L− 1
sin

√
L− 1
L

t

)
.

Then i = y′ yields

i =
1√

L− 1
e−t/L sin

√
L− 1
L

t.

(c) See Figure 32.
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Figure 32: Exercise 4.1.11

(d) Increasing inductance is like increasing the mass in a spring-mass model. When induc-
tance is above the critical value, the circuit is underdamped. Increasing L speeds up
the oscillation and slows down the envelope decay. Below the critical value, the circuit
is overdamped and further decrease in L slows down the solution decay.

Section 4.2

1. The characteristic values of L are λ = ±2, so the complementary solution is yc = c1e
2t+c2e

−2t.
Using the trial solution y = Aet, we obtain A = −1

3 . Therefore,

y = −1
3
et + c1e

2t + c2e
−2t.

3. The characteristic value of L is λ = −3, so the complementary solution is yc = (c1 + c2t)e−3t.
Using the trial solution y = Ae2t, we obtain A = 1

25 . Therefore,

y =
1
25

e2t + (c1 + c2t)e−3t.
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5. The characteristic value of Lis λ = −4, so the complementary solution is yc = ce−4t. Using
the trial solution y = A cos 3t + B sin 3t, we obtain A = 4

25 and B = 3
25 . Therefore,

y =
4
25

cos 3t +
3
25

sin 3t + ce−4t.

7. The characteristic values of L are λ = ±2i, so the complementary solution is yc = c1 cos 2t +
c2 sin 2t. Using the trial solution y = A sin 3t + B cos 3t, we obtain A = −1

5 and B = 0.
Therefore,

y = −1
5

sin 3t + c1 cos 2t + c2 sin 2t.

9. The characteristic value of L is λ = −2, so the complementary solution is yc = ce−2t. Using
the trial solution y = Aet, we obtain A = 1. Using the initial condition yields

y = et + 2e−2t.

11. The characteristic value of L is λ = −5, so the complementary solution is yc = ce−5t. Using
the trial solution y = A cos 2t + B sin 2t, we obtain A = − 6

29 and B = 15
29 . Using the initial

condition yields

y = − 6
29

cos 2t +
15
29

sin 2t +
93
29

e−5t.

13. (a) Since, yp = A cos 2t + B sin 2t, y′p = −2A sin 2t + 2B cos 2t. Substituting these into the
equation and solving yields y = 5

13 cos 2t− 1
13 sin 2t.

(b) This cannot be done.

(c) The appropriate trial solution is y = A cos 2t+B sin 2t+C cos 4t+D sin 4t. Substituting
this into the equation and matching coefficients yields y = 3

13 cos 2t+ 2
13 sin 2t+ 4

25 cos 4t−
3
25 sin 4t.

15. (a) 2.

(b) 1 + 2t.

(c) 2t + 2t2.

(d) Taking Y = At2 +Bt+C, L[Y ] = 2At2 +2(A+B)t+B +2C. Thus A = 1/2, B = −1/2
and C = 3/4. Therefore,

y =
t2

2
− t

2
+

3
4
.

(e) yp should be a polynomial of degree k. Note that 0 can never be a characteristic value
of L because p 6= 0.

Section 4.3

1. (a) The characteristic value is 3, the degree is 1.

(b) The characteristic value is 0, the degree is 3.

(c) Not a generalized exponential.

(d) The characteristic value is 1± 3i, the degree is 1.
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3. Let Y = te3t; then Y ′ = e3t + 3te3t, Y ′′ = 6e3t + 9te3t, and

L[Y ] = (7 + 10t)e3t.

L[Y ] is a generalized exponential with characteristic value 3 and degree 1.

5. Let Y = tet; then Y ′ = et + tet, Y ′′ = 2et + tet, and

L[Y ] = 3et.

L[Y ] is a generalized exponential with characteristic value 1 and degree 0.

7. The characteristic values of L are λ = ±1. The characteristic value of g is −1. Thus the
appropriate choice for a trial solution is

Y = (At + Bt2)e−t;

then
L[Y ] = (−2A + 2B − 4Bt)e−t.

Setting L[Y ] = (−6 + 4t)e−t, we obtain a particular solution yp = (2t− t2)e−t.

9. The characteristic values of L are λ = 1,−2. The characteristic value of g is 3. Thus the
appropriate choice for a trial solution is

Y = (A + Bt)e3t;

then
L[Y ] = (10A + 7B + 10Bt)e3t.

Setting L[Y ] = te3t, we obtain a particular solution yp = (− 7
100 + 1

10 t)e3t.

11. The characteristic values of L are λ = 1,−2. The characteristic value of g is 1. Thus the
appropriate choice for a trial solution is

Y = Atet;

then
L[Y ] = 3Aet.

Setting L[Y ] = 4et, we obtain a particular solution yp = 4
3 tet.

13. The characteristic values of L are λ = ±2i. The characteristic value of g is 1± 2i. Thus the
appropriate choice for a trial solution is

Y = et(A cos 2t + B sin 2t);

then
L[Y ] = et[(A + 4B) cos 2t + (−4A + B) sin 2t].

Setting L[Y ] = et cos 2t, we obtain a particular solution yp = et( 1
17 cos 2t + 4

17 sin 2t).
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15. The characteristic values of L are λ = −1,−2. The characteristic value of g is 1. Thus the
appropriate choice for a trial solution is

Y = (A + Bt + Ct2)et;

then
L[Y ] = [(6A + 5B + 2C) + (6B + 10C)t + 6Ct2]et.

Setting L[Y ] = 3t2et, we obtain a particular solution yp = et(19
36 − 5

6 t + 1
2 t2)

17. The characteristic values of L are λ = ±2. The characteristic value for the first part of g is
2 and for the second part is 1. Thus the appropriate choice for a trial solution is

Y = Ate2t + (B + Ct)et;

then
L[Y ] = 4Ae2t + (−3B + 2C − 3Ct)et.

Setting L[Y ] = e2t + tet, we obtain a particular solution yp = 1
4 te2t +

(−2
9 − 1

3 t
)
et

19. The characteristic values of L are λ = ±3i. Thus the complementary solution is yc =
c1 cos 3t + c2 sin 3t. The characteristic value for the right hand side is 3 so the appropriate
choice for a trial solution is

Y = Ae3t;

then
L[Y ] = 18Ae3t.

Setting L[Y ] = 6e3t, we obtain A = 1/3, so the general solution is

y =
1
3
e3t + c1 cos 3t + c2 sin 3t.

Using the initial conditions, we get y = 1
3e3t − 1

3 cos 3t.

21. The equation becomes y′′− 3y′ + 2y = e4t. The characteristic values of the new equation are
1 and 2. Thus, the complementary solution is yc = c1e

t + c2e
2t. The characteristic value for

the right hand side is 4. An appropriate choice for a trial solution is

Y = Ae4t;

then
L[Y ] = 6Ae4t.

Setting L[Y ] = e4t, we obtain A = 1/6, so the general solution is

y =
1
6
e4t + c1e

t + c2e
2t =

1
6
x4 + c1x + c2x

2.

23. The equation becomes y′′ − 3y′ + 2y = te3t. The characteristic values of the new equation
are 1 and 2. Thus, the complementary solution is yc = c1e

t + c2e
2t. The characteristic value

for the right hand side is 3. An appropriate choice for a trial solution is

Y = (A + Bt)e3t;

39
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then
L[Y ] = (2A + 3B + 2Bt)e3t.

Setting L[Y ] = te3t, we obtain A = −3
4 and B = 1

2 , so the general solution is

y =
(
−3

4
+

1
2
t

)
e3t + c1e

t + c2e
2t =

(
−3

4
+

1
2

ln x

)
x3 + c1x + c2x

2.

25. (a) Y = A + Bt + Ct2. Y ′ = B + 2Ct. L[Y ] = B + 2Ct + At2 + Bt3 + Ct4.

(b) If L[Y ] = 2t + 5t2 + t4 then A = 5, B = 0, and C = 1. Thus Y = 5 + t2. There is no
way to select A, B, and C so that L[Y ] = t + 5t2 + t4.

(c) The image of L[A + Bt + Ct2] has three degrees of freedom, and the set of all fourth
degree polynomials has five degrees of freedom.

Section 4.4

3. The characteristic values are λ = −1
2 ±

√
35
2 i. The complementary solution is

yc = e−t/2

(
c1 cos

√
35 t

2
+ c2 sin

√
35 t

2

)
.

The right hand side has characteristic values ±3i, so a particular solution has the form
Y = A cos 3t + B sin 3t. The method of undetermined coefficients yields A = 0 and B = 1/3.
Using the initial conditions then yields the solution

y =
1
3

sin t− 2√
35

e−t/2 sin
√

35 t

2
.

The steady-state solution is

yss =
1
3

sin t =
1
3

cos
(
t− π

2

)
.

See Figure 33.
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Figure 33: Exercise 4.4.3
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5. The characteristic values are λ = (−3±√5)/2. The complementary solution is

yc = c1e
(−3+

√
5)t/2 + c2e

(−3−√5)t/2.

The right hand side has characteristic values ±5i, so a particular solution has the form
Y = A cos 5t + B sin 5t. The method of undetermined coefficients yields A = −5/267 and
B = −8/267. Using the initial conditions then yields the solution

y = − 5
267

cos 5t− 8
267

sin t +
5 + 19

√
5

534
e(−3+

√
5)t/2 +

5− 19
√

5
534

e(−3−√5)t/2.

The steady-state solution is

yss =

√
89
267

cos (5t− δ) , δ = π + arcsin
8√
89

.

See Figure 34.

7. Let Y = A0e
3it so that Y ′ = 3iA0e

3it and Y ′′ = −9A0e
3it. Substituting this into the

differential equation yields A0 = 1/3i. Thus the amplitude is |A0| = 1
3 , which matches the

amplitude in problem 3.
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Figure 34: Exercises 4.4.5 and 4.4.9

9. (a) Taking g = e4it and Y = A0e
4it, we find Y ′ = 4iA0e

4it and Y ′′ = −16Aoe
4it. Substitut-

ing these into the differential equation yields |A0| = 1/
√

(k2 − 16)2 + 16.

(b) The amplitude is maximized when the denominator,
√

(k2 − 16)2 + 16, is minimized.
This occurs when (k2 − 16)2 is minimized and this occurs when k = 4.

(c) See Figure 34.

11. (a) The characteristic values are λ = ±2i, so the complementary solution is yc = c1 cos 2t +
c2 sin 2t. A particular solution has the form Y = A cos 1.4t. The method of undetermined
coefficients yields A = 25/51. Using the initial conditions and writing the solution in
amplitude-phase shift form,

y(t) =
25
51

cos 1.4t− 25
51

cos 2t.

(b) See Figure 35.
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(c)
cos[2(t− 10π)]− cos 1.4(t− 10π)] = cos(2t− 20π)− cos(1.4t− 14π) = cos 2t− cos 1.4t.

(d) The characteristic values are λ = ±2i, so the complementary solution is yc = c1 cos 2t +
c2 sin 2t. A particular solution has the form Y = A cos

√
2t. The method of undeter-

mined coefficients yields A = 1/2. Using the initial conditions and writing the solution
in amplitude-phase shift form,

y(t) = −1
2

cos 2t +
1
2

cos
√

2 t.

(e) See Figure 35.

(f) We would like to have cos(2(t+k))−cos(β(t+k)) = cos 2t−cosβt for some k. Expanding
the left hand side we get

cos 2k cos 2t− sin 2k sin 2t− cosβk cosβt + sin βk cosβt = cos 2t− cosβt.

This equation reduces to
cos 2k = 1, cosβk = 1.

Thus, we need the smallest k for which 2k and βk are integer multiples of 2π. So we may
write k = nπ for some integer n and βk = 2mπ for some integer m; combining these,
we have nβ = 2m. This implies that β is a rational number, so let it be p/q in reduced
form. Then pn = 2mq. We seek the smallest n for which this equation is satisfied for
some integer m. If p is even, we may take m = p/2 and obtain n = q; thus, the period
is qπ. If p is odd, we take m = p and obtain n = 2q; thus, the period is 2qπ.
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Figure 35: Exercise 4.4.11, (b) and (e)

13. (a) The outdoor temperature can be modeled by 20− 5 cos(πt/12). Using this in Newton’s
law of cooling surrounding temperature [see Section 1.1 Equation (3)], we obtain the
differential equation −dT

dt = k[T − (20− 5 cos πt
12)], which we can rewrite as

dT

dt
+ kT = 20k − 5k cos

πt

12
.

(Note that the problem could as easily be done in degrees Fahrenheit.)

(b) The characteristic value of the complementary solution is −k < 0, so this solution decays
to 0. The steady-state solution is the particular solution, which has the form

Tp = A cos
πt

12
+ B sin

πt

12
+ C.
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Substitution into the differential equation yields the steady-state solution

Tp = 20−
[

720k2

144k2 + π2
cos

πt

12
+

60kπ

144k2 + π2
sin

πt

12

]
,

or

Tp = 20− 60k√
144k2 + π2

cos
(

πt

12
− arcsin

π√
144k2 + π2

)
.

(c) From kth = ln 2 and th = 3, we have k = ln 2/3 and

Tp = 20− 20 ln 2√
16 ln2 2 + π2

cos

(
πt

12
− arcsin

π√
16 ln2 2 + π2

)
.

See Figure 36.
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Figure 36: Exercise 4.4.13

(d) To compare with the outside temperature S = 20 − 5 cos(πt/12), it is most convenient
to rewrite the steady-state solution in the form Tp = 20 − A cos(π[t − C]/12). In this
form, the constant C represents the time lag of the response to the outdoor temperature
variation. We have

A =
20 ln 2√

16 ln2 2 + π2
≈ 3.31, C =

12
π

arcsin
π√

16 ln2 2 + π2
≈ 3.24,

and so Tp ≈ 20 − 3.31 cos π(t−3.24)
12 . The inside temperature fluctuates between 16.7 ◦C

and 23.3 ◦C as compared to the outside temperature fluctuation between 15 ◦C and 25
◦C. The coldest inside temperature occurs 3.24 months later than the coldest outside
temperature.

Section 4.5

1. The complementary solution via separation of variables is yc = ce4t. To solve by variation of
parameters, let y = u(t)e4t. Then e4tu′ = tet. Thus u(t) = (− t

3 − 1
9)e−3t. To solve by the

method of undetermined coefficients, let Y = (At+B)et. Then A = −1
3 and B = −1

9 . Either
way,

y =
(
− t

3
− 1

9

)
et + ce4t.
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3. The complementary solution via separation of variables is yc = ce4t. To solve by variation of
parameters, let y = u(t)e4t. Then e4tu′ = te4t. Thus u(t) = t2/2. To solve by the method of
undetermined coefficients, let Y = t(At + B)e4t. Then A = 1

2 and B = 0. Either way,

y =
t2

2
e4t + ce4t.

5. The complementary solution via separation of variables is yc = ce3t. To solve by variation of
parameters, let y = u(t)e3t. Then e3tu′ = cos t. Thus u(t) = e−3t

(
1
10 sin− 3

10 cos t
)
. To solve

by the method of undetermined coefficients, let Y = A cos t + B sin t. Then A = − 3
10 and

B = 1
10 . Either way,

y =
1
10

sin t− 3
10

cos t + ce3t.

7. The complementary solution via separation of variables is yc = ce−t. To solve by variation
of parameters, let y = u(t)e−t. Then e−tu′ = 1/(1 + et). Thus u = ln(et + 1). Hence,

y = ln(et + 1)e−t + ce−t.

9. The complementary solution via separation of variables is yc = ce−t2/2. To solve by variation
of parameters, let y = u(t)e−t2/2. Then e−t2/2u′ = 2t. Thus u = 2et2/2. Hence,

y = 2 + ce−t.

11. The complementary solution via separation of variables is yc = ce−t2 . To solve by variation
of parameters, let y = u(t)e−t2 . Then e−t2u′ = e−t2 cos t. Thus u = sin t. Hence,

y = e−t2 sin t + ce−t2 .

13. The complementary solution via separation of variables is yc = ct−1e−t. To solve by variation
of parameters, let y = t−1e−tu(t). Then t−1e−tu′ = t−1. Thus u = et. Hence,

y =
1 + ce−t

t
.

15. The complementary solution via separation of variables is yc = sec t. To solve by variation of
parameters, let y = u(t) sec t. Then (sec t)u′ = 1. Thus u = sin t. Hence,

y = tan t + c sec t.

17. The complementary solution via separation of variables is yc = t2. To solve by variation of
parameters, let y = u(t)t2. Then t2u′ = 6t4. Thus u = 2t3 and y = 2t5 + ct2. Using the
initial condition, we get

y = 2t5 − 2t2, −∞ < t < ∞.

19. The complementary solution via separation of variables is yc = 1 + t2. To solve by variation
of parameters, let y = u(t)(1 + t2). Then (1 + t2)u′ = 1. Thus u = arctan t and y =
(1 + t2)(arctan t + c). Using the initial condition, we get

y = (1 + t2) arctan t, −∞ < t < ∞.
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21. The complementary solution via separation of variables is yc = cos2 t. To solve by variation
of parameters, let y = u(t) cos2 t. Then (cos2 t)u′ = 1. Thus u = tan t and y = sin t cos t +
c cos2 t. Using the initial condition, we get

y = cos t(cos t + sin t), −π/2 < t < π/2.

23. The complementary solution via separation of variables is yc = e4t2 . To solve by variation of
parameters, let y = u(t)e4t2 . Then e4t2u′ = 1. Thus

u =
∫ t

0
e−4s2

ds =
1
2

∫ 2t

0
e−r2

dr =
√

π

4
erf 2t, y =

√
π

4
e4t2 erf 2t + ce4t2 .

Using the initial condition, we get

y =
√

π

4
e4t2 erf 2t + e4t2 , −∞ < t < ∞.

25. Rewrite the equation as t2y−3y′ + 2ty−2 = 1. Let w = y−2. In terms of w, the equation
becomes t2w′ − 4tw = −2. The complementary solution via separation of variables is ct4.
Now the substitution w = u(t)t4 yields the equation t4u′ = −2t−2. We obtain u = 2/(5t5)
and w = 2/(5t) + ct4. Therefore

y =
(

2
5t

+
c

t4

)−1/2

.

27. Rewrite the equation as p−2p′ − rp−1 = −r/K. Let w = p−1. In terms of w, the equation
becomes w′+ rw = −r/K. This is the same as Newton’s law of cooling; by various methods,
the solution is w = 1/K + ce−rt. Thus,

p =
K

1 + cKe−rt
.

29. (a) If n = −m, we have ty′ + my = kt−m. The complementary solution via separation of
variables is ct−m. The substitution y = u(t)t−m yields the equation t−mu′ = kt−m−1,
from which we obtain u = k ln t and

y = (k ln t + c)t−m.

(b) If n 6= −m, the procedure from part (a) yields u′ = ktm+n−1. Hence, u = k
m+n tm+n and

y =
k

m + n
tn + ct−m.

(c) With some initial conditions, such as y(0) = 0, the solution is y = ktn/(m + n), which
is valid for all t. This does not contradict the existence and uniqueness theorem. It is
always possible to get a better result than what is guaranteed by the theorem.

(d) No. Regardless of the value of c, the particular solution is undefined at t = 0 when
n < 0.

45



Chapter 4: Nonhomogeneous Linear Equations

31. (a) Solving the associated homogeneous problem by separation of variables, yc = cos t. To
solve for a particular solution using variation of parameters, let y = u(t) cos t. Then
(cos t)u′ = sin t, so u = − ln | cos t| and the general solution is y = cos t(c − ln | cos t|).
The solution of the initial value problem is then

y = [k − ln(cos t)] cos t, −π

2
< t <

π

2
.

(b) With L’Hôpital’s rule, we have

lim
t→±π/2

y = lim
t→±π/2

k − ln(cos t)
sec t

= lim
t→±π/2

tan t

sec t tan t
= lim

t→±π/2
cos t = 0.

(c) For the solution to vanish in the interior of its interval of validity, we must have
ln(cos t) = k for some t ∈ (−π/2, π/2). Over this interval in t, the cosine function
has the range (0, 1], so any negative value of k satisfies the requirement.

(d) Rewriting the differential equation, we have y′ = (tan t)(cos t − y); hence, the solution
has critical points wherever tan t = 0 or y(t) = cos t. Given the solution of part (a) and
the interval of validity, we have a critical point at t = 0 and a critical point wherever
ln(cos t) = k − 1. The latter equation has a solution if and only if k < 1, by the
argument of part (c). For the origin to be the global minimum, it must certainly
be a local minimum as well. Differentiating the original differential equation yields
y′′ + y′ tan t + y sec2 t = cos t, which we can evaluate at t = 0 to obtain y′′(0) = 1 − k.
Thus, the origin is a local maximum if k > 1 and not if k < 1. Since y(0) = k > 0 for the
k > 1 case and y → 0 approaching the endpoints of the interval, it follows that the origin
is the global maximum whenever k > 1. It remains only to consider the case k = 1. One
way to check this case is to expand y = [1− ln(cos t)] cos t as a power series about t = 0.
Combining the series ln(1 + x) = x− 1

2x2 + 1
3x3 + · · · and cos t = 1− 1

2 t2 + 1
24 t4 + · · · ,

we obtain

ln(cos t) = ln
(

1− 1
2
t2 +

1
24

t4 + · · ·
)

=
(
−1

2
t2 +

1
24

t4 + · · ·
)
− 1

2

(
−1

2
t2 +

1
24

t4 + · · ·
)2

+ · · ·

=
(
−1

2
t2 +

1
24

t4 + · · ·
)
− 1

2

(
1
4
t4 + · · ·

)

= −1
2
t2 − 1

12
t4 + · · · .

Thus,

y = [1−ln(cos t)] cos t =
(

1 +
1
2
t2 +

1
12

t4 + · · ·
)(

1− 1
2
t2 +

1
24

t4 + · · ·
)

= 1−1
8
t4+· · · .

This approximation is valid in the limit as t → 0, so we may conclude that the origin is
a local maximum of y as well as being a local maximum of 1− 1

8 t4.

33. First solve the problem on the interval 0 < t ≤ T . The complementary solution is yc = e−t.
A particular solution is yp = 1. Thus y = 1 − e−t. Now we want to solve the initial value
problem y′ + y = 0 with y(T ) = 1 + e−T . The solution of this is y = ce−t where c = eT − 1.
Thus we have

y =
{

1− e−t, 0 < t ≤ T
(eT − 1)e−t, T < t

46



Section 4.6

35. (a) The conditions in the problem are modeled by the an equation of the form

dP

dt
= (a− c cos(bt))P −R,

for some choice of a, b, and c. The condition on the period implies b = π/6. The
condition on the half-life at the minimum means that c− a = ln 2/6. The condition on
the growth rate at the maximum means that c + a = ln 2/3. Solving for a and c yields
the desired equation.

(b) By separation of variables, we obtain

P1 = exp
[
ln 2
12

(
t− 18

π
sin

πt

6

)]
.

(c) Using variation of parameters, let Pp = u(t)P1. Then P1u
′ = −R. Thus,

u = −R
∫ t
0 P−1

1 (s) ds. Therefore,

Pp = −R exp
[
ln 2
12

(
t− 18

π
sin

πt

6

)]∫ t

0
exp

[
− ln 2

12

(
τ − 18

π
sin

πτ

6

)]
dτ.

(d) Since P (0) = 1 and P (0) = P1(0)[u(0) + c] = c, we have c = 1. Thus,
P = P1(t)[1−R

∫ t
0 P−1

1 (s) ds], or

P =
{

1−R

∫ t

0
exp

[
− ln 2

12

(
τ − 18

π
sin

πτ

6

)]
dτ

}
exp

[
ln 2
12

(
t− 18

π
sin

πt

6

)]
.

(e) Observe that P1(12) = 2. If P (12) = 1, then 1 = 2[1−R
∫ 12
0 P−1

1 (s) ds], or R
∫ 12
0 P−1

1 (s) ds =
1
2 . Computing the integral numerically yields R ≈ 0.0543.

(f) The minimum population occurs at 3 months and the maximum population occurs at
9 months. These peaks lag behind the growth rate peaks because there is a period of
low but increasing growth after t = 0 and a period of high but decreasing growth after
t = 6. See Figure 37.
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Figure 37: Exercise 4.5.35

Section 4.6

1. The complementary solution via undetermined coefficients is yc = c1e
t + c2e

−t. The system
of equations produced by variation of parameters is

etu′1 + e−tu′2 = 0
etu′1 − e−tu′2 = (−6 + 4t)e−t .
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The solution to this system is u′1 = (−3 + 2t)e−2t, u′2 = 3 − 2t, so u1 = (1 − t)e−2t and
u2 = 3t− t2. A particular solution is

y = u1e
t + u2e

−t = e−t(−t2 + 2t + 1).

This differs from that of Section 4.3, but both are correct.

3. The complementary solution via undetermined coefficients is yc = c1e
t + c2e

−2t. The system
of equations produced by variation of parameters is

etu′1 + e−2tu′2 = 0
etu′1 − 2e−2tu′2 = te3t .

The solution to this system is u′1 = 1
3 te2t, u′2 = −1

3 te5t, so u1 =
(

1
6 t− 1

12

)
e2t and u2 =(

1
75 − 1

15 t
)
e5t. A particular solution is

y = u1e
t + u2e

−2t = e3t

(
t

10
− 7

100

)
.

5. The complementary solution via undetermined coefficients is yc = c1 cos 2t + c2 sin 2t. The
system of equations produced by variation of parameters is

(cos 2t)u′1 + (sin 2t)u′2 = 0
−2(sin 2t)u′1 + 2(cos 2t)u′2 = sec 2t

.

The solution to this system is u′1 = −1
2 tan 2t, u′2 = 1

2 , so u1 = 1
4 ln(cos 2t) and u2 = 1

2 t. The
general solution is

y =
1
4

ln(cos 2t) cos 2t +
t

2
sin 2t + c1 cos 2t + c2 sin 2t.

7. The complementary solution via undetermined coefficients is yc = c1e
−t +c2te

−t. The system
of equations produced by variation of parameters is

e−tu′1 + te−tu′2 = 0
−e−tu′1 + (1− t)e−tu′2 = t−pe−t .

The solution to this system is u′1 = −t1−p, u′2 = t−p. thus, u1 = − 1
2−p t2−p for p 6= 2 and

u1 = − ln t for p = 2, while u2 = 1
1−p t1−p for p 6= 1 and u2 = ln t for p = 1. We therefore

require separate solution formulas for the cases p = 1 and p = 2. The general solution is

y =





(t ln t + c1 + c2t)e−t p = 1
(− ln t + c1 + c2t)e−t p = 2(

1
(2−p)(1−p) t

2−p + c1 + c2t
)

e−t p > 2
.

9. y1 = x, y′1 = 1, y′′1 = 0, and y2 = ex, y′2 = ex, y′′2 = ex so they are both solutions of the
associated homogeneous problem. Using variation of parameters to find a particular solution
leads us to the system

xu′1 + exu′2 = 0
u′1 + exu′2 = xe−x

1−x

.
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The solution to this system is

u′1 =
xe−x

(1− x)2
, u′2 = − x2e−2x

(1− x)2
.

Neither of these can be integrated in terms of elementary functions, so we construct the
antiderivatives and obtain the general solution

y = x

(
c1 +

∫ x

0

se−s

(1− s)2
ds

)
+ ex

(
c2 −

∫ x

0

s2e−2s

(1− s)2
ds

)
.

11. y1 = x−1/2 cosx, y′1 = −1
2x−3/2 cosx−x−1/2 sinx, y′′1 = 3

4x−5/2 cosx+x−3/2 sinx−x−1/2 cosx

and y2 = x−1/2 sinx, y′2 = −1
2x−3/2 sinx + x−1/2 cosx, y′′2 = 3

4x−5/2 sinx − x−3/2 cosx −
x−1/2 sinx, so both are solutions of the associated homogeneous problem. Using variation of
parameters to find a particular solution leads us to the system

x−1/2(cosx)u′1 +x−1/2(sinx)u′2 = 0
(−1

2x−3/2 cosx− x−1/2 sinx)u′1 +(−1
2x−3/2 sinx + x−1/2 cosx)u′2 = x3/2 cosx

.

The solution to this system is u′1 = −1
4 sinx cosx, u′2 = 1

4 cos2 x = 1
8 + 1

8 cos 2x, so u1 =
−1

8 sin2 x and u2 = 1
8x + 1

16 sin 2x = 1
8x + 1

8 sinx cosx. The general solution is

y =
1
8
x1/2 sinx + c1x

−1/2 cosx + c2x
−1/2 sinx.

13. (a) y1 = 1 + x, y′1 = 1, y′′1 = 0 and y2 = ex, y′2 = ex, and y′′2 = ex, so both are solutions of
the associated homogeneous problem.

(b) In general, variation of parameters leads us to the system

(1 + x)u′1 + exu′2 = 0
u′1 + exu′2 = x−1g(x)

.

The Wronskian is W [1 + x, ex] = xex, so we have

u′1 = −x−2g(x), u′2 =
(
x−2 + x−1

)
e−xg(x)

for any g(x). For the case g ≡ 1, we obtain u1 = x−1 and, integrating either term by
parts once, u2 =

∫
x−2e−x dx+

∫
x−1e−x dx = −x−1e−x. We therefore obtain the result

yp = 1, which we can quickly verify by inspection. For the case g(x) = x2, we obtain
u1 = −x and u2 = (−2 − x)e−x, with the result yp = −2 − 2x − x2. We can use this
particular solution, but there is actually an easier one. We have yp = −2y1 − x2 and
L[yp] = x2, from which it follows that L[−x2] = x2. Now, by linearity, we know that

L[a + b(−x2)] = aL[1] + bL[−x2] = a + bx2;

hence, a particular solution of L[y] = a + bx2 is yp = a− bx2.

(c) Using the general formulas for u′1 and u′2 from part (b), we have u′1 = −xp−2 and
u′2 =

(
xp−2 + xp−1

)
e−x. Now we note the reduction formula

∫
xme−x dx = −xme−x + m

∫
xm−1e−x dx.
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Applying this to the second term of u′2 yields u2 = −xp−1e−x + p
∫

xp−2e−x dx. We
therefore have the particular solution

yp = u1y1 + u2y2 = − 1
p− 1

xp − p

p− 1
xp−1 + pex

∫
xp−2e−x dx.

The reduction formula shows that the remaining integral yields the term −pxp−2, fol-
lowed by additional terms that clearly all are power functions with powers from p − 3
down to 0. Hence, the particular solution is a polynomial. There is an easier way to
show that the particular solutions are all polynomials, and that is by looking for such a
solution. A bit of calculation shows that

L[cpx
p + cp−1x

p−1 + cp−2x
p−2 + · · ·+ c1x + c0] =

(1−p)cpx
p+(2−p)(cp−1−pcp)xp−1+(3−p)[cp−2−(p−1)cp−1]xp−2−· · ·−(c2−3c3)x2+(c0−c1).

Setting this result equal to xp results in a set of p equations for the p + 1 unknowns c0

to cp. However, observe that choosing c1 = c0 = 0 reduces the number of unknowns to
p−1 and reduces the number of equations to p−1 as well. The equations are decoupled,
so there is clearly a unique solution.

(d) Note that E′
1(x) = −x−1e−x by the fundamental theorem of calculus. Using the general

formulas for u′1 and u′2 from part (b), we have u′1 = −x−1 and u′2 =
(
x−1 + 1

)
e−x.

Thus, u1 = − lnx and u2 = −e−x −E1(x). We therefore have the particular solution

yp = −1− (1 + x) ln x− exE1(x).

15. (a) The characteristic values are λ = ±i, so the complementary solution is yc = c1 cos t +
c2 sin t. The systems of equations produced by variation of parameters is

u′1 cos t + u′2 sin t = 0
−u′1 sin t + u′2 cos t = g(t)

.

The solution to this system is

u1 = − ∫ t
0 g(s) sin sds

u2 =
∫ t
0 g(s) cos sds.

.

The particular solution is

y = sin t

∫ t

0
g(s) cos s ds− cos t

∫ t

0
g(s) sin s ds.

(b) Substituting g(t) = sin t into the above integrals yields
∫ t

0
sin s cos s ds =

1
2

sin2 t

and ∫ t

0
sin2 sds =

∫ t

0

1
2
− 1

2
cos 2s ds =

1
2
t +

1
4

sin 2t =
1
2
t− 1

2
sin t cos t.

Thus a particular solution in this case is

y =
1
2

sin3 t− 1
2
t cos t +

1
2

sin t cos2 t =
1
2

sin t− 1
2
t cos t.
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(c) The solution is given by the same integrals used in part (b), except that the function g
is 0 after time T . The upper limit of integration is therefore the smaller of t and T . It
follows that for t > T , the solution is

y =
1
2

sin2 T sin t +
1
2
(sinT cosT − T ) cos t.

(d) The amplitude of the steady state solution is

A =
1
2

√
sin4 T + sin2 T cos2 T − 2T sinT cosT + T 2 =

1
2

√
sin2 T − 2T sinT cosT + T 2.

See Figure 38.

(e) See Figure 38.
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Figure 38: Exercise 4.6.15

17. (a) yp = u1y1 + u2y2 + u3y3

(b) 


y1 y2 y3

y′1 y′2 y′3
y′′1 y′′2 y′′3







u′1
u′2
u′3


 =




0
0
g


 .

(c)
u′1 =

(y2y
′
3 − y′2y3g)

W [y1, y2, y3]
, u′2 =

−(y1y
′
3 − y′1y3)g

W [y1, y2, y3]
, u′3 =

(y1y
′
2 − y′1y2)g

W [y1, y2, y3]
.

19. The characteristic values of L are −1, 1, 2, so the complementary solution is yc = c1e
t +

c2e
2t + c3e

−t. The Wronskian is W [y1, y2, y3] = 6e2t. From Exercise 17, u′1 = −1
2 , u′2 = 1

3e−t,
and u′3 = 1

6e2t, so u1 = −1
2 t, u2 = −1

3e−t, and u3 = 1
12e2t. A particular solution is then

yp = u1e
t + u2e

2t + u3e
−t =

(
−1

4
− 1

2
t

)
et.

One could also get yp =
(

1
4 − 1

2 t
)
et by numbering the terms of the complementary solution

in a different order.

21. (a) The characteristic values of L are λ = 0, 0,−1, 1. Writing the homogeneous solution
using hyperbolic functions, yc = c1 + c2x + c3 sinhx + c4 coshx.

(b) If yp = − ∫ x
0 sw(s)ds + x

∫ x
0 w(s)ds +

∫ x
0 sinh(s − x)w(s)ds then y′p =

∫ x
0 w(s)ds +∫ x

0 − cosh(s−x)w(s)ds and y′′p = +
∫ x
0 sinh(s−x)w(s)ds and y′′′p =

∫ x
0 − cosh(s−x)w(s)ds

and y′′′′p = −w(x) +
∫ x
0 sinh(s− x)w(s)ds.
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(c) The condition y(0) = 0 implies that c4 = −c1. The condition y′(0) = 0 implies that
c3 = −c2. Thus, we have the 2-parameter family

y = −
∫ x

0
sw(s) ds+x

∫ x

0
w(s) ds+

∫ x

0
sinh(s−x)w(s) ds+c1(1−coshx)+c2(x−sinhx).

(d) Substituting

w(x) =
{

0, if x < 0.9
10, if 0.9 ≤ x < 1

into the expression for yp yields 0 for x < 0.9 and yp = 10
∫ x
0.9[x − s + sinh(s − x)] ds.

Thus,

yp(x) =
{

0, x < 0.9
5(x− 0.9)2 + 10− 10 cosh(x− 0.9), 0.9 ≤ x < 1

.

(e) The boundary conditions at x = 1 reduce to the equations

(cosh 1)c1 + (sinh 1)c2 = 10− 10 cosh 0.1, (sinh 1)c1 + (cosh 1)c2 = −10 sinh 0.1,

from which we obtain c1 = 10 cosh 1−10 cosh 1 cosh 0.1+10 sinh 1 sinh 0.1 = 10(cosh 1−
cosh 0.9) and c2 = −10 sinh 1+10 sinh 1 cosh 0.1−10 cosh 1 sinh 0.1 = 10(sinh 0.9−sinh 1).

(f) The solution is given approximately by

y = 1.100(1− coshx)− 1.487(x− sinhx) + yp,

where yp is given in part (d).
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Figure 39: Exercise 4.6.21
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Section 5.1

1. The population will increase if p′ > 0. This will occur when 1−p/10 > 0, or p < 10. Similarly,
the population will decrease when p > 10.

3. (a) This is not a predator-prey model because x and y increase in the presence of each other.
This would model a cooperative or symbiotic relationship.

(b) This is a predator-prey model. x decreases in the presence of y and y increases in the
presence of x. Thus x is the prey and y is the predator.

(c) This is not a predator-prey model because x and y decrease in the presence of each
other. This would model a competitive relationship.

5. (a) x decreases in the presence of y and y increases in the presence of x so they are not
competing. This is a predator-prey model.

(b) x decreases in the presence of y and y decreases in the presence of x so they are com-
peting. However, this is not a realistic model because y is not self-limiting. It doesn’t
make any sense for the growth rate of y to be arbitrarily large in the absence of x.

(c) x decreases in the presence of y and y decreases in the presence of x so they are com-
peting.

7.
X =

b

a
x, Y =

s

t
y, and τ = rt.

First replacing the dependent variables,

dX

dt
=

dX

dx

dx

dt
= r(X − Y X),

dY

dt
=

dY

dy

dy

dt
= a(Y −XY ).

Replacing the independent variable,

dX

dτ
=

dX

dt

dt

dτ
= X(1− Y ),

dY

dτ
=

dY

dt

dt

dτ
= kY (1−X),

where k = a/r.

9.
dx

dt
= rx

(
1− x

k

)
− sxy and

dy

dt
= csxy −my.

11. (a) The recovery of infectives increases the susceptible population, so we have

dS

dt
= −rSI + γI,

dI

dt
= −γI + rSI.

(b) The infection process requires both an infected person and a susceptible person. In both
cases, it makes sense that doubling the number should double the rate of the process.
Thus, the rate should be proportional to each population. Similarly, the rate of recovery
should be expected to double if the number of sick people is doubled.

13. (a)
dw

dt
= −kwx and

dx

dt
= ckwx−mx.
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(b) First replacing the dependent variables,

dW

dt
=

dW

dw

dw

dt
= −kxrX,

dX

dt
=

dX

dx

dx

dt
= kcwrWX −mX.

Replacing the independent variable by τ = t/tr yields

dW

dτ
=

dW

dt

dt

dτ
= −kxrtrX,

dX

dτ
=

dX

dt

dt

dτ
= kcwrtrWX −mtrX.

(c) All dimensionless parameters disappear if tr = 1/m, wr = m/ck, and xr = m/k.

The system of this exercise is known as the chemostat.

Section 5.2

1. See Figure 40.
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Figure 40: Exercises 5.2.1 and 5.2.3

3. (a) The equilibrium solutions are y = 0,±2.

(b) See Figure 40.

(c) See Figure 40.

(d) The solution y = 0 is stable and the solutions y = ±2 are both unstable.

5. (a) The equilibrium solution is y = 0.

(b) See Figure 41.

(c) See Figure 41.

(d) The solution y = 0 is unstable.

7. (a) The equilibrium solution is y = 0.

(b) See Figure 41.

(c) See Figure 41.

(d) The solution y = 0 is stable.
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Figure 41: Exercises 5.2.5 and 5.2.7

9. Exercise 4. The critical value is the unstable critical point y = 1.

13. The equilibrium solution is x = A. The full solution can be found by separation of variables
to be

x = A−Ae−Bt.

From A/2 = A−Ae−Bt, we have t = (ln 2)/B.

15. (a) First replacing the dependent variables,

dy

dt
=

dy

dp

dp

dt
= ry(1− y)−Ey.

Replacing the independent variable then yields

dy

dτ
=

dy

dt

dt

dτ
= y(1− y)− hy.

(b) If E > r, then h > 1 and dy
dt = −y2 − (h− 1)y is always negative so the population will

decrease.

(c) From y′ = y(1 − y − h) with h < 1, we have the equilibrium solution ye = 1 − h > 0.
The phase line must be in the form shown in Figure 42; hence, ye is stable.

(d) Since h can have any value between 0 and 1, ye can have any value between 0 and 1.
See Figure 42.

(e) We have Y (h) = hye = h(1− h). See Figure 42.

(f) The maximum occurs when h = 1/2, as this is the vertex of the parabola.

0

ye

0.2 0.4 0.6 0.8 1
h

0.2

0.4

0.6

0.8

1

ye

0.2 0.4 0.6 0.8 1
y

-0.1

-0.05

0.05

0.1

0.15

0.2

0.25

y’

Figure 42: Exercise 5.2.15, parts (c), (d), (e)
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Section 5.3

1. The trajectories are found by solving

−x =
dy

dx
(−xy).

The solution, via separation of variables, is x = y2/2 + c. A sample of the trajectories can
be found in Figure 43.
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Figure 43: Exercises 5.3.1 and 5.3.3

3. The trajectories are found by solving

ex =
dy

dx
3y2.

The solution, via separation of variables, is ex = y3 + c. A sample of the trajectories can be
found in Figure 43.

5. Let v = y′. Then we have the system v = y′, v′ = −y2. The trajectories are found by solving

−y2 =
dv

dy
v.

The solution, via separation of variables, is y3 = 3
2v2 + c. A sample of the trajectories can

be found in Figure 44.

7. The trajectories are given by

Y (1−X) =
dY

dX
X(1− Y ).

The solution, via separation of variables, is Y −X+c = ln(Y/X). A sample of the trajectories
can be found in Figure 44.
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Figure 44: Exercises 5.3.5 and 5.3.7

9. The trajectories are given by

0.2Y (X − 1) =
dY

dX
X(1− Y ).

The solution, via separation of variables, is 0.2X + Y = ln(Y X0.2) + c. A sample of the
trajectories can be found in Figure 45. The parameter k determines the relative amount of
fluctuation of predator relative to prey. Smaller values of k make the predator fluctuations
smaller.
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Figure 45: Exercises 5.3.9 and 5.3.11

11. (a) Let x be the first force and let y be the second force. The population of the first
force decreases in proportion to the population of the second force and the second force
decreases in proportion to the population of the first force present. This is consistent
with the assumption that both forces are lined up and firing from a distance.

(b) The trajectories are given by

−x =
dy

dx
(−y).

The solution of this, via separation of variables, is

x =
√

y2 + c.
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(c) Let x(0) = 2y(0). Substituting this into the solution to find c yields c = 3y2(0). Thus
x =

√
y2 + 3y2(0). Now we want to find x when y = 0. Thus x =

√
3y(0) =

√
3x(0)/2.

(d) Let x(0) = 33 and y(0) = 27. Then c = 332 − 272 and when y = 0, x =
√

332 − 272 ≈
18.97 ≈ 19 French ships.

(e) See Figure 45. The trajectory containing the point (33, 27) is dashed.

13. (a) Since x′ = −y,
x′′ = −y′ = x.

(b) Let x = er. The characteristic polynomial is r2 − 1 = 0. The characteristic values are
r = ±1. The solution can be written as x = c1e

t + c2e
−t, or it can be written in terms

of hyperbolic functions. Using the initial data

x =
x0 − y0

2
et +

x0 + y0

2
e−t = x0 cosh t− y0 sinh t.

(c) Since x0 < y0, the battle ends when x = 0, so we must solve

0 =
x0 − y0

2
et +

x0 + y0

2
e−t

to find t = 1
2 ln((y0 + x0)/(y0 − x0)). Alternatively, the hyperbolic formula yields t =

arctanhx0/y0, which is equivalent.

(d) The battles of 23 British ships against 17 French ships and 16 French ships and 4 British
ships would end at the times

tB =
1
2

ln(40/6) ≈ 0.948, tF =
1
2

ln(20/12) ≈ 0.255,

respectively. Thus the 15 French ships from the second battle would join the first battle.
This would give the French fleet numerical superiority and thus a victory in both battles.

15. We begin with the system dS
dt = −rSI, dI

dt = rSI − γI. The equation for the trajectories is
dI/dS = −1 + (γ/r)S−1; thus,

−rSI =
dS

dI
(rSI − γI).

This can be solved using separation of variables to find I = (γ lnS)/r − S + c. Note that
dI
dt (0) = rS0I0 − γI0 = I0(rs0 − γ), so rS0 − γ > 0 is necessary for I to increase.

17. (a) Let x be the height. The governing differential equation is x′′ = −g, and the solution
is x = −gt2/2 + c1t + c2. The initial conditions are x(0) = 3 and x′(0) = 0; thus, the
solution is x = −1

2gt2 + 3. We have x = 0 at t =
√

6/g, so dx
dt

√
6/g = −√6g and

vI =
√

6g ≈ 7.67 m/s.

(b) The governing differential equation is

m
d2x

dt2
= −mg − 15

dx

dt
.

When vcc = dx
dt (∞) is achieved, the acceleration is zero. Thus vcc = −mg/15 = −5g ≈

−49 m/s.
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(c) The governing differential equation is

m
d2x

dt2
= −mg − 1.4m

dx

dt
.

When voc = dx
dt (∞) is achieved, the acceleration is zero. Thus voc = −g/1.4 ≈ −7 m/s.

(d) It insures that the final speed with the parachute open is less that the maximum safe
impact speed.

(e) The governing differential equation is

d2x

dt2
= −g − 1.4

dx

dt
.

Let v = dx
dt . Then dv

dt = −g − 1.4v. Thus the equation for the trajectories is

v =
dx

dv
(−g − 1.4v) ≈ −1.4(7 + v)

dx

dv
.

The solution of this equation, via separation of variables, is

v + 1.4x− 7 ln |7 + v| = c.

See Figure 46.

(f) When x = 0, we have v = vI = −√6g, so c (the constant from the last equation) is
approximately −4.85. At the initial moment, v = vcc = −5g, and so we can solve for x
to find x ≈ 50.23 meters.
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-2
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v

Figure 46: Exercise 5.3.17

19. (a) The equation for the trajectories is

w ω =
dθ

dω
(a2 cos θ − 1) sin θ.

(b) Using separation of variables, the solution is

ω2 = a2 sin2 θ + 2 cos θ + c.

(c) See Figure 47.

(d) See Figure 47.
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Figure 47: Exercise 5.3.19, parts (c) and (d)

(e) Consider only the case where the initial angular velocity is 0. For the moment, consider
the initial angle to be 0 ≤ θ0 ≤ π/2, indicating that the bead begins below the midpoint
of the hoop. In the system of part (c), the hoop is spinning at a relatively slow rate,
and the trajectories indicate that the bead will oscillate from θ = θ0 to θ = −θ0, similar
to an undamped pendulum. When the rotational velocity is greater than 1, the system
becomes qualitatively different. There are equilibrium points at θ = ± arccos a−2 as
well as at θ = 0. With damping, the system would eventually approach one of these
equilibria. In the undamped system, the bead oscillates about one of these equilibria
instead. Larger initial angles allow the system to oscillate about all of the equilibria.

Section 5.4

1. In the (r, c) plane, the critical points are (0, 0) and (4, 3/2).

3. In the (x, y) plane, the critical points are (nπ, nπ) for any integer n.

5. The point (0, 0) is an unstable saddle point. See Figure 48.
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Figure 48: Exercises 5.4.5 and 5.4.7
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7. The point (0, 0) is an asymptotically stable equilibrium point. See Figure 48.

9. The point (0, 0) is a stable center. See Figure 49.
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Figure 49: Exercise 5.4.9

11. (a) The critical points are (0, 0) and (1, 1).

(b) See Figure 50.

(c) The points (0, 0) and (1, 1) are unstable.

(d) The saddle point is (0, 0).

(e) See Figure 50.
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Figure 50: Exercise 5.4.11

13. (a) The critical points are (0, 0) and (2, 1).

(b) See Figure 51.

(c) The point (0, 0) is stable and (1, 1) is an unstable saddle point.

(d) The saddle point is (1, 1).

(e) See Figure 51.
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Figure 51: Exercise 5.4.13

15. Letting v = r′, we get

v′ =
3
2r
− 3

2r2
− 3v2

2r

in the (r, v) plane. The only critical point is (1, 0). See Figure 52. The point (1, 0) is a saddle
point.
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Figure 52: Exercise 5.4.15

Section 5.5

1. All trajectories in regions B and D must exit these regions. Hence, the origin must be a
saddle and regions B and D must contain separatrices. See Figure 53.

3. The point (3, 2) is a critical point. No conclusion is possible based on the nullclines alone.
See Figure 54.
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Figure 53: Exercise 5.5.1
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Figure 54: Exercise 5.5.3

5. All trajectories in regions D and E must exit these regions. Hence, the origin must be a
saddle and regions D and E must contain separatrices. The flow in region E is sufficient to
establish that (1,1) is unstable, and examination of the other regions shows that it is not a
saddle. See Figure 55.
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Figure 55: Exercise 5.5.5

7. All trajectories in regions B and G must exit these regions. Hence, the point (2,1) must be
a saddle and regions B and G must contain separatrices. No claims regarding the stability
of the origin can be made from the nullclines. See Figure 56.
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Figure 56: Exercise 5.5.7
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9. The system for the bubble growth equation is

r′ = v, v′ =
3
2r
− 3

2r2
− 3v2

2r
.

The nullcline diagram is shown in Figure 57. Consider first the case where the bubble size
is momentarily fixed, that is, v = 0. If r0 > 1, then the trajectory enters region B and the
bubble grows at an accelerating rate. If r0 < 1, then the trajectory enters the region D and
the bubble rapidly disappears. Initial conditions in regions A or C eventually lead to one of
the two regions B or D.

r

v

A

B

C

D

Figure 57: Exercise 5.5.9

11. (a) The nullcline diagram, shown as the first plot in Figure 58, predicts that solutions
will move out of regions A and C and into regions B and D. Once in B and D, the
trajectories move toward the point (a, 0) or (0, b). Yes, this does qualitatively describe
a relationship between the two species that can be characterized as competing; indeed,
the two species do not coexist for long. Depending on the initial data, one of the species
will eliminate the other.

(b) If a < 1 and b < 1, the nullcline diagram changes to the one shown in the second plot of
Figure 58. Here all trajectories converge to the equilibrium point x = (a− ab)/(1− ab),
y = (b − ab)/(1 − ab). This describes a competing relationship in which the species
share the ecological niche. In fact, there are biological arguments that indicate that this
case should not occur in nature; this is called the law of competitive exclusion. The
mathematical model is therefore flawed, but it is a flaw that is corrected simply by
adding the requirements a > 1 and b > 1 to the model.
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Figure 58: Exercise 5.5.11, parts (a) and (b)
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Section 6.1

1. The solution of the first equation is x = c1e
3t. Substituting this into the second equation

yields y′ = c1e
3t − 2y. The solution of this equation is y = 1

5c1e
3t + c2e

−2t.

3. (a) Differentiating the first equation yields x′′ = −3x′ − y′. Expressing y′ in terms of x
and x′ gives us y′ = x′ + 4x. Thus x′′ = −4x′ − 4x. The characteristic polynomial is
r2 + 4r + 4. The characteristic value is r = −2; therefore,

x = (c1 + c2t)e−2t.

Substituting this into y = −x′ − 3x yields

y = −(c1 + c2 + c2t)e−2t.

(b) See Figure 59.
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Figure 59: Exercises 6.1.3 and 6.1.5

5. (a) Differentiating the first equation yields x′′ = −2x′ + y′. Expressing y′ in terms of x
and x′ gives us y′ = −1 − x′. Thus x′′ = −3x′ − 1. The homogeneous problem is
x′′ + 3x′ = 0. The characteristic polynomial is r2 + 3r. The characteristic values are
r = 0,−3. The solution of the homogeneous problem is x = c1 + c2e

−3t. A solution to
the nonhomogeneous problem is x = −1

3 t; therefore,

x = c1 + c2e
−3t − 1

3
t.

Substituting this into y = −x′ + 2x + 1 yields

y = 2c1 − c2e
−3t +

2
3
− 2

3
t.

(b) See Figure 59.

7. (a) Differentiating the first equation yields x′′ = −2x′ − 3y′. Expressing y′ in terms of x
and x′ gives us 3y′ = 2x′ + 13x. Thus x′′ = −4x′ − 13x. The characteristic polynomial
is r2 + 4r + 13. The characteristic values are r = −2± 3i; therefore, x = e−2t(c1 cos 3t +
c2 sin 3t). The initial conditions show c1 = 4. Substituting this into y = −2x/3 − x′/3
and using the initial conditions yields

x = e−2t(4 cos 3t− 2 sin 3t), y = e−2t(2 cos 3t + 4 sin 3t).
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(b) See Figure 60.
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Figure 60: Exercise 6.1.7

9. Differentiating the second equation yields y′′ = −x′+3y′ = 3y′−2y−cos 3t. The homogeneous
problem is y′′− 3y′+2y = 0. The characteristic polynomial is r2− 3r +2. The characteristic
values are r = 1, 2. The solution of the homogeneous problem is y = c1e

t + c2e
2t. A

solution to the nonhomogeneous problem via the method of undetermined coefficients is
yp = 7

130 cos 3t + 9
130 sin 3t; therefore,

y = c1e
t + c2e

2t +
7

130
cos 3t +

9
130

sin 3t.

Substituting this into x = 3y − y′ yields

x = 2c1e
t + c2e

2t − 3
65

cos 3t +
24
65

sin 3t.

11. Differentiating the second equation yields y′′ = −x′ + y′ = 4y − e−2t. The homogeneous
problem is y′′ − 4y = 0. The characteristic polynomial is r2 +−4. The characteristic values
are r = ±2. The solution of the homogeneous problem is y = c1e

2t + c2e
−2t. A solution

to the nonhomogeneous problem via the method of undetermined coefficients is y = 1
4e−2t;

therefore,

y = c1e
2t +

(
c2 +

1
4
t

)
e−2t.

Substituting this into x = y′ − y yields

x = c1e
2t +

(
−3c2 +

1
4
− 3

4
t

)
e−2t.

13. Subtracting the second equation from the first yields the equation x′′ − x′ + y = 1. Differen-
tiating this yields x′′′ − x′′ + y′ = 0, or x′′′ − x′′ − x′ + x = 0. The characteristic polynomial
is r3 − r2 − r + 1 = (r − 1)2(r + 1), so

x = (c1 + c2t)et + c3e
−t.

Substituting this into y = 1 + x′ − x′′ yields

y = 1− c2e
t − 2c3e

−t.
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15. We begin with the system

dx

dt
= R− 5r1x + r1y

dy

dt
= 4r1x− r1y.

Nondimensionalization using Equations (2) in the text yields the system

X ′ = 1− 5X + Y Y ′ = 4X − Y 0 < τ < T

X ′ = −5X + Y Y ′ = 4X − Y T < τ

Graphical Analysis: The point (1, 4) is a stable equilibrium point if τ < T . The point (0, 0)
is a stable equilibrium point for T < τ . See Figure 61. The first diagram is for τ < T and the
second is for τ > T . The whole discussion for Model Problem 6.1 is qualitatively the same
here. One only needs to replace the point (1

3 , 2
3) by (1, 4).
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Figure 61: Exercise 6.1.15 (nullcline diagrams)

Symbolic Analysis: First we solve the system for τ < T . Differentiating the second equation
yields Y ′′ = 4X ′−Y ′. Expressing X ′ in terms of Y and Y ′ gives us 4X ′ = −5Y ′−Y +4. Thus
Y ′′ = −6Y ′−Y + 4 with Y (0) = Y ′(0) = 0. The homogeneous problem is Y ′′+ 6Y ′+ Y = 0.
The characteristic polynomial is r2 + 6r + 1. The characteristic values are r = −3 ± 2

√
2.

For convenience, let λ1 = −3 + 2
√

2 and λ2 = −3 − 2
√

2. The solution of the homogeneous
problem is then Y = c1e

λ1τ + c2e
λ2τ . A solution of the nonhomogeneous problem is Y = 4.

Using the initial conditions, we obtain the result

Y = 4 +
λ2√

2
eλ1τ − λ1√

2
eλ2τ .

Substituting this into X = 1
4(Y ′ + Y ) yields

X = 1 +
1 + λ2

4
√

2
eλ1τ − 1 + λ1

4
√

2
eλ2τ .

The sum is

X + Y = 5 +
1 + 5λ2

4
√

2
eλ1τ − 1 + 5λ1

4
√

2
eλ2τ .

Repeating the above steps for τ > T , we obtain Y ′′+6Y ′+Y = 0, which is the homogeneous
equation above. The solution, using the requirement that the solutions must be continuous
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at τ = T , is

Y =
λ2√

2

(
1− e−λ1T

)
eλ1τ − λ1√

2

(
1− e−λ2T

)
eλ2τ ,

X =
1 + λ2

4
√

2

(
1− e−λ1T

)
eλ1τ − 1 + λ1

4
√

2

(
1− e−λ2T

)
eλ2τ ,

X + Y =
1 + 5λ2

4
√

2

(
1− e−λ1T

)
eλ1τ − 1 + 5λ1

4
√

2

(
1− e−λ2T

)
eλ2τ .

See Figure 62 for graphs of X, Y and X + Y with T = 2.
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Figure 62: Exercise 6.1.15

17. (a)
dx

dt
= R− k3x + k4z − r1x + k2y − k1x

dy

dt
= k1x− k2y − r2y

dz

dt
= k3x− k4z

(b) With the given data, the equilibrium solution is the solution of the linear system


−0.0361 0.0124 0.000035
0.0111 −0.0286 0
.0039 0 −0.000035







x
y
z


 =



−49.3

0
0


 ;

thus, x ≈ 1800, y ≈ 699 , and z ≈ 200582.

(c) See Figure 63. The curve that levels off at the highest value is x, the curve that levels
off at the lowest value is y, and the curve that continues to increase is z.

(d) After just one year, the lead in the blood and tissues is close to its equilibrium value.
The lead in the bones is still increasing rapidly after 100 years. (Historical evidence
strongly suggests that the cause of death for former President Andrew Jackson, who
lived a long life, was lead poisoning. The lead came from a bullet that hit Jackson when
he fought a duel as a young man.)

(e) The constant k4, which governs the only mechanism by which lead can leave the bones,
is much smaller than the other parameters. Thus lead is allowed to enter the bones
relatively freely but cannot exit easily. The result is a continuing rise in the amount of
lead in the bones over time.
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(f) See Figure 64. The graphs here are qualitatively the same for 0 < t < 400. However the
plot of z for large t is dramatically different. The symbolic solver (on both Mathematica
and Maple) overestimates the the solution and has it departing from the equilibrium
point. The numerical approximation from part (c) looks more reasonable because it
matches the qualitative behavior found in part (b).
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Figure 63: Exercise 6.1.17c
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Figure 64: Exercise 6.1.17f

Section 6.2

1. The null-space is x = 0.

3.



−1 1 0
−2 2 0

3 0 1


 ∼=




1 −1 0
3 0 1
0 0 0


.

If x1 = 1, then x2 = 1 and x3 = −3; hence, the null-space is x = c




1
1

−3


.

5. det(A− λI) = λ2 − 4λ + 3 = (λ− 3)(λ− 1). Thus, the eigenvalues are λ = 1, 3.

A− I =
(

0 0
2 2

)
∼=

(
1 1
0 0

)
, A− 3I =

( −2 0
2 0

)
∼=

(
1 0
0 0

)
,

so the corresponding eigenspaces are c

(
1

−1

)
and c

(
0
1

)
.
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7. det(A− λI) = λ2 + 5λ + 6 = (λ + 3)(λ + 2). Thus, the eigenvalues are λ = −2,−3.

A + 2I =
(

1 −2
1 −2

)
∼=

(
1 −2
0 0

)
, A + 3I =

(
2 −2
1 −1

)
∼=

(
1 −1
0 0

)
,

so the corresponding eigenspaces are c

(
2
1

)
and c

(
1
1

)
.

9. det(A− λI) = −λ3 + λ2 + λ− 1 = −(λ− 1)2(λ + 1). Thus, the eigenvalues are λ = 1,−1.

A− I =




−7 −1 2
3 1 0

−14 −2 4


 ∼=




3 1 0
−7 −1 2

0 0 0


 ∼=




3 1 0
−4 0 2

0 0 0


 ∼=




3 1 0
−2 0 1

0 0 0


 ,

so x1 = 1 implies x2 = −3 and x3 = 2.

A + I =




−5 −1 2
3 3 0

−14 −2 6







1 1 0
0 4 2
0 12 6


 ∼=




1 1 0
0 2 1
0 0 0


 ,

so x2 = −1 implies x1 = 1 and x3 = 2.

The corresponding eigenspaces are c




1
−3

2


 and c




1
−1

2


. This matrix is deficient.

11. det(A− λI) = −λ3 + 6λ2 − 5λ− 12 = −(λ− 3)(λ− 4)(λ + 1).
Thus, the eigenvalues are λ = 3, 4,−1.

A− 3I =




0 2 0
2 −3 0
1 1 0


 ∼=




1 1 0
0 2 0
0 −5 0


 ∼=




1 0 0
0 1 0
0 0 0


 ,

so x3 = 1 implies x1 = 0 and x2 = 0.

A− 4I =



−1 2 0

2 −4 0
1 1 −1


 ∼=




1 −2 0
0 3 −1
0 0 0


 ,

so x2 = 1 implies x3 = 3 and x1 = 2.

A + I =




4 2 0
2 1 0
1 1 4


 ∼=




2 1 0
−1 0 4

0 0 0


 ,

so x3 = 1 implies x1 = 4 and x2 = −8.

The corresponding eigenspaces are c




0
0
1


, c




2
1
3


 , and c




4
−8

1


.

13. det(A− λI) = −λ3 + 6λ2 − 11λ + 6 = −(λ− 1)(λ− 2)(λ− 3).
Thus, the eigenvalues are λ = 1, 2, 3.

A− I =




2 2 2
1 3 1

−2 −4 −2


 ∼=




1 1 1
0 2 0
0 −2 0


 ∼=




1 0 1
0 1 0
0 0 0


 ,
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so x1 = 1 implies x3 = −1 and x2 = 0.

A− 2I =




1 2 2
1 2 1

−2 −4 −3


 ∼=




1 2 1
0 0 1
0 0 −1


 ∼=




1 2 0
0 0 1
0 0 0


 ,

so x2 = −1 implies x1 = 2 and x3 = 0.

A− 3I =




0 2 2
1 1 1

−2 −4 −4


 ∼=




1 1 1
0 1 1
0 −2 −2


 ∼=




1 0 0
0 1 1
0 0 0


 ,

so x3 = 1 implies x2 = −1 and x1 = 0.

The corresponding eigenspaces are c




1
0

−1


, c




2
−1

0


 , and c




0
−1

1


.

15. det(A− λI) = −λ3 + 5λ2 − 8λ + 4 = −(λ− 1)(λ− 2)2. Thus, the eigenvalues are λ = 1, 2.

A− I =




4 −6 −6
−1 3 2

3 −6 −5


 ∼=




1 −3 −2
0 6 2
0 3 1


 ∼=




1 0 −1
0 3 1
0 0 0


 ,

so x2 = −1 implies x3 = 3 and x1 = 3.

A− 2I =




3 −6 −6
−1 2 2

3 −6 −6


 ∼=




1 −2 −2
0 0 0
0 0 0


 ,

so eigenvectors must satisfy x1 = 2x2 + 2x3.

The corresponding eigenspaces are c




3
−1

3


 and c1




2
1
0


 + c2




2
0
1


. This matrix is not

deficient.

17. det(A− λI) = −λ3 + 2λ2 − λ = −λ(λ− 1)2. Thus, the eigenvalues are λ = 0, 1.

A =



−1 1 0
−2 2 0

3 0 1


 ∼=




1 −1 0
3 0 1
0 0 0


 ,

so x1 = 1 implies x2 = 1 and x3 = −3.

A− I =



−2 1 0
−2 1 0

3 0 0


 ∼=




1 0 0
0 1 0
0 0 0


 ,

so x3 = 1 implies x1 = 0 and x2 = 0.

The corresponding eigenspaces are c




1
1

−3


 and c




0
0
1


.

This matrix is deficient.
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Section 6.3

Many of the exercises in this section use eigenvalues and eigenspaces from the corresponding prob-
lems in Section 6.2.

1. The linear trajectories are the eigenspaces c

(
1

−1

)
and c

(
0
1

)
. See Figure 65.
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Figure 65: Exercises 6.3.1 and 6.3.3

3. The linear trajectories are the eigenspaces c

(
2
1

)
and c

(
1
1

)
. See Figure 65.

5.
det(A− λI) = (2− λ)(−1− λ)

and

A− 2I =
(

0 1
0 −3

)
∼=

(
0 1
0 0

)
, A + I =

(
3 1
0 0

)
.

The eigenvalues are λ = 2,−1, and the corresponding linear trajectories are vectors

c

(
1
0

)
c

(
1

−3

)
.

See Figure 66.

7.
det(A− λI) = λ2 + 4λ + 13.

The eigenvalues are
λ = −2± 3i.

Thus there are no linear trajectories. See Figure 66.
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Figure 66: Exercises 6.3.5 and 6.3.7

9.
det(A− λI) = (λ + 4)(λ− 3)

and

A− 3I =
( −5 5

2 −2

)
∼=

(
1 −1
0 0

)
, A + 4I =

(
2 5
2 5

)
∼=

(
2 5
0 0

)
.

The eigenvalues are λ = 3,−4, and the corresponding linear trajectories are vectors

c

(
1
1

)
, c

(
5

−2

)
.

See Figure 67.
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Figure 67: Exercises 6.3.9 and 6.3.11

11.
det(A− λI) = (λ + 7)(λ + 1)

and

A + I =
( −2 2

4 −4

)
∼=

(
1 −1
0 0

)
, A + 7I =

(
4 2
4 2

)
∼=

(
2 1
0 0

)
.
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The eigenvalues are λ = −1,−7, and the corresponding linear trajectories are vectors

c

(
1
1

)
, c

(
1

−2

)
.

See Figure 67.

13. The linear trajectories are the eigenspaces c




1
−3

2


 and c




1
−1

2


.

15. The linear trajectories are the eigenspace c




3
−1

3


 and all lines in the plane x1 = 2x2 +2x3.

Section 6.4

Many of the exercises in this section use the eigenvalues and eigenspaces from the corresponding
problems in Sections 6.2 and 6.3.

1. The eigenvalues are λ = 1, 3 and the corresponding eigenspaces are c

(
1

−1

)
and c

(
0
1

)
.

The general solution is x = c1

(
1

−1

)
et + c2

(
0
1

)
e3t. The initial conditions then yield

x = 3
(

1
−1

)
et +

(
0
1

)
e3t.

3. The eigenvalues are λ = 1, 3 and the corresponding eigenspaces are c

(
1

−1

)
and c

(
0
1

)
.

The general solution is

x = c1

(
1

−1

)
et + c2

(
0
1

)
e3t.

The origin is a source. See Figure 68.
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Figure 68: Exercise 6.4.3
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5. The eigenvalues are λ = −2,−3 and the corresponding eigenspaces are c

(
2
1

)
and c

(
1
1

)
.

The general solution is

x = c1

(
2
1

)
e−2t + c2

(
1
1

)
e−3t.

The origin is a sink. See Figure 69.
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Figure 69: Exercises 6.4.5 and 6.4.7

7. The eigenvalues are λ = 2,−1 and the corresponding eigenspaces are c

(
1
0

)
and c

(
1

−3

)
.

The general solution is

x = c1

(
1
0

)
e2t + c2

(
1

−3

)
e−t.

The origin is a saddle. See Figure 69.

9.

det
(

2− λ 1
4 −1− λ

)
= (λ− 3)(λ + 2).

Thus the eigenvalues are λ = 3,−2. The origin is a saddle. See Figure 70.
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Figure 70: Exercise 6.4.9
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11. The matrix is deficient, so the linear trajectories alone are not enough to construct the general
solution.

13. The eigenvalues are λ = 1, 2 and the corresponding eigenspaces are

c




3
−1

3


 , c1




2
1
0


 + c2




2
0
1


 .

The general solution is

x = c




3
−1

3


 et +


c1




2
1
0


 + c2




2
0
1





 e2t.

15. The eigenvalues are λ = 3, 4,−1 and the corresponding eigenspaces are

c




0
0
1


 , c




2
1
3


 , c




4
−8

1


 .

The general solution is

x = c1




0
0
1


 e3t + c2




2
1
3


 e4t + c3




4
−8

1


 e−t.

Section 6.5

1. (a) P (λ) = λ2 + 4; thus, the eigenvalues are λ = ±2i and the origin is a stable center.

(b) A− 2iI =
( −2i 1
−4 −2i

)
∼=

( −2i 1
0 0

)
, so an eigenvector associated with λ = 2i is

v =
(

1
2i

)
. From the complex solution (cos 2t + i sin 2t)v =

(
cos 2t + i sin 2t

−2 sin 2t + 2i cos 2t

)
,

we obtain (by Algorithm 6.5.1), the general solution x = c1

(
cos 2t
−2 sin 2t

)
+c2

(
sin 2t

2 cos 2t

)
.

The solution of the initial value problem is

x =
(

cos 2t− sin 2t
−2 cos 2t− 2 sin 2t

)
.

3. (a) P (λ) = λ2 − 6λ + 10; thus, the eigenvalues are λ = 3 ± i and the origin is an unstable
spiral.

(b) A− (3 + i)I =
( −i 1
−1 −i

)
∼=

( −i 1
0 0

)
, so an eigenvector associated with λ = 3± i

is v =
(

1
i

)
. From the complex solution

e3t(cos t + i sin t)v = e3t

(
cos t + i sin t
− sin t + i cos t

)
,

77



Chapter 6: Analytical Methods for Systems

we obtain (by Algorithm 6.5.1), the general solution

x = e3t

[
c1

(
cos t
− sin t

)
+ c2

(
sin t
cos t

)]
.

The solution of the initial value problem is

x = e3t

(
2 cos t + sin t
cos t− 2 sin t

)
.

5. (a) P (λ) = λ2 + 4λ + 13; thus, the eigenvalues are λ = −2 ± 3i and the origin is an
asymptotically stable spiral.

(b) 1 A + (2− 3i)I =
( −3− 3i −9

2 3− 3i

)
∼=

(
1 + i 3

0 0

)
, so an eigenvector associated

with λ = −2 + 3i is v =
( −3

1 + i

)
. From the complex solution

e−2t(cos t + i sin t)v = e−2t

( −3 cos 3t− 3i sin 3t
(cos 3t− sin 3t) + i(cos 3t + sin 3t)

)
,

we obtain (by Algorithm 6.5.1), the general solution

x = e−2t

[
c1

( −3 cos 3t
cos 3t− sin 3t

)
+ c2

( −3 sin 3t
cos 3t + sin 3t

)]
.

The solution of the initial value problem is

x = e−2t

( −3 sin 3t
cos 3t + sin 3t

)
.

7. (a) P (λ) = −(λ + 1)(λ2 − 8λ + 20); thus, the eigenvalues are λ = −1, 4± 2i and the origin
is unstable.

(b)

A + I =




3 2 0
−4 7 0

0 0 0


 ∼=




1 0 0
0 1 0
0 0 0


 ,

A + (−4− 2i)I =



−2− 2i 2 0
−4 2− 2i 0
0 0 −5− 2i


 ∼=




1 + i −1 0
0 0 1
0 0 0


 ;

thus, v =




0
0
1


 and v =




1
1 + i

0


 are eigenvectors associated with λ = −1 and

λ = −4 + 2i, respectively. The general solution is

x = c1e
−t




0
0
1


 + c2e

4t




cos 2t
cos 2t− sin 2t

0


 + c3e

4t




sin 2t
cos 2t + sin 2t

0


 .

1Exercise 6.5.5b appears in reprints of the text as “Solve the initial value problem

x′ =

( −5 −9
2 1

)
x, x(0) =

(
0
1

)
.” The solution given here is for the updated version of the exercise.
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The initial conditions yield the result

x =




e4t(cos 2t− sin 2t)
−2e4t sin 2t

e−t


 .

11. (a) The governing equations are

x′′ = −k1x + k2(y − x) y′′ = −k2(y − x)− k3y

(b) A differential equation for x is

x′ =




0 0 1 0
0 0 0 1

−k1 − k2 k2 0 0
k2 −k2 − k3 0 0


x, x =




x
y
x′

y′


 .

(c) We have
det(A− λI) = λ4 + λ2(k1 + 2k2 + k3) + k1k2 + k1k3 + k2k3;

thus

λ2 =
−k1 − 2k2 − k3

2
±

√
(k1 − k3)2 + 4k2

2

2
.

As long as all of the ki are non-negative, λ2 < 0; therefore, λ must be purely imaginary,
which means that the origin is a stable center.

(d) If k1 = k3 = 1 and k2 = 4, then λ2 = −1,−9. Thus λ = ±i,±3i. The eigenvectors
associated to λ = i and λ = 3i respectively are




1
1
i
i


 and




1
−1
3i
−3i




Thus the general solution is

x = c1




cos t
cos t
− sin t
− sin t


 + c2




sin t
sin t
cos t
cos t


 + c3




cos 3t
− cos 3t
−3 sin 3t
3 sin 3t


 + c1




sin 3t
− sin 3t
3 cos 3t
−3 cos 3t


 .

Thus,

x = c1 cos t + c2 sin t− c3 cos 3t− c4 sin 3t, y = c1 cos t + c2 sin t + c3 cos 3t + c4 sin 3t.

(e) Let b be the equilibrium distance between the two masses. Then the time-dependent
distance is b + y − x = b + 2c3 cos 3t + 2c4 sin 3t. This function oscillates with period
2π/3. Similarly, let a be the distance from the left end of the system to the midpoint
between the two equilibrium positions. Then the time-dependent midpoint location is
a + (y + x)/2 = c1 cos t + c2 sin t. This function oscillates with period 2π.
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Figure 71: Exercise 6.5.11

(f) We are given the initial conditions x(0) = −1 and y(0) = 0. Both masses are at rest up
to the time when they are released, so x′(0) = 0 and y′(0) = 0. Substituting the general
solution into these conditions yields the values of the four constants. The solution is

x = − 9
10

cos t− 1
10

cos 3t y = − 9
10

cos t +
1
10

cos 3t.

See Figure 71.

Section 6.6

1. P (λ) = (λ − 1)2; thus, the only eigenvalue is λ = 1. An eigenvector associated with this

eigenvalue is
(

1
−1

)
. A generalized eigenvector w satisfies

(
2 2

−2 −2

)(
w1

w2

)
=

(
1

−1

)
.

One such w is w =
(

1
2
0

)
. Thus, the general solution is

x = c1e
t

(
1

−1

)
+ c2e

t

(
t + 1

2
−t

)
.

The initial conditions yield the solution

x = et

(
2t + 1
−2t

)
.

3. P (λ) = (λ − 1)2; thus, the only eigenvalue is λ = 1. An eigenvector associated with this

eigenvalue is
(

1
−1

)
. A generalized eigenvector w satisfies

(
3 3

−3 −3

)(
w1

w2

)
=

(
1

−1

)
.

One such w is w =
(

1
3
0

)
. Thus, the general solution is

x = c1e
t

(
1

−1

)
+ c2e

t

(
t + 1/3
−t

)
.
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The initial conditions yield the solution

x = et

(
2 + 21t
5− 21t

)
.

5. P (λ) = (λ − 3)2; thus, the only eigenvalue is λ = 3. An eigenvector associated with this

eigenvalue is
(

1
1

)
. A generalized eigenvector w satisfies

( −1 1
−1 1

)(
w1

w2

)
=

(
1
1

)
.

One such w is w =
(

0
1

)
. Thus, the general solution is

x = c1e
3t

(
1
1

)
+ c2e

3t

(
t

t + 1

)
.

The initial conditions yield the solution

x = e3t

(
2 + t
3 + t

)
.

7. P (λ) = (2−λ)(λ−1)2; thus, the eigenvalues are λ = 2, 1. Eigenvectors associated with these

eigenvalues are




1
0
0


 and




1
−1

1


 respectively. A generalized eigenvector w satisfies




1 0 −1
0 1 1
0 −1 −1







w1

w2

w3


 =




1
−1

1


 .

One such w is w =




0
0

−1


. Thus, the general solution is

x = c1e
2t




1
0
0


 + c2e

t




1
−1

1


 + c3e

t




t
−t

t− 1


 .

The initial conditions yield the solution

x = e2t




1
0
0


 + et



−1− 2t
1 + 2t
1− 2t


 .

9. P (λ) = −(λ + 4)(λ + 3)2; thus, the eigenvalues are λ = −4,−3. Eigenvectors associated with

these eigenvalues are




0
1
0


 and




1
1

−1


 respectively. A generalized eigenvector w satisfies




2 0 1
2 0 1

−1 0 −1







w1

w2

w3


 =




1
1

−1


 .
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One such w is w =




1
1
0


. Thus, the general solution is

x = c1e
−4t




0
1
0


 + c2e

−3t




1
1

−1


 + c3e

−3t




t + 1
t + 1
−t


 .

The initial conditions yield the solution

x = e−3t




1 + 2t
1 + 2t
1− 2t


− e−4t




0
1
0


 .

11. (a)

det



−λ 1 2
1 −λ 2
−1 −1 −3− λ


 = −(λ + 1)3.

(b)

A + I =




1 1 2
1 1 2

−1 −1 −2


 ∼=




1 1 2
0 0 0
0 0 0


 ,

so eigenvectors must satisfy v1 + v2 + 2v3 = 0. The eigenvectors

u =




1
−1

0


 , v =




2
0

−1




form a linearly independent set.

(c) 2 To find a generalized eigenvector, one must find a vector w and scalars c1 and c2 for
which

x(3) = te−t(c1u + c2v) + e−tw

solves the differential equation. Applying A to both sides yields

Ax(3) = te−t(c1Au + c2Av) + e−tAw.

Differentiating both sides yields

x(3)′ = e−t(c1u + c2v)− te−t(c1u + c2v)− e−tw.

Equating these yields the matrix equation

(A + I)w = c1u + c2v.

The augmented matrix for this equation is



1 1 2
1 1 2

−1 −1 −2

∣∣∣∣∣∣

c1 + 2c2

−c1

−c2


 ∼=




1 1 2
0 0 0
0 0 0

∣∣∣∣∣∣

−c1

2(c1 + c2)
−(c1 + c2)


 .

2Exercise 6.6.11c appears in reprints of the text as “Assume that a third solution has the form x(3) = te−t(c1u +
c2v) + e−tw and find suitable scalars c1 and c2 and a suitable vector w.” The solution given here is for the updated
version of the exercise.
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The matrix equation has solutions only if c1 + c2 = 0. We can choose c1 = −1, c2 = 1;

then the equation has a solution w provided w1 + w2 + 2w3 = 1. With w =




1
0
0


, we

have the general solution

x = c1e
−t




1
−1

0


 + c2e

−t




2
0

−1


 + c3e

−t




1 + t
t
−t


 .

(d) Using the solutions found above we have

det(Ψ(0)) =

∣∣∣∣∣∣

1 2 1
−1 0 0
0 −1 0

∣∣∣∣∣∣
= 1 6= 0;

thus, Ψ(0) is nonsingular and we have found a general solution.

(e) Substituting the general solution of part (c) into the initial conditions yields the equa-
tions c1 + 2c2 + c3 = 1, −c1 = 0, and −c2 = 0. Hence, the solution is

x = e−t




1 + t
t
−t


 .

Section 6.7

1. (a) The critical points are (0, 0) and (4
3 , 3

2).

(b)
J =

( −3 + 2y 2x
3y −4 + 3x

)
.

(c)
J(0, 0) =

( −3 0
0 −4

)
, J

(
4
3
,
3
2

)
=

(
0 8

3
9
2 0

)
.

The first of these has eigenvalues−3 and−4 and the second has characteristic polynomial
λ2 − 12; thus, the origin for the first linearized system is a sink and the origin for the
second linearized system is a saddle.

(d) By Theorem 6.7.1 the origin in the original system is asymptotically stable and the point
(4
3 , 3

2) is unstable.

(e) See Figure 72.

(f) See Figure 72.

(g) The saddle at (4
3 , 3

2) is the key feature in the phase portrait. There are separatrices in
the first quadrant that divide the plane into a region for which all trajectories approach
the origin and a region for which trajectories move in the direction of increasing x and
y.
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Figure 72: Exercise 6.7.1

3. (a) The critical points are (0, 0), (0, 3), and (2, 0).
(b)

J =
(

2− 2x− y −x
−y 3− x− 2y

)
.

(c)
J(0, 0) =

(
2 0
0 3

)
, J(0, 3) =

( −1 0
−3 −3

)
, J(2, 0) =

( −2 −2
0 1

)
.

The eigenvalues are 2, 3 for the first, −1,−3 for the second, and −2, 1 for the third. The
origin in the three linearized systems is a source, a sink, and a saddle, respectively.

(d) By Theorem 6.7.1 the origin and the point (2, 0) in the original system are unstable and
the point (0, 3) in the original system is asymptotically stable.

(e) See Figure 73.
(f) See Figure 73.
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Figure 73: Exercise 6.7.3

(g) As a competing species model, we are primarily interested in the behavior of trajectories
in the first quadrant. In this region, all trajectories approach the asymptotically stable
critical point (0, 3). Elsewhere, the positive x axis and the y axis are separatrices.
Solutions in each quadrant remain in that quadrant.
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5. (a) The critical points are (0, 0), (1, 0), and (−1, 0).

(b)

J =
(

0 1
1− 3x2 −1

)
.

(c)

J(0, 0) =
(

0 1
1 −1

)
, J(1, 0) = J(−1, 0) =

(
0 1

−2 −1

)
.

The first of these has eigenvalues (−1 ± √
5)/2 and the other two have eigenvalues

(−1±√7 i)/2; thus, the origin for the first linearized system is a saddle and the origin
for the other linearized system is an asymptotically stable spiral.

(d) By Theorem 6.7.1, the origin in the original system is unstable and the points (±1, 0)
are asymptotically stable.

(e) See Figure 74.

(f) See Figure 74.

(g) Trajectories in the second quadrant near the origin move down and to the right. Some
move into the first quadrant, while others move into the third quadrant; hence, the null-
cline diagram also shows that the origin is a saddle point and there is a separatrix in the
second quadrant. Similarly, there is a separatrix in the fourth quadrant. Combination
of all information shows that the points (±1, 0) are spiral sinks. It appears that all
trajectories eventually spiral into whichever sink is on the same side of the separatrix
as the trajectory.
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Figure 74: Exercise 6.7.5
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7. 3 By Theorem 6.7.2, we need only compute the quantities

c1 = −tr (J) = 6, c2 =
∣∣∣∣
−2 0

2 −3

∣∣∣∣ +
∣∣∣∣
−1 1

1 −3

∣∣∣∣ +
∣∣∣∣
−1 0

1 −2

∣∣∣∣ = 10,

c3 = −
∣∣∣∣∣∣

−1 0 1
1 −2 0
1 2 −3

∣∣∣∣∣∣
= −

∣∣∣∣∣∣

−1 0 1
1 −2 0
2 0 −3

∣∣∣∣∣∣
= 2

∣∣∣∣
−1 1

2 −3

∣∣∣∣ = 2.

The quantities are all positive and c1c2 > c3; hence, the origin in the original nonlinear system
is asymptotically stable.

11. (a) The critical points are

O = (0, 0, 0), X = (1, 0, 0), Y = (0, 1, 0), XY = (1, 1, 0)

XZ =
(

1
2
, 0,

1
2

)
, Y Z =

(
0,

1
2
,
r

2

)
, XY Z =

(
2− r

2 + 2r
,
2r − 1
2 + 2r

,
3r

2 + 2r

)

The point XY Z exists only for 1
2 < r < 2.

(b) The Jacobian is

J =




1− 2x− z 0 −x
0 r − 2ry − z −y
2z 2z 2x + 2y − 1


 .

(c) J(O) =




1 0 0
0 r 0
0 0 −1


, J(X) =



−1 0 −1

0 r 0
0 0 1


, J(Y ) =




1 0 0
0 −r −1
0 0 1


, and

J(XY ) =



−1 0 −1

0 −r −1
0 0 3


. Each of these systems is unstable by Theorem 6.7.2:

c1 = −r < 0 for O and X, c1c2 − c3 = −2r2 < 0 for Y , and c3 = −3r < 0 for XY .

(d) J(XZ) =



−1

2 0 −1
2

0 r − 1
2 0

1 1 0


 and J(Y Z) =




1− r
2 0 0

0 − r
2 −1

2
r r 0


.

For the point XZ, we have c1 = 1 − r, c2 = 3
4 − 1

2r, and c3 = 1
2(1

2 − r). All of these
are positive, and also c1c2 > c3, when r < 1

2 . For the point Y Z, we have c1 = r − 1,
c2 = 2

4r2, and c3 = 1
2r(1

2r− 1). All of these are positive, and also c1c2 > c3, when r > 2.
The equilibrium solution Y Z represents the case where prey X disappears and prey Y
is in equilibrium with the predator. Since the relative growth rate of x is 1 and the
relative growth rate of y is r, the condition r > 2 represents a significant advantage for
prey Y . According to the model, the advantage for Y has to be this large for the prey
X to be eliminated. Note that it is actually the predator that eliminates prey X. The
large growth rate for Y means that the predator has more food, and therefore larger
numbers, and this is what eliminates prey X. All of these arguments can be rewritten
to apply to the case r < 1

2 . Note that neither prey appears to be eliminated in the
moderate case 1

2 < r < 2.
3Exercise 6.7.7 appears in reprints of the text as “Determine the stability of the equilibrium point at the origin

for the corresponding nonlinear system x′ = f(x), where J(0, 0) =




−1 0 1
1 −2 0
1 2 −3


.” The solution given here is

for the updated version of the exercise.
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(e) Let xe, ye, and ze be the coordinates of the critical point XY Z. This critical point came
from the algebraic equations

1− xe − ze = 0, r − rye − ze = 0, 2xe + 2ye − 1 = 0;

applying each of these in turn to the diagonal entries of the Jacobian, we have

J(XY Z) =




1− 2xe − ze 0 −xe

0 r − 2rye − ze −ye

2ze 2ze 2xe + 2ye − 1


 =



−xe 0 −xe

0 −rye −ye

2ze 2ze 0


 .

Hence, c1 = xe + rye > 0, c2 = rxeye + 2yeze + 2xeze > 0, c3 = 2rxeyeze + 2xeyeze > 0,
and c1c2 > (xe + rye)(2yeze + 2xeze) > xe(2yeze) + rye(2xeze) = c3. Thus, XY Z is
stable whenever it exists.
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Section 7.1

1. f(t) = H(t− 4)t2. See Figure 75.
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Figure 75: Exercises 7.1.1 and 7.1.3

3. f(t) = [1−H(t− 1)]t2. See Figure 75.

5. f(t) = [1−H(t− 2)]t + H(t− 2)t2. See Figure 76.
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Figure 76: Exercises 7.1.5 and 7.1.7

7. f(t) = H(t− 2)(t− 2)2. See Figure 76.

9. f(t) = [1−H(t− 2)](2− t) + H(t− 3)(t− 3). See Figure 77.
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Figure 77: Exercise 7.1.9
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11. See Figure 78.
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Figure 78: Exercises 7.1.11 and 7.1.13

13. See Figure 78.

15.

fsq(t) = [H(t)−H(t− 1)]− [H(t− 1)−H(t− 2)]− [H(t− 2)−H(t− 3)]− · · ·
= H(t)− 2H(t− 1) + 2H(t− 2)− 2H(t− 3) + · · ·

= H(t) + 2
∞∑

k=1

(−1)kH(t− k).

Section 7.2

1. L[t4 − 3t3 + t] = L[t4]− 3L[t3] + L[t] =
4!
s5
− 3 · 3!

s4
+

1
s2

.

3. L[sin 3t + 4
√

t] = L[sin 3t] + 4L[
√

t] =
3

s2 + 9
+

2
√

π

s3/2
.

5. L[te2t] =
∫ ∞

0
tet(2−s) dt = lim

A→∞

[
t

2− s
− 1

(2− s)2

]∣∣∣∣
A

0

=
1

(s− 2)2
.

Note that we need s > 2 to guarantee convergence of the integral.

7. L[f ′′] = L[(f ′)′] = sL[f ′]− f ′(0) = s {sL[f ]− f(0)} − f ′(0) = s2L[f ]− sf(0)− f ′(0).

9. L[H(t− 1) + 2H(t− 3)− 6H(t− 4)] = e−sL[1] + 2e−3sL[1]− 6e−4sL[1]

=
1
s

(
e−s + 2e−3s − 6e−4s

)
.

11. L[2(t− 1)H(t− 1)] = 2e−sL[t] =
2
s2

e−s.

13. L[t2H(t− 4)] = e−4sL[(t + 4)2] = e−4sL[t2 + 8t + 16] = e−4s

(
2
s3

+
8
s2

+
16
s

)
.

15. L[t2(1−H(t− 1))] = L[t2]− e−sL[(t + 1)2] =
2
s3
− e−s

(
2
s3

+
2
s2

+
1
s

)
.
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17. L[t + (t2 − t)H(t− 2)] = L[t] + e−2sL[(t + 2)2 − (t + 2)] =
1
s2

+ e−2s

(
2
s3

+
3
s2

+
2
s

)
.

19. L[(t− 2)2H(t− 2)] = e−2sL[t2] =
2
s3

e−2s.

21. L[(1−H(t− 2))(2− t) + H(t− 3)(t− 3)] = L[2− t] + L[H(t− 2)(t− 2)] + L[H(t− 3)(t− 3)]

=
2
s
− 1

s2
(1− e−2s − e−3s).

23. From Equation (5),

(
1− e−s

)L[f ] =
∫ 1

0
te−st dt = −

(
t

s
+

1
s2

)
e−st

∣∣∣∣
1

0

=
1
s2
− e−s

(
1
s2

+
1
s

)
.

Thus,

L[f ] =
1

1− e−s

[
1
s2
− e−s

(
1
s2

+
1
s

)]
.

25. L[f ′′] = L[(f ′)′] = sL[f ′]− f ′(0) = s[sL[f ]− f(0)]− f ′(0) = s2F (s)− sf(0)− f ′(0).

Section 7.3

1. L−1

[
3

s2 + 4

]
=

3
2
L−1

[
2

s2 + 22

]
=

3
2

sin 2t.

3. L−1

[
4

(s + 4)(s− 1)

]
=

4
5
(et − e−4t).

5. L−1

[
2(s + 1)

(s + 1)2 + 22

]
= 2e−t cos 2t.

7. L−1

[
2

s− 1
(s− 1)2 + 1

+ 3
1

(s− 1)2 + 1

]
= 2et cos t + 3et sin t.

9. L−1

[
5

(s + 2)2 + 1
− 2

s + 2
(s + 2)2 + 1

]
= 5e−2t sin t− 2e−2t cos t.

11. Applying the Laplace transform to both sides of the equation yields

(s2Y − s) + 3(sY − 1) + 2Y = 0;

thus, Y =
s + 3

s2 + 3s + 2
. Taking the inverse Laplace transform, we have

y = L−1

[
s

(s + 2)(s + 1)

]
+ 3L−1

[
1

(s + 2)(s + 1)

]
= (−e−t + 2e−2t) + 3(e−t − e−2t)

= 2e−t − e−2t.

13. Applying the Laplace transform to both sides of the equation yields

(s4Y − s3 + 2s)− 4Y = 0;

thus, Y =
s3 − 2s

s4 − 4
=

s

s2 + 2
. Taking the inverse Laplace transform, we have y = cos

√
2t.
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Section 7.4

1. Since L−1

[
1

(s + 2)(s− 1)

]
= −1

3
(e−2t − et),

L−1

[
e−2s

s2 + s− 2

]
=

1
3

(
et−2 − e−2(t−2)

)
H(t− 2).

See Figure 79.
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Figure 79: Exercises 7.4.1 and 7.4.3

3. Since L−1

[
s− 2

(s− 3)(s− 1)

]
= L−1

[
s

(s− 3)(s− 1)

]
− 2L−1

[
1

(s− 3)(s− 1)

]
=

e3t + et

2
,

L−1

[
(s− 2)e−s

(s− 3)(s− 1)

]
=

1
2

(
e3(t−1) + et−1

)
H(t− 1).

See Figure 79.

5. Applying the Laplace transform to both sides of the equation yields

(s2Y − s) + Y = e−3πs 1
s
,

so

Y =
s

s2 + 1
+

e−3πs

s(s2 + 1)
.

Thus,

y = L−1[Y ] = cos t + [1− cos(t− 3π)]H(t− 3π) = cos t + (1 + cos t)H(t− 3π).

See Figure 80.

7. Applying the Laplace transform to both sides of the equation yields

(s2Y − 1) + Y =
1
s2
− e−πs 1

s2
,

so
Y =

1
s2 + 1

+
1

s2(s2 + 1)
+ e−πs 1

s2(s2 + 1)
.

Noting that L−1

[
1

s2(s2 + 1)

]
= t− sin t, we have the result

y = t + [−(t− π) + sin(t− π)]H(t− π) = t + (π − t− sin t)H(t− π).

See Figure 80.
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Figure 80: Exercises 7.4.5 and 7.4.7

9. Applying the Laplace transform to both sides of the equation yields

(s2Y − s) + 2(sY − 1) + 2Y = e−πs,

so

Y =
s + 2 + e−πs

(s + 1)2 + 1
=

s + 1
s2 + 2s + 2

+
1

(s + 1)2 + 1
+

e−πs

(s + 1)2 + 1
.

Thus,
y = L−1[Y ] = e−t cos t + e−t sin t + e−(t−π) sin(t− π)H(t− π).

See Figure 81.
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Figure 81: Exercises 7.4.9 and 7.4.11

11. The governing equations are

v′′ + v = ftr(t), v(0) = 0, v′(0) = 0.

Writing the forcing function as

ftr = t− (2t− 1)H(t− 1/2) + (2t− 3)H(t− 3/2)− (2t− 5)H(t− 5/2) + · · ·

= t +
∞∑

n=1

(−1)n(2t− 2n + 1)H(t− n + 1/2),
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the Laplace transform of the original problem is

s2V + V =
1
s2

+ 2
∞∑

n=1

(−1)ne−s(n−1/2) 1
s2

.

Then

V =
1
s2

+ 2
∞∑

n=1

(−1)ne−s(n−1/2) 1
s2(s2 + 1)

,

from which we obtain

v = t− sin t +
∞∑

n=1

(−1)n[2t− 2n + 1− 2 sin(t− n + 1/2)]H(t− n + 1/2)

and

i = v′ = 1− cos t + 2
∞∑

n=1

(−1)n[1− cos(t− n + 1/2)]H(t− n + 1/2).

See Figure 81.

Section 7.5

1. The impulse response function is the solution of the problem

q′′ + 4q = δ(t), q(0) = q′(0) = 0.

Taking the Laplace transform of both sides, we have L[q] =
1

s2 + 4
. Thus q = 1

2 sin 2t and

q(t− τ)g(τ) =
1
2
(sin 2t cos 2τ − cos 2t sin 2τ) sec 2τ =

1
2

sin 2t− 1
2

cos 2t tan 2τ.

Therefore, the solution of the original problem, using Theorem 7.5.2, is

y =
1
2

∫ t

0
(sin 2t− cos 2t tan 2τ) dτ =

1
2
t sin 2t +

1
4

cos 2t ln(cos 2t).

The solution is identical to Exercise 4.6.5. The new calculation seems a little easier.

3. The impulse response function is the solution of the problem

q′′ + 2q′ + q = δ(t), q(0) = q′(0) = 0.

Taking the Laplace transform of both sides yields L[q] =
1

(s + 1)2
. Thus, q = te−t and

q(t− τ)g(τ) = (t− τ)eτ−tτ−pe−τ = e−t
(
tτ−p − τ1−p

)
.

The solution to the original problem, using Theorem 7.5.2, appears to be

y = e−t

(
t

∫ t

0
τ−p dτ −

∫ t

0
τ1−p dτ

)
.

However, these integrals do not converge for any positive integers p. What happened? There
are two key points to note. First, the existence and uniqueness theorem guarantees a solution
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for the original problem on any interval not containing the origin. The convolution method
attempts to find a solution that satisfies the initial conditions y(0) = 0 and y′(0) = 0, and
no such solution exists. Second, the results do not contradict Theorem 7.5.2, because the
theorem says that the formula gives a solution when the convolution integrals converge. It
does not say anything about the case where the convolution integrals do not converge.

5. The problem to solve is

v′′ + v = t +
∞∑

n=1

(−1)n(2t− 2n + 1)H(t− n + 1/2), v(0) = 0, v′(0) = 0.

The impulse response function is sin t; by Theorem 7.5.2,

v = q ∗ g = t ∗ sin t +
∞∑

n=1

(−1)n(vn(t) ∗ sin t), vn(t) = (2t− 2n + 1)H(t− n + 1/2).

The Heaviside function makes each term 0 for t < n− 1
2 ; hence, we have

v = t ∗ sin t +
∞∑

n=1

(−1)n(vn(t) ∗ sin t)H(t− n + 1/2)

=
∫ t

0
(t− τ) sin τ dτ +

∞∑

n=1

(−1)n

[∫ t

0
vn(t− τ) sin τ dτ

]
H(t− n + 1/2)

= t− sin t +
∞∑

n=1

(−1)n

[∫ t

0
(2t− 2τ − 2n + 1) sin τ H(t− n + 1/2− τ) dτ

]
H(t− n + 1/2)

To calculate the remaining integral, note that the integrand is nonzero only for τ < t−n+1/2.
Since n ≥ 1, this is a more restrictive upper limit than τ < t. Hence,

∫ t

0
(2t− 2τ − 2n + 1) sin τ H(t− n + 1/2− τ) dτ =

∫ t−n+1/2

0
(2t− 2τ − 2n + 1) sin τ dτ

= [(2τ − 2t + 2n− 1) cos τ − 2 sin τ ]|t−n+1/2
0 ,

v = t− sin t +
∞∑

n=1

(−1)n[2t− 2n + 1− 2 sin(t− n + 1/2)]H(t− n + 1/2),

and

i = v′ = 1− cos t + 2
∞∑

n=1

(−1)n[1− cos(t− n + 1/2)]H(t− n + 1/2).

This is the same solution as the one found in Exercise 7.4.11 (see Figure 81). It is a matter
of taste which is more convenient.
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Section 8.1

1. (a) From

f(t) =
{

sin3 πt
2 0 ≤ t < 2

0 otherwise
,

we have

f ′(t) =
{

3π
2

(
sin2 πt

2

)
cos πt

2 0 ≤ t < 2
0 otherwise

and limt→2− f ′(t) = limt→0+ f ′(t) = 0. Also

f ′′(t) =
{

3π2

2

(
sin πt

2

)
cos2 πt

2 − 3π2

4 sin3 πt
2 0 ≤ t < 2

0 otherwise
,

and note that limt→2− f ′′(t) = limt→0+ f ′′(t) = 0.

(b)

u =
{

sin3(π
2 (t− x

2 )) x
2 ≤ t < 2 + x

2
0 otherwise

.

(c) See Figure 82.

(d) See Figure 82.
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Figure 82: Exercise 8.1.1

3. (a) From

f(t) =
{

t− t2 0 ≤ t < 1
0, otherwise,

we have

f ′(t) =
{

1− 2t 0 ≤ t < 1
0, otherwise

and note that limt→1− f ′(t) = 0, but limt→0+ f ′(t) = 1. f ′ (and also f ′′) is not continuous
at 0, so Theorem 8.1.1 does not apply. Similarly, f ′′ is not continuous at 1. There will
be a solution that is not strictly valid at points of discontinuity.

(b)

u =
{

t− x
2 − (t− x

2 )2 x
2 ≤ t < 1 + x

2
0 otherwise.

(c) See Figure 83.

(d) See Figure 83.
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Figure 83: Exercise 8.1.3

5. (a) From

f(t) =
{

(1− cosπt)3 0 ≤ t < 2
0 otherwise

,

we have

f ′(t) =
{

3π(1− cosπt)2 sinπt 0 ≤ t < 2
0 otherwise

and limt→2− f ′(t) = limt→0+ f ′(t) = 0. Also

f ′′(t) =
{

6π(1− cosπt)(sinπt)2 + 3π2(1− cosπt)2 cosπt 0 ≤ t < 2
0 otherwise

and limt→2− f ′′(t) = limt→0+ f ′′(t) = 0.
(b)

u =
{

(1− cosπ(t− x))3 x ≤ t < 2 + x
0 otherwise

.

(c) See Figure 84.
(d) See Figure 84.
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Figure 84: Exercise 8.1.5

7. We seek solutions of the form u(x, t) = f(z(x, t)), where z = x − vt. Substituting this into
the heat equation gives us −vf ′ = kf ′′. Solving for f , we get f(z) = c1 − c2e

−vz/k. There
exist traveling waves with wave forms

f(x) = c1 + c2e
ax,

with speed v = −ak.

9. (a) Given u(r, t) = g(r)f(z(r, t)), with z = r − vt, we have ut = −vgf ′, utt = v2gf ′′,
ur = g′f + gf ′, (rur)r = r(g′′f + 2g′f ′ + gf ′′) + (g′f + gf ′). Substituting these results
into the radially symmetric wave equation yields the equation

(c2 − v2)gf ′′ + c2
(
2g′ +

g

r

)
f ′ + c2

(
g′′ +

g′

r

)
f = 0.
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(b) v = ±c.

(c) From the f ′ coefficient, we have g′+ g/(2r) = 0, which has solutions g = Ar−1/2 for any
constant A. But then 0 = rg′′ + g′ = 1

4Ar−3/2 requires A = 0. Hence, g ≡ 0 and no
non-zero functions of the form g(r)f(r−vt) solve the radially symmetric wave equation.

11. (a) Given u(x, t) = vf(z), with z = x − vt, we have ut = −v2f ′, ux = vf ′, and uxxx =
vf ′′′. Substituting these results into the Korteweg-deVries differential equation yields
the equation

f ′′′ + 6vff ′ − vf ′ = 0.

(b) Integrating the equation from part (a) yields

f ′′ + 3vf2 − vf = 0,

where the integration constant is 0 because the function and its derivatives are 0 as
z → ∞. Now multiplying by 2f ′ yields 2f ′f ′′ + 6vf2f ′ − 2vff ′ = 0, and integrating
again gives us

(f ′)2 + 2vf3 − vf2 = 0,

where again the integration constant is 0.

(c) Substituting f ′(0) = 0 into the first-order equation for f yields the initial condition
f(0) = 1

2 .

(d) The peak of the wave is at z = 0 by construction, so we have f ′ < 0 for z > 0 and f ′ > 0
for z < 0 (note that f ′ = 0 can only occur when f = 1

2 , so there can be no other critical
points). Now consider the pair of equations f ′ = ±√vf

√
1− 2f . Separating variables

and integrating from (0, 1
2) to (z, f), we have

±√vz = ±
∫ z

0

√
v dZ =

∫ f

1/2

dF

F
√

1− 2F
= −2

∫ √
1−2f

0

dφ

1− φ2
= −2 arctanh

√
1− 2f.

Upon rearrangement, we have the solution

u = vf(z) =
v

2
sech2

√
v z

2
,

where sechx = 1/ coshx. The wave speed can be any positive value.

(e) See Figure 85.
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Figure 85: Exercise 8.1.11
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Section 8.2

1. (a) Taking C = 0, we have f(x) = g(x) =
1

1 + x2
. The solution is

u = f(x− t) + g(x + t) =
1

1 + (x− t)2
+

1
1 + (x + t)2

.

(b) See Figure 86.
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Figure 86: Exercises 8.2.1 and 8.2.3

3. (a) Taking C = 0, we have

f(x) = g(x) =
1
2

{
1− x2 −1 ≤ x ≤ 1
0 otherwise

.

The solution is

u =
{

1
2(1− (x− 2t)2), 2t− 1 ≤ x ≤ 2t + 1

0, otherwise

+
{

1
2(1− (x + 2t)2), −2t− 1 ≤ x ≤ −2t + 1

0, otherwise.

(b) See Figure 86.

5. (a) Taking C = 0, we have −f(x) = g(x) =
1
2

∫ x

0

s

s2 + 1
ds =

1
4

ln(1 + x2). The solution is

u = f(x− t) + g(x + t) =
1
4

ln
(

1 + (x + t)2

1 + (x− t)2

)
.

(b) See Figure 87.
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Figure 87: Exercise 8.2.5
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7. (a)

f(x) =
1

1 + x2
− 1

4
ln(1 + x2), g(x) =

1
1 + x2

+
1
4

ln(1 + x2).

See Figure 88.

(b)

u(x, t) =
1

1 + (x− t)2
+

1
1 + (x + t)2

+
1
4

ln
(

1 + (x + t)2

1 + (x− t)2

)
.

See Figure 88.
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Figure 88: Exercise 8.2.7

9. (a) Assume u(x, t) = f(z) with z = x/
√

4kt. Then

ut = − x

4t
√

kt
f ′ = − z

2t
f ′, uxx =

1
4kt

f ′′.

Substituting these results into the heat equation gives us

f ′′ + 2zf ′ = 0,

which is consistent with the assumption u = f(z).

(b) The equation for f is a first-order separable equation for f ′, with solution f ′ = Ce−z2
.

This solution can also be written as f ′ = B erf ′(z); hence,

f(z) = A + B erf z.

(c) We’ve already seen that u = A + B erf z solves the differential equation. The boundary
and initial conditions then require

g(t) = u(0, t) = f(0) = A, f(x) = u(x, 0) = f(∞) = A + B.

The solution we have found works only with very specific initial and boundary conditions;
hence, it is not a general solution.

Section 8.3

1. Since ν = 440 =
√

T

126
√

ρ
, and c =

√
T/ρ, we have c = 554.4 m/s.
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5. Letting u(x, t) = f(x)g(t) leads to the equation

f ′′

f
=

g′

kg
= σ

for some constant σ. The waveform problem is

f ′′ = σf, f(0) = 0, f(L) = 0,

which is the same [Equation (6) in the text] as for the vibrating string. The solution of this
problem is fn = Bn sin(nπx/L) [Equation (10)]. The amplitude equation is

g′ = −n2π2k

L2
g, g(0) = 1,

and the solution is g = e−n2π2kt/L2
. The heat flow modes are

Bne−n2π2kt/L2
sin

nπx

L
.

7. The boundary conditions imply that the temperature at x = 0 is fixed at 0 and there is no
heat flow through the end of the rod at x = L. Letting u(x, t) = f(x)g(t) and substituting
this into the heat equation gives us

f ′′

f
=

g′

kg
= σ

for some constant σ. The waveform problem is

f ′′ = σf, f(0) = 0, f ′(L) = 0.

If σ > 0 then f = 0. If σ = 0, then f = 0. If σ = −λ2 < 0, then we have

f = A cosλx + B sinλx, f(0) = 0, f ′(L) = 0.

The first boundary condition forces A = 0, and the second results in the equation cosλL = 0,
or λL = (n + 1

2)π, for any positive integer n. Thus, λ = (n + 1
2)π/L and the waveforms are

fn(x) = Bn sin([n + 1
2 ]πx/L). The amplitude problem is

g′ = σkg, g(0) = 1,

with σ = −[(n + 1
2)π/L]2, and the solution is g = e−(n+ 1

2
)2π2kt/L2

. The heat flow modes are

Bne−(n+ 1
2
)2π2kt/L2

sin

(
n + 1

2

)
πx

L
.

9. Substituting u(r, t) = f(r)g(t) into the differential equation gives us

g′′

c2g
=

rf ′′ + 2f ′

rf
= k

for some constant k. Assuming k = −λ2 yields the problem

rf ′′ + 2f ′ + λ2rf = 0, f(a) = 0, |f(0)| < ∞.
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Now suppose w(r) = rf(r). Then w′ = rf ′ + f and w′′ = rf ′′ + 2f ′. The new waveform
problem is

w′′ + λ2w = 0, w(a) = 0, lim
r→0

∣∣∣∣
w(r)

r

∣∣∣∣ < ∞.

The differential equation has solution w = A cosλr + B sinλr, the boundedness condition
requires A = 0, and the boundary condition at a then requires sinλa = 0, or λ = nπ/a, for
all positive integers n. The waveforms are wn = Bn sin(nπr/a), or

fn =
Bn

r
sin

nπr

a
.

The problem for the amplitude function is then

g′′n +
n2π2c2

a2
gn = 0, gn(0) = 1, g′n(0) = 0;

hence, gn = cos(nπct/a) and the vibration modes are

Bn

r
cos

nπct

a
sin

nπr

a
.

It is also necessary to consider nonnegative values for k. If k = 0, then rf ′′ + 2f ′ = 0, which
has solution f = c1 + c2/r, and the boundary conditions force f = 0. If k = λ2, then the
solutions are modified Bessel functions, which cannot satisfy the boundary conditions.

Section 8.4

5. (a) The solution is

u(x, t) =
∞∑

n=1

bn cosnπt sinnπx, bn = 2
∫ 1

0
x(1− x) sinnπx dx.

We have p(x) = x− x2, p′(x) = 1− 2x, p′′(x) = −2, and then

bn =
2

nπ
[p(0)− (−1)np(1)] +

1
nπ

a′n = 0 +
1

nπ

(
− 1

nπ
b′′n

)

= − 2
n3π3

[p′′(0)− (−1)np′′(1)] =
4[1− (−1)n]

n3π3
.

(b) See Figure 89.

7. (a) The solution is

u(x, t) =
∞∑

n=1

bn cos 2πnt sinnπx, bn = 2
∫ 1

0
(2x3 − 3x2 + x) sin nπx dx.

We have p(x) = 2x3 − 3x2 + x, p′(x) = 6x2 − 6x, p′′(x) = 12x− 6, p′′′ = 12, and then

bn =
2

nπ
[p(0)− (−1)np(1)] +

1
nπ

a′n = 0 +
1

nπ

(
− 1

nπ
b′′n

)

= − 2
n3π3

[p′′(0)− (−1)np′′(1)] +
1

n3π3
a′′′n =

12[1 + (−1)n]
n3π3

.
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Figure 89: Exercise 8.4.5
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Figure 90: Exercise 8.4.7

(b) See Figure 90.

9. (a) The solution is

u(x, t) =
∞∑

n=1

bn cosnπt sinnπx,
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where

bn = 2
∫ 0.9

0

5x

9
sinnπx dx + 2

∫ 1

0.9
(5− 5x) sin nπx dx

= − 10
9nπ

[
x cosnπx|0.9

0 −
∫ 0.9

0
cosnπx dx

]
− 10

nπ

[
(1− x) cosnπx|10.9 −

∫ 1

0.9
cosnπx dx

]

= −cos 0.9nπ

nπ
+

10
9n2π2

sinnπx|0.9
0 +

cos 0.9nπ

nπ
− 10

n2π2
sinnπx|10.9 =

100
9n2π2

sin 0.9nπ.

(b) See Figure 91.

0.2 0.4 0.6 0.8 1
x

-0.4
-0.2

0.2
0.4

u

0.2 0.4 0.6 0.8 1
x

-0.4
-0.2

0.2
0.4

u

0.2 0.4 0.6 0.8 1
x

-0.4
-0.2

0.2
0.4

u

0.2 0.4 0.6 0.8 1
x

-0.4
-0.2

0.2
0.4

u

0.2 0.4 0.6 0.8 1
x

-0.4
-0.2

0.2
0.4

u

0.2 0.4 0.6 0.8 1
x

-0.4
-0.2

0.2
0.4

u

Figure 91: Exercise 8.4.9

(c) The total amplitude
∫ 1
0 u(x, 0) dx is the same for both problems. Both problems have

a triangular initial profile. The difference is that the initial profile for Model Problem
8.4 is symmetric about x = 0.5, but the initial profile for Exercise 9 is skewed to the
right. The waves for Model Problem 8.4 continue to be symmetric, while the waves for
Exercise 9 continue to be skewed. For Exercise 9, the peak of the wave gradually moves
from 0.9 to 0.1 and diminishes in magnitude. The negative displacement begins quickly
near x = 1 and spreads to the left also.

11. The amplitude functions were found in Exercise 8.3.4 to be

gn(t) =
L

nπc
sin

nπct

L
.

The initial condition then requires

ψ(x) =
∞∑

n=1

bng′n(0) sin
nπx

L
=

∞∑

n=1

bn sin
nπx

L
.

This is the same equation we solved to determine the Fourier coefficients before, with the
result

bn =
2
L

∫ L

0
ψ(x) sin

nπx

L
dx.
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One can also use

gn(t) = sin
nπct

L
, bn =

2
nπc

∫ L

0
ψ(x) sin

nπx

L
dx.

13. (a) The solution is

u(x, t) =
∞∑

n=1

bn sinnπt sinnπx

where, by Exercises 1 and 2,

bn =
1

nπ

{
2

nπ
[p(0)− (−1)np(1)]− 2

n3π3
[p′′(0)− (−1)np′′(1)]

}
= −4[1 + 2(−1)n]

n4π4
.

(b) See Figure 92.
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Figure 92: Exercise 8.4.13

Section 8.5

1. F is even, so the sine coefficients are 0 and the cosine coefficients are

an =
2
π

∫ π

0
x cosnx dx.

Using the notation and formulas of Exercises 8.4.1 and 8.4.2, with p(x) = x, we have

an = − 1
n

b′n = − 2
n2π

[p′(0)− (−1)np′(π)] = −2[1− (−1)n]
n2π

The average value is π/2 so

fs(x) =
π

2
− 2

π

∞∑

n=1

[1− (−1)n]
n2

cosnπx.

See Figure 93.
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Figure 93: Exercise 8.5.1

3. F is even, so the sine coefficients are 0 and the cosine coefficients are

an = 2
∫ 1

0
(1− x2) cos nx dx.

Using the notation and formulas of Exercises 8.4.1 and 8.4.2, with p(x) = 1− x2, we have

an = − 1
nπ

b′n = − 2
n2π2

[p′(0)− (−1)np′(1)] = −4(−1)n

n2π2
.

The average value is 2/3, so

fs(x) =
2
3
− 4

π2

∞∑

n=1

(−1)n

n2
cosnπx.

See Figure 94.
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Figure 94: Exercise 8.5.3

5. See Figure 95. Theorem 8.5.2 identifies properties of the series sum fs, not the individual
partial sums in the sequence that converges to fs. Adding more terms to the partial sum
makes the oscillation faster and decreases the amplitude of the error at points well inside of
the oscillatory region, but does not decrease the overshoot amplitude. However, the near-
vertical line at the point of discontinuity of f becomes more vertical as n → ∞. Any fixed
value of x where f is continuous is eventually some distance into the oscillatory region. Thus,
as n →∞, points where f is continuous do show convergence to fs, albeit very slowly. The
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Figure 95: Exercise 8.5.5

point of discontinuity is always at the midpoint of the near-vertical line; hence, the value
of the partial sum at that point does appear to be approaching the average of the limiting
values.

7. (a)

u(x, t) =
∞∑

n=1

bn cosnπt sinnπx,

where

bn = 2
∫ 1

0
sinnπx dx =

2[1− (−1)n]
nπ

.

(b) The solution over the first half of the given time interval shows the function value 1
gradually being “replaced” by the value 0 from the endpoints in. For the second half
of the interval, the solution shows the value 0 being replaced by the value -1 from the
center to the outside. The actual solution should consist of horizontal lines; however,
any visualization using Fourier series shows oscillations and overshoots because of the
Gibbs phenomenon. See Figure 96.

9. (a) By Exercise 8.4.11,

u(x, t) =
∞∑

n=1

bn sinnπt sinnπx,

where

bn =
2

nπ

∫ 1

0
sinnπx dx =

2[1− (−1)n]
n2π2

.

(b) See Figure 97.

11. Substituting u(r, θ) = g(r)h(θ) into the differential equation gives us

r2g′′ + rg′

g
=
−h′′

h
= σ
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Figure 96: Exercise 8.5.7
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Figure 97: Exercise 8.5.9

for some constant σ. The problem for g is

r2g′′ + rg′ − σg = 0, |g(0| < ∞,

107



Chapter 8: Vibrating Strings

and the problem for h is

h′′ + σh = 0, h(−π) = h(π), h′(−π) = h′(π).

The h problem is fully specified, so we solve it first. If σ < 0, then there are no nontrivial
solutions. If σ = 0, then there is a solution h = a0, where a0 is a constant, and the g problem
is also solved by a constant. If σ = λ2 with λ > 0, then the differential equation has a
two-parameter family of solutions

h = a cosλθ + b sinλθ.

These solutions satisfy both boundary conditions if and only if λ is a positive integer. Thus,
we have the family

hn = an cosnθ + bn sinnθ,

and the corresponding g problem is

r2g′′n + rg′n − n2g = 0, |g(0| < ∞.

Substituting g = rm yields the algebraic equation m2 = n2, so m = ±n. The boundary
condition forces m = n. Hence, we have a family

u = a0 +
∞∑

n=1

rn(an cosnθ + bn sinnθ)

of functions that solves the homogeneous parts of the problem. The remaining boundary
condition requires

a0 +
∞∑

n=1

(an cosnθ + bn sinnθ) = f(θ).

This is the standard Fourier series problem, so the coefficients are given by

a0 = f̄ =
1
2π

∫ π

−π
f(θ) dθ, an =

1
π

∫ π

−π
f(θ) cos nθ dθ, bn =

1
π

∫ π

−π
f(θ) sin nθ dθ.
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Section A.1

1. To find the integrating factor, we solve (µy)′ = µy′ − 4µy. Thus, µ′ = −4µ. An integrating
factor is µ = e−4t. The differential equation becomes (e−4ty)′ = te−3t. Integrating both sides
and solving for y yields

y = −
(

1
3
t +

1
9

)
e−t + ce4t.

3. To find the integrating factor, we solve (µy)′ = µy′ − 4µy. Thus, µ′ = −4µ. An integrating
factor is µ = e−4t. The differential equation becomes (e−4ty)′ = t. Integrating both sides and
solving for y yields

y =
1
2
t2e4t + ce4t.

5. To find the integrating factor, we solve (µy)′ = µy′ − 3µy. Thus, µ′ = −3µ. An integrating
factor is µ = e−3t. The differential equation becomes (e−3ty)′ = e−3t cos t. Integrating both
sides and solving for y yields

y =
1
10

sin t− 3
10

cos t + ce3t.

7. To find the integrating factor, we solve (µy)′ = µy′+µy. Thus, µ′ = µ. An integrating factor
is µ = et. The differential equation becomes (ety)′ = et/(1 + et). Integrating both sides and
solving for y yields

y = e−t ln(1 + et) + ce−t.

9. To find the integrating factor, we solve (µy)′ = µy′ + µty. Thus, µ′ = µt. An integrating
factor is µ = et2/2. The differential equation becomes (et2/2y)′ = 2tet2/2. Integrating both
sides and solving for y yields

y = 2 + ce−t2/2.

11. To find the integrating factor, we solve (µy)′ = µy′ + 2µty. Thus, µ′ = 2µt. An integrating
factor is µ = et2 . The differential equation becomes (et2y)′ = cos t. Integrating both sides
and solving for y yields

y = e−t2 sin t + ce−t2 .

13. To find the integrating factor, we solve (µy)′ = µy′ + µ(1 + 1/t)y. Thus, µ′ = µ(1 + 1/t).
An integrating factor is µ = tet. The differential equation becomes (tety)′ = et. Integrating
both sides and solving for y yields

y =
1
t

(
1 + ce−t

)
.

15. To find the integrating factor, we solve (µy)′ = µy′ − µ(tan t)y. Thus, µ′ = −µ tan t. An
integrating factor is µ = cos t. The differential equation becomes (y cos t)′ = cos t. Integrating
both sides and solving for y yields

y = tan t + c sec t.

17. To find the integrating factor, we solve (µy)′ = µy′−2µy/t. Thus, µ′ = −2µ/t. An integrating
factor is µ = 1/t2. The differential equation becomes (y/t2)′ = 6t2. Integrating both sides
and solving for y yields y = 2t5 + ct2. Using the initial conditions gives us

y = 2t5 − 2t2, −∞ < t < ∞.
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19. To find the integrating factor, we solve (µy)′ = µy′−2µty/(1+ t2). Thus, µ′ = −2µt/(1+ t2).
An integrating factor is µ = 1/(1 + t2). The differential equation becomes [y/(1 + t2)]′ =
1/(1 + t2). Integrating both sides and solving for y yields y = (1 + t2) arctan t + c(1 + t2).
Using the initial conditions gives us

y = (1 + t2) arctan t, −∞ < t < ∞.

21. To find the integrating factor, we solve (µy)′ = µy′ + 2µ tan ty. Thus, µ′ = 2µ tan t. An inte-
grating factor is µ = sec2 t. The differential equation becomes (y sec2 t)′ = sec2 t. Integrating
both sides and solving for y yields y = sin t cos t + c cos2 t. Using the initial conditions gives
us

y = sin t cos t + cos2 t, −∞ < t < ∞.

23. To find the integrating factor, we solve (µy)′ = µy′− 8µty. Thus, µ′ = −8µt. An integrating
factor is µ = e−4t2 . The differential equation becomes (e−4t2y)′ = e−4t2 . Integrating both
sides yields e−4t2y =

∫ t
0 e−4s2

ds + c = 1
2

∫ 2t
0 e−u2

du + c =
√

π
4 erf 2t + c. Using the initial

conditions gives us

y = e4t2
(√

π

4
erf 2t + 1

)
, −∞ < t < ∞.

25. To find the integrating factor, we solve (µy)′ = µy′ + mµ/ty. Thus, µ′/µ = m/t and an
integrating factor is tm. The differential equation is then (tmy)′ = ktn+m−1.

(a) Integrating both sides of (tmy)′ = kt−1 yields tmy = k ln |t|+ c. Thus,

y = kt−m ln |t|+ ct−m.

(b) Integrating both sides of (tmy)′ = ktn+m−1 yields tmy = ktn+m/(n + m) + c. Thus,

y =
k

n + m
tn + ct−m.

(c) If we had c = 0, then the solution ktn/(n+m) would be defined for all t. The theorem in
question guarantees the existence of a solution over some interval but does not prohibit
the solution from existing over a larger interval.

(d) If both m and n are negative, the term ktn/(n + m) is undefined at t = 0. No matter
what c is chosen, this prevents the solution from being defined at t = 0.

27. (a) As in Exercise 15, an integrating factor is µ = cos t. The differential equation becomes
(y cos t)′ = sin t cos t. Integrating both sides yields y cos t = 1

2 sin2 t + c, and the initial
condition requires c = k. Thus, the solution is

y =
1
2

sin t tan t + k sec t, −π

2
< t <

π

2
.

(b) Setting y = 0, we find that the solution vanishes at any time for which k = −1
2 sin2 t.

Given the range of possible sine values on the interval of validity, this condition requires
−1

2 < k ≤ 0.
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(c) The solution is an even function; therefore, t = 0 is a critical point. Taking a derivative
of the original equation, we have

y′′ − y′ tan t− y sec2 t = cos t,

and so y′′(0) = cos 0 + y′(0) tan 0 + y(0) sec2 0 = 1 + k. The origin is a local minimum
for k > −1. For k < −1, the origin is a local maximum. Also, we have

y′ = sin t− y tan t = sin t +
1
2

sin t tan2 t + k tan t sec t

=
1
2

tan t sec t(2 cos2 t + sin2 t + 2k) =
1
2

tan t sec t(cos2 t + 1 + 2k).

Thus, there can be no other critical points with k < −1. Hence, the origin is the global
maximum whenever k < −1 and not whenever k > −1. The case k = −1 must be
treated separately. From the calculation for y′, we know that there are no critical points
other than the origin. We also have y(0) = −1, y′(0) = 0, and y′′(0) = 0. Differentiating
further, we have

y′′′ = y′′ tan t + 2y′ sec2 t + 2y tan t sec2 t− sin t

and

y′′′′ = y′′′ tan t + 3y′′ sec2 t + 6y′ tan t sec2 t + 2y(sec4 t + 2 tan2 t sec2 t)− cos t;

hence, y′′′(0) = 0 and y′′′′(0) = −3. We therefore have the Taylor approximation
y ≈ −1 − 3t2/4! near t = 0, confirming that the origin is also a maximum for the case
k = −1.

Section A.2

1.

y1(t) =
∫ t

0
f(s, 0) ds =

∫ t

0
1 ds = t.

y2(t) =
∫ t

0
f(s, s) ds =

∫ t

0
1− s2 ds = t− t3

3
.

y3(t) =
∫ t

0
f

(
s, s− s3

3

)
ds =

∫ t

0
1− s

(
s− s3

3

)
ds = t− t3

3
+

t5

15
.

See Figure 98.

3.

y1(t) =
∫ t

0
f(s, 0) ds =

∫ t

0
s2 ds =

t3

3
.

y2(t) =
∫ t

0
f

(
s,

s3

3

)
ds =

∫ t

0
s2 +

s6

9
ds =

t3

3
+

t7

63
.

y3(t) =
∫ t

0
f

(
s,

s3

3
+

s7

63

)
ds =

∫ t

0
s2+

s6

9
+

2s10

189
+

s14

(63)2
ds =

t3

3
+

t7

63
+

2t11

(189)(11)
+

t15

(63)215
.

See Figure 99.
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Figure 99: Exercise A.2.3

9. (a) Since
dy

dt
=

2t− y

1− y
, y must be an increasing function if y < 2t and y < 1, and decreasing

if y > 2t and y < 1. Thus the solution for t < 1/2 is increasing, but it can never go
above the line y = 2t.

(b) Since y < 2t and y < b < 1, it follows that f > 0. Now,

∂f

∂t
=

2
1− y

> 0,
∂f

∂y
=

2t− 1
(1− y)2

.

The first partial derivative means that the maximum must occur with t = a. Then
∂f/∂y(a, y) = (2a− 1)/(1− y)2 > 0, so the maximum must occur at (a, b).

(c) As long as the solution curve remains in D, its slope satisfies y′ ≤ f(a, b) = (2a−b)/(1−
b).

(d) The line passing through the origin and having slope (2a− b)/(1− b) is

ym =
2a− b

1− b
t.

This line passes through the point (a, b) if b(1− b) = a(2a− b).

(e) Suppose there exists a pair of values a and b that satisfies the requirement of part (d).
Then y ≤ ym < 2t and y ≤ ym ≤ b for all t ≤ a. Hence, the graph of y lies in the
region D defined by that choice of a and b. In particular, for any given a, there needs
to be only one acceptable choice of b to guarantee existence of the solution all the way
to t = a.
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(f) The equation b(1 − b) = a(2a − b) defines a smooth curve in the ab plane that passes
through the points (0, 0) and (0, 1). The curve must move into the first quadrant of the
ab plane and then back to the b axis; hence, we can think of the curve as the graph of
a function a(b). Each value of a that can be achieved for some b represents a time at
which the solution must exist. Hence, the solution is guaranteed to exist for any a less
than the maximum of the function a(b) defined implicitly by b(1 − b) = a(2a − b). By
implicit differentiation, 1− 2b = a′(2a− b) + a(2a′ − 1); thus,

a′ =
1 + a− 2b

4a− b
.

At the desired maximum, a′ = 0; hence, 2b = 1 + a. Substituting this relation into the
equation of the curve yields the quadratic equation 7a2 − 2a − 1 = 0. This equation
has one positive solution, a = (1 + 2

√
2)/7 ≈ 0.55, so the solution is guaranteed to exist

up to that time. Note that this is quite a bit less than the actual interval of existence,
which by Figure A.2.2 in the text clearly extends beyond t = 0.8. With more work, a
better estimate could perhaps be achieved. The point of the exercise, in part, is that it
is not worth the effort of making careful estimates of intervals of existence by theoretical
arguments.

Section A.3

1. (a)

max
∣∣∣∣
∂f

∂y

∣∣∣∣ = max
∣∣∣∣
−8e−t

(3 + y)2

∣∣∣∣ ≤
8
9

= K

max |ft + ffy|| = max
∣∣∣∣
−8

3 + y
− (8e−t)2

(3 + y)3

∣∣∣∣ ≤
136
27

= M.

(b) The upper bounds for the error at 0.2, 0.4, 0.6, 0.8, and 1 are respectively 0.0137813,
0.0302439, 00499095, 0.0734012, and 0.101463.

(c) The actual errors are all significantly smaller. The ratio of the errors at each t are
respectively 0.653, 0.4629, 0..3607, 0.2725, and 0..2070. Note that the ratio of actual

error to the upper bound on the error is going down. Since
∂f

∂y
= −8ee−t

(3 + y)2 < 0,

the problem is well conditioned and this is the behavior we expect.

3. (a) We have

y(t1) = y(t0) + hy′(t0) +
h2

2
y′′(t0) +

h3

6
y′′′(τ1),

y(t0) = y(t1)− hy′(t1) +
h2

2
y′′(t1)− h3

6
y′′′(τ2),

where h = t1 − t0 and τ1 and τ2 are unknowns points between t0 and t1. Solving the
second equation for y(t1) gives us

y(t1) = y(t0) + hy′(t1)− h2

2
y′′(t1) +

h3

6
y′′′(τ2).

Averaging the formulas for y(t1) yields

y(t1) = y(t0) +
h

2
[
y′(t0) + y′(t1)

]− h2

4
[
y′′(t1)− y′′(t0)

]
+

h3

12
[
y′′′(τ1) + y′′′(τ2)

]
.
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(b)

y(t1) = y0 +
h

2
[f(t0, y0) + f(t1, y(t1))]− h2

4
[
y′′(t1)− y′′(t0)

]
+

h3

12
[
y′′′(τ1) + y′′′(τ2).

]

(c) The trapezoidal rule says y1 = y0 + 1
2h[f(t0, y0) + f(t1, y1)]. Subtracting the result of

part (b) from the trapezoidal rule yields

y1 − y(t1) =
h

2
[f(t1, y1)− f(t1, y(t1))] +

h2

4
[
y′′(t1)− y′′(t0)

]− h3

12
[
y′′′(τ1) + y′′′(τ2).

]

(d) Using Taylor’s Theorem, we have f(t1, y(t1)) = f(t1, y1) + [y(t1)− y1]fy(t1, η) for some
η between y1 and y(t1). Also, y′′(t1) = y′′(t0) + hy′′′(τ3) for some τ3 between t0 and t1.
Hence,

f(t1, y1)− f(t1, y(t1)) = E1fy(t1, η), y′′(t1)− y′′(t0) = hy′′′(τ3).

Substituting these results into that from part (c) yields

E1 =
h

2
E1fy(t1, η) +

h3

4
y′′′(τ3)− h3

12
[
y′′′(τ1) + y′′′(τ2).

]
,

from which we obtain

E1 =
3y′′′(τ3)− y′′′(τ1)− y′′′(τ2)

6 [2− hfy(t1, η)]
h3.

5. (a) We have |E1| ≤ Mh2

2
. We also have

|E2| ≤ Mh2

2
[(1 + Kh) + 1], |E3| ≤ Mh2

2
[(1 + Kh)2 + (1 + Kh) + 1].

In general,

|En| ≤ Mh2

2

n−1∑

j=0

(1 + Kh)j .

(b) Given S =
∑n−1

j=0 (1 + Kh)j , (1 + Kh)S =
∑n−1

j=0 (1 + Kh)j+1 =
∑n

j=1(1 + Kh)j . Thus,
KhS = (1 + Kh)n − 1 and

|En| ≤ Mh2

2
[(1 + Kh)n − 1].

(c)

eKh = 1 + Kh +
(Kh)2

2
+ · · · ≥ 1 + Kh.

(d)
|En| ≤ Mh

2K
(eKhn − 1) =

Mh

2K
(eKtn − 1).

7. (a) The initial-value problem is
dT

dt
= k(T − 68), T (6) = 77, T (7) = 74. The solution is

T = Cekt + 68. The additional conditions imply that C = 102.51 and k = −0.4054.
Thus T (t) = 98.6 means t = 2.98, which is 2:59 to the nearest minute.
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(b) If we change the equation to T (t) = 100, we find t = 2.87, which is 2:52 to the nearest
minute.

(c) If we change the measurements as indicated, we obtain T = 71.948e−0.3502t+68. Solving
T (t) = 98.6 then yields t = 2.44, which is 2:24 to the nearest minute and is more than
30 minutes earlier than we estimated in part (a).

(d) Since
∂f

∂y
< 0 the differential equation is well conditioned. However, the problem pre-

scribes final data and requires calculation of initial data; hence, the problem is ill-
conditioned.

(e) They must assume that they know the value of k.

Section A.4

From the series y =
∑∞

n=0 anxn, we have

xpy =
∞∑

m=p

am−px
m,

xpy′ =
∞∑

m=p

(m + 1− p)am+1−px
m =

∞∑

m=p−1

(m + 1− p)am+1−px
m,

xpy′′ =
∞∑

m=p

(m + 1− p)(m + 2− p)am+2−px
m =

∞∑

m=p−2

(m + 1− p)(m + 2− p)am+2−px
m.

These formulas will be used in the exercises of this section.

1. Substituting the formulas for xy, xy′, and y′′ into the differential equation yields

4a2 +
∞∑

m=1

[2(m + 1)(m + 2)am+2 −mam + am−1]xm = 0.

This leads to a2 = 0 and the recurrence relation

an =
(n− 2)an−2 − an−3

2(n− 1)n
, n ≥ 3.

Thus, a0 = −1, a1 = 2, a2 = 0, a3 = 1
4 , a4 = − 1

12 , a5 = 3
160 , a6 = − 7

720 .

3. Substituting the formulas for y, y′′, and xy′′ into the differential equation yields

∞∑

m=0

[(m + 1)(m + 2)am+2 + (m + 1)mam+1 − 3am]xm = 0.

This leads to the recurrence relation

an =
3an−2 − (n− 1)(n− 2)an−1

n(n− 1)
, n ≥ 2.

Thus, a0 = 2, a1 = 1, a2 = 3, a3 = −3
2 , a4 = 3

2 , a5 = −9
8 .
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5. Substituting the formulas for y, xy′, y′′, and x2y′′ into the differential equation yields

∞∑

m=0

[(m + 1)(m + 2)am+2 + m(m− 1)am + 2mam − 2am]xm = 0.

This leads to the recurrence relation

an = −an−2(n− 3)
n− 1

, n ≥ 2.

With a0 = 1 and a1 = 0, we obtain

y1 = 1 + x2 − 1
3
x4 +

1
5
x6 + · · · = 1 + x arctanx.

With a0 = 0 and a1 = 1, we obtain
y2 = x.

7. Substituting the formulas for y, xy′, and y′′ into the differential equation yields

∞∑

m=0

[(m + 1)(m + 2)am+2 −mam + am]xm = 0.

This leads to the recurrence relation

an =
(n− 3)
n(n− 1)

an−2, n ≥ 2.

With a0 = 1 and a1 = 0, we obtain

y1 = 1− 1
2
x2 − 1

24
x4 − 1

240
x6 − · · · .

With a0 = 0 and a1 = 1, we obtain
y2 = x.

9. Substituting the formulas provided for y, x2y, and y′′ into the differential equation yields

∞∑

m=2

[
(m + 1)(m + 2)am+2 +

(
ν +

1
2

)
am − 1

4
am−2

]
xm = 0, a−1 = a−2 = 0.

This leads to the recurrence relation

an =
1

4n(n− 1)
an−4 −

(ν + 1
2)

n(n− 1)
an−2.

The general solution is

y = c1

[
1− ν + 1/2

2
x2 +

(
1
48

+
(ν + 1/2)2

24

)
x4 + · · ·

]

+ c2

[
x− ν + 1/2

6
x3 +

(
1
80

+
(ν + 1/2)2

120

)
x5 + · · ·

]
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11. (a) Substituting the formulas provided for y, y′, and xy′ into the differential equation yields

∞∑

k=0

[(k + 1)ak+1 + kak −mak]xk = 0,

where we have used k as the dummy index rather than m. This leads to the recurrence
relation

an =
(m− n + 1)

n
an−1.

Thus, a0 = 1, a1 = m, a2 = m(m − 1)/2, a3 = m(m − 1)(m − 2)/6, and an =
m(m− 1)(m− 2) · · · (m− (n− 1))/n!. Hence,

y =
∞∑

n=0

m(m− 1)(m− 2) · · · [m− (n− 1)]
n!

xn =
∞∑

n=0

m!
n!(n−m)!

xn =
∞∑

n=0

(
m

n

)
xn.

(b) By separation of variables, we have
∫

dy

y
=

∫
mdx

1 + x
,

or y = C(1 + x)m. The initial condition requires C = 1; hence, y = (1 + x)m.

(c) Combining the results of parts (a) and (b) yields

(1 + x)m =
∞∑

n=0

(
m

n

)
xn.

13. Using Theorem A.4.2, we find α2 − ν2 = 0 or α = ±ν. Then α1 − α2 = 2ν is not an integer
if ν is not an integer multiple of 1

2 . Thus there are always two linearly independent solutions
if ν is not an integer multiple of 1

2 .

15. (a) We find that the α in Theorem A.4.2 is α = ±1/2. Letting y = xαz gives us the equation

x2z′′ + (2α + 1)xz′ + x2z = 0.

For the case α = −1
2 , we can solve the equation immediately by writing it as z′′+ z = 0.

Since the calculations that led to this equation required the assumption z0 = 1, we may
choose z = cosx for the solution of this case. For α = 1

2 , we substitute for x2z, xz′, and
x2z′′ in the differential equation and get

2a1 +
∞∑

m=2

[m(m− 1)am + 2mam + am−2]xm = 0.

This leads to the results

a0 = 1, a1 = 0, an =
−an−2

n(n + 1)
.

The corresponding solution is

z = 1− 1
3!

x2 +
1
5!

x4 + · · · = 1
x

sinx.
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(b) Theorem A.4.2 guarantees at least one power series solution in this case. It does not
prohibit the presence of a second.

(c) The solutions are x−1/2 cosx and x−1/2 sinx

17. The indicial equation has roots α = 1 and α = −1
2 , each of which corresponds to a solution.

From the original equation, we have

−a0 +
∞∑

m=1

[2m(m− 1)am + mam − am − am−1]xm = 0.

This leads to the results a0 = 0 and a1 = 1 (as guaranteed by Theorem A.4.2) and the
recurrence relation

an =
an−1

(2n + 1)(n− 1)
, n ≥ 2,

from which we obtain a solution

y1 = x +
x2

1 · 5 +
x3

1 · 5 · 2 · 7 +
x4

1 · 5 · 2 · 7 · 3 · 9 + · · · .

The substitution y = x−1/2z yields the equation

2xz′′ − z′ − z = 0,

the series equation

∞∑

m=0

[2m(m + 1)am+1 − (m + 1)am+1 − am]xm = 0,

the recurrence relation
an =

an−1

n(2n− 3)
,

and the solution

y2 = x−1/2

(
1− x− x2

2
− x3

2 · 3 · 3 − · · ·
)

.

19. (a) Making the suggested substitution gives us

−αa0x
−1 +

∞∑

n=0

[(α + n)(α + n− 1)an + 3(α + n)an + an − (α + n + 1)an+1]xn = 0.

(b) α = 0 is necessary to remove the first term.

(c) We have
∞∑

n=0

[n(n− 1)an + 3nan + an − (n + 1)an+1]xn = 0,

which leads to the recurrence relation an = nan−1.

(d) Since a0 = c, a1 = c, a2 = 2c, and in general an = n!c. Thus y = c
∑∞

n=0 n!xn.

(e) This series does not converge for any value of x.

(f) The differential equation is not of a form covered by the hypothesis of Theorem A.4.2,
so it does not contradict the theorem.
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(g) Assume y = xαz, with α to be chosen so that z0 = 1. Substituting into the differential
equation gives us

x3z′′ + (2α + 3)x2z′ − xz′ + (α + 1)2xz − αz = 0.

Looking for a series solution leads us to

αa0+
∞∑

m=1

[(m−1)(m−2)am−1+(2α+3)(m−1)am−1−mam+(α+1)2am−1−αam]xm = 0.

Since a0 = 1 by hypothesis, we must have α = 0. As in parts (c) and (d), we end up
with a divergent series for z = y.

Section A.5

1. Using the formula for the inverse of a 2 by 2 matrix,

Θ−1 =
(

1− 2t −4t
t 1 + 2t

)
.

3. Using the formula for the inverse of a 2 by 2 matrix,

Ψ−1 =
(

(1 + t)e2t −te2t

−e2t e2t

)
.

5. Using row reduction,

[A|I] =




0 1 −1
1 1 0

−1 0 1

∣∣∣∣∣∣

1 0 0
0 1 0
0 0 1


 ∼=




1 0 1
0 1 −1
0 0 1

∣∣∣∣∣∣

−1 1 0
1 0 0

−1
2

1
2

1
2




∼=




1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣∣

−1
2

1
2 −1

2
1
2

1
2

1
2

−1
2

1
2

1
2


 = [I|A−1].

7. Using row reduction,

[A|I] =



−3 1 −1
−2 0 −1
−1 1 −2

∣∣∣∣∣∣

1 0 0
0 1 0
0 0 1


 ∼=




1 −1
3

1
3

0 1 1
2

0 0 −3

∣∣∣∣∣∣∣

−1
3 0 0
1 −3

2 0
−3

2
3
2

3
2




∼=




1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣∣

−1
4 −1

4
1
4

3
4 −5

4
1
4

1
2 −1

2 −1
2


 = [I|A−1].

9. (a)

Θ =
∞∑

n=0

tn

n!
An =

∞∑

n=0

tn

n!

(
2n n2n−1

0 2n

)
=

∞∑

n=0

(
(2t)n

n!
2n−1tn

(n−1)!

0 (2t)n

n!

)
=

(
e2t te2t

0 e2t

)
,

where the last equality follows from
∞∑

n=0

2n−1tn

(n− 1)!
= t

∞∑

m=1

(2t)m

m!
= t

∞∑

m=0

(2t)m

m!
= te2t.
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(b) The matrix has a double eigenvalue λ = 2 with eigenvector v =
(

1
0

)
and generalized

eigenvector w =
(

0
1

)
. The solutions are then e2tv and e2t(tv + w). Hence,

Ψ(t) =
(

e2t te2t

0 e2t

)
, Ψ−1 =

(
e2t −te2t

0 e2t

)
, Θ = Ψ(t)Ψ−1(0) =

(
e2t te2t

0 e2t

)
.

11. (a) A2 = −I, from which follows A3 = −A, A4 = I, . . .. Thus,

Θ = I + tA− t2

2
I− t3

6
A +

t4

4!
I + · · · =

(
1− t2

2
+

t4

4!
− · · ·

)
I +

(
t− t3

6
+

t5

5
− · · ·

)
A

= (cos t)I + (sin t)A =
(

cos t− 2 sin t sin t
−5 sin t cos t + 2 sin t

)
.

(b) The eigenvalues are λ = ±i, and the corresponding solutions are
(

cos t
2 cos t− sin t

)
and

(
sin t

cos t + 2 sin t

)
. Thus,

Ψ(t) =
(

cos t sin t
2 cos t− sin t cos t + 2 sin t

)
, Ψ−1(0) =

(
1 0
2 1

)−1

=
(

1 0
−2 1

)
,

Θ =
(

cos t− 2 sin t sin t
−5 sin t cos t + 2 sin t

)
.

Section A.6

1. The eigenvalues are λ = 1, 3 and associated eigenvectors are
(

1
−1

)
and

(
0
1

)
.

(a) The form of solution for undetermined coefficients is

x = a +
[
b + c

(
0
1

)
t

]
e3t.

(Note the additional term needed because 3 is an eigenvalue of A.) After some linear
algebra computation, we obtain

a =
( −3

2

)
, b =

(
0
0

)
, c = 1.

(b) We have

Ψ =
(

et 0
−et e3t

)

and

[Ψ|g] =
(

et 0
−et e3t

∣∣∣∣
3

e3t

)
∼=

(
1 0
0 e3t

∣∣∣∣
3e−t

3 + e3t

)
∼=

(
1 0
0 1

∣∣∣∣
3e−t

1 + 3e−3t

)
= [I|u′].

Thus, u1 = −3e−t, u2 = t− e−3t, and the solution is

x = Ψu =
( −3

2 + te3t

)
.
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(c)

T =
(

1 0
−1 1

)
, D =

(
1 0
0 3

)
, T−1g =

(
3

3 + e3t

)
,

and x = Ty yields the problems y′1 = y1 +3 and y′2 = 3y2 +3+ e3t. From the particular
solutions y1 = −3 and y2 = −1 + te3t, we obtain

x = Ty =
( −3

2 + te3t

)
.

3. The eigenvalues are λ = −2,−3 and associated eigenvectors are
(

2
1

)
and

(
1
1

)
.

(a) The form of solution for undetermined coefficients is

x = aet + be3t.

After some linear algebra computation, we obtain

a =
1
12

(
5
1

)
, b =

1
15

( −1
2

)
.

(b) We have

Ψ =
(

2e−2t e−3t

e−2t e−3t

)

and
(

2e−2t e−3t

e−2t e−3t

∣∣∣∣
et

e3t

)
∼=

(
e−2t 0
e−2t e−3t

∣∣∣∣
et − e3t

e3t

)
∼=

(
1 0
0 1

∣∣∣∣
e3t − e5t

2e6t − e4t

)
= [I|u′].

Thus, u1 = 1
3e3t − 1

5e5t, u2 = 1
3e6t − 1

4e4t, and the solution is

x = Ψu =
(

5
12et − 1

15e3t

1
12et + 2

15e3t

)
.

(c)

T =
(

2 1
1 1

)
, D =

( −2 0
0 −3

)
, T−1g =

(
et − e3t

−et + 2e3t

)
,

and x = Ty yields the problems y′1 = −2y1 + et − e3t and y′2 = −3y2 − et + 2e3t. From
the particular solutions y1 = 1

3et − 1
5e3t and y2 = −1

4et + 1
3e3t, we obtain

x = Ty =
(

5
12et − 1

15e3t

1
12et + 2

15e3t

)
.

5. The eigenvalue is λ = 1 and an associated eigenvector is v =
(

0
1

)
. A second solution is

(w + vt)et, where w = 1
2

(
1
0

)
.
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(a) The form of solution for undetermined coefficients is

x = a + bt.

After some linear algebra computation, we obtain

a =
( −1

1

)
, b =

( −1
2

)
.

(b) We have

Ψ =
(

0 1
2et

et tet

)

and

[Ψ|g] =
(

0 1
2et

et tet

∣∣∣∣
t
3

)
∼=

(
1 t
0 1

∣∣∣∣
3e−t

2te−t

)
∼=

(
1 0
0 1

∣∣∣∣
(3− 2t2)e−t

2te−t

)
= [I|u′].

Thus, u1 = (1 + 4t + 2t2)e−t, u2 = (−2− 2t)e−t, and the solution is

x = Ψu =
( −1− t

1 + 2t

)
.

(c) Diagonalization cannot be done because the matrix is deficient.

7. The eigenvalues are λ = 1, 2 and associated eigenvectors are v(1) =




1
−1

1


 and

v(2) =




1
0
0


. A second solution for λ = 1 is (w + vt)et, where w =




0
0

−1


.

(a) The form of solution for undetermined coefficients is

x =
(
a + cv(2)t

)
e2t,

where the extra term is necessary because 2 is an eigenvalue of A. After some linear
algebra computation, we obtain

a =




α
2

−1


 , c = 1, α ∈ R.

(b) We have

Ψ =




et tet e2t

−et −tet 0
et (t− 1)et 0




and

[Ψ|g] ∼=



1 t 0
0 −et 0
0 0 e2t

∣∣∣∣∣∣

−et

e2t

e2t


 ∼=




1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣

(t− 1)et

−et

1


 = [I|u′].

Thus, u1 = (t− 2)et, u2 = −et, u3 = t, and the solution is

x = Ψu =



−2 + t

2
−1


 e2t.
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(c) Diagonalization cannot be done because the matrix is deficient.

9. (a) From Exercise 5, we have

Ψ =
(

0 1
2et

et tet

)
.

Thus,

[Ψ|g] ∼=
(

1 t
0 1

∣∣∣∣
0

2e−t−t2

)
∼=

(
1 0
0 1

∣∣∣∣∣
−2te−t−t2

2e−t−t2

)
= [I|u′].

Thus, u1 = −2
∫ t
0 se−s−s2

ds, u2 = 2
∫ t
0 e−s−s2

ds, and the solution is

x = Ψu =
(

1
2etu2

et(u1 + tu2)

)
=

(
et

∫ t
0 e−s−s2

ds

2et
∫ t
0 (t− s)e−s−s2

ds

)
.

(b) The method of undetermined coefficients cannot be used because g is not a generalized
exponential function, while the method of diagonalization cannot be used because the
matrix A is deficient.

11. (a) The eigenvalues are λ = ±2i and the corresponding eigenvectors are
(

1
−2i

)
and

(
1

2i

)
.

(b)

T =
(

1 1
−2i 2i

)
, D =

(
2i 0
0 −2i

)
, T−1g =

(
2 + 2i
2− 2i

)
e2t,

and x = Ty yields the problems y′1 = 2iy1 + (2 + 2i)e2t and y′2 = −2iy2 + (2 − 2i)e2t.
From the particular solutions y1 = ie2t and y2 = −ie2t, we obtain the particular solution

x = Ty =
(

0
4

)
e2t.

Combining this with the complementary solution yields the result

x =
(

0
4

)
e2t +

(
cos 2t sin 2t

2 sin 2t −2 cos 2t

)
c.

(c) The form of solution for undetermined coefficients is

x = be2t.

We find

b =
(

0
4

)
;

thus, the general solution is

x =
(

0
4

)
e2t +

(
cos 2t sin 2t

2 sin 2t −2 cos 2t

)
c.
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13. (a) Let z = ln t, as for Cauchy-Euler equations. Then d
dt = 1

t
d
dz , so the differential equation

becomes
dx
dz

= Bx + g(ez).

(b) The problem is
dx
dz

=
(

1 3
1 −1

)
x +

(
0
5

)
e3z.

The eigenvalues are λ = 2,−2 and corresponding eigenvectors are
(

3
1

)
and

(
1

−1

)
.

A particular solution has the form x = ae3z; substitution of this form into the differential

equation yields a =
(

3
2

)
. Hence, we have the general solution

x =
(

3
2

)
e3z + c1

(
3
1

)
e2z + c2

(
1

−1

)
e−2z =

(
3t3 + 3c1t

2 + c2t
−2

2t3 + c1t
2 − c2t

−2

)
.

15. (a) The eigenvalue is λ = 1 and an associated eigenvector is v =
(

1
1

)
. A second solution

is (w + vt)et, where w = 1
2

(
1
0

)
. We therefore have

Ψ =
(

et (1
2 + t)et

et tet

)

and

[Ψ|g] ∼=
(

1 1
2 + t

1 t

∣∣∣∣
1
−1

)
∼=

(
1 t
0 1

2

∣∣∣∣
−1
2

)
∼=

(
1 0
0 1

∣∣∣∣
−1− 4t

4

)
= [I|u′].

Thus, u1 = −t− 2t2, u2 = 4t, and the solution is

x = Ψu =
(

t + 2t2

−t + 2t2

)
et.

(b) Using part (a) as a model, we expect a particular solution of the form

x =
(
b + dt + kvt2

)
eat,

where b and d are undetermined constant vectors, v is an eigenvector, and k is an
undetermined scalar. Substituting this form into the equation x′ = Ax + weat and
using the identity Av = av ultimately yields the algebraic system

(A− aI)d = 2kv, (A− aI)b = d−w.

The matrix A − aI is singular, so the first equation requires that d be any general-
ized eigenvector. The second equation also has solutions, but only if the generalized
eigenvector d is chosen carefully.
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(c) We have eigenvalue a = 2 and

A− aI =
( −2 1
−4 2

)
, v =

(
1
2

)
.

The equation (A − aI)d = 2kv is consistent for any k and has solutions that satisfy
−2d1 + d2 = 2k. The equation (A − aI)b = d − w is consistent only if d2 = 2d1 − 2,
and this requirement together with the other yields k = −1. Once a suitable vector d
is chosen, b must satisfy −2b1 + b2 = d1 − 1 = 1

2d2. The simplest solution is obtained
by choosing d1 = 1 and b1 = b2 = d2 = 0. This yields the solutions

xp =
(

t− t2

−2t2

)
e−2t, x = d1

(
1
2

)
e−2t + d2

(
1 + t
2t

)
e−2t +

(
t− t2

−2t2

)
e−2t.

Note that we have used d as the generalized eigenvector needed for x(2).

Section A.7

1. Substituting un = bngn(t) sin nπx into the differential equation gives us g′n = −n2π2kgn.
Thus,

u(x, t) =
∞∑

n=1

bne−n2π2kt sinnπx, bn =
∫ 1

0
f(x) sinnπx dx.

3. (a) Using the general solution from Exercise A.7.1,

u(x, t) =
∞∑

n=1

bn,he−n2π2t sinnπx

where

bn,h =
1
2h

∫ 1/2+h

1/2−h
sinnπx dx =

[
cos

(
nπ
2 − hnπ

)− cos
(

nπ
2 + hnπ

)]

2hnπ
.

The identity cosα− cosβ = −2 sin α+β
2 sin α−β

2 reduces the coefficient formula to

bn,h = sin
nπ

2
sinhnπ

hnπ
, sin

nπ

2
=




−1 n = 3, 7, 11, . . .

0 n = 2, 4, 6, 8, . . .
1 n = 1, 5, 9, . . .

.

(b)

u = lim
h→0

∞∑

n=1

bn,he−n2π2t sinnπx =
∞∑

n=1

sin
nπ

2
e−n2π2t sinnπx.

(c) We use the same idea with f = δ(x− 1/2). Thus

bn =
∫ 1

0
δ(x− 1/2) sinnπx dx = sin

nπ

2
,

which is the same as the solution of part (b).
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(d) We have

u(0.5, t) =
∞∑

n=1

sinhnπ

hnπ

1 + (−1)n

2
e−n2π2t.

In particular, at t = 0, the exponential factor does not contribute to the convergence of
the series. The series for u(0.5, 0) does not even converge for h = 0, and the convergence
is very slow for h small. See Figure 100.

(e) The small h calculation of parts (a) and (b) requires less specialized knowledge and
study; however, the h = 0 calculation of part (c) is elementary once one has understood
how to deal with generalized functions. The h = 0 calculation is wrong for extremely
small times; however, the h small calculation is not very useful for small times anyway.
On the whole, mathematicians and engineers prefer the use of delta functions over more
detailed initial condition models such as that of part (a).

0.020.040.060.08 0.1
t

0.5
1

1.5
2

2.5
3

u

0.020.040.060.08 0.1
t

0.5
1

1.5
2

2.5
3

u

Figure 100: Exercise A.7.3

5. The original problem is

Tt = kTxx, T (0, t) = 100, T (1, t) = 20, T (x, 0) = 20.

The steady state problem consists of the equations T ′′s = 0, Ts(0) = 100, and Ts(1) = 20;
hence, Ts(t) = −80x + 100. If we let w = T − Ts, the problem becomes

wt = kwxx, w(0, t) = 0, w(1, t) = 0, w(x, 0) = 80x− 80, T = 100− 80x + w.

Let u = w/80 and τ = kt. Now the problem is

uτ = uxx, u(0, τ) = 0, u(1, τ) = 1, u(x, 0) = x− 1, T = 100− 80x + 80u.

The solution of this problem is

u(x, t) =
∞∑

n=1

bne−n2π2τ sinnπx, bn = 2
∫ 1

0
(x− 1) sinnπx dx = − 2

nπ
.

In terms of the original variable T ,

T = 100− 80x−
∞∑

n=1

160
nπ

e−n2π2kt sinnπx.

See Figure 101.
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Figure 101: Exercise A.7.5

7. Let u = f(x)g(t). Then f satisfies f ′′−λf = 0, f ′(0) = 0, f ′(1) = 0 and g satisfies g′−λg = 0.
If λ > 0, there are no solutions to the eigenvalue problem. If λ = 0, then f = 1 is a solution.
If λ < 0, let λ = −k2. Then the solutions to the eigenvalue problem are f = cos kπx for
k = 1, 2, 3, . . .. The solution of the differential equation for g when λ = 0 is g = c for some
constant c. The solutions for λ = −k2 < 0 are g = exp(−n2π2t). We therefore have a series
solution

u(x, t) = a0 +
∞∑

n=1

ane−n2π2t cosnπx.

The coefficients must be chosen to satisfy

φ(x) = a0 +
∞∑

n=1

an cosnπx.

Since the eigenfunctions are orthogonal, we can multiply by cosmπx and integrate over [0, 1]
to get

a0 = φ̄, an = 2
∫ 1

0
φ(x) cosnπx dx,

where φ̄ is the average of the function φ.

9. (a) Substituting u = f(x)g(t) into the differential equation and putting all of functions of
x on one side gives us f ′′ − σf = 0, f(0) = 0 and f ′(1) = −f(1). The equation g must
satisfy is g′ − σg = 0.

(b) The constant σ must be negative, so let σ = −λ2. Then we have

fn = sin λnx, λn cosλn = − sinλn;

hence, the eigenvalues are the solutions of λ + tanλ = 0.

(c) The solution of the differential equation for g is gn = e−λ2
nt. Thus, the solution of the

homogeneous part of the problem is

u = bn

∞∑

n=1

e−λ2
nt sinλnx.

(d) ∫ 1

0
sin2 λnx dx =

∫ 1

0

1− cos 2λnx

2
dx =

1
2
− sin 2λn

4λn
=

1
2
− sinλn cosλn

2λn
.

Since tanλn = −λn, this integral is equal to (1 + cos2 λn)/2.
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(e) The coefficients must satisfy

u(x, 0) = φ(x) =
∞∑

n=1

bn sinλnx.

Eigenfunctions are automatically orthogonal, so multiplying by sinλmx and integrating
yields ∫ 1

0
φ(x) sin λmx dx = bm

∫ 1

0
sin2 λmx dx =

1 + cos2 λm

2
bm.

Thus,

bn =
2

1 + cos2 λn

∫ 1

0
φ(x) sin2 λn dx.

11. 4 Letting u(t, θ) = f(θ)g(t) and substituting this into the differential equation gives us

g′ − σg = 0, f ′′ − σf = 0, f(π) = f(−π), f ′(π) = f ′(−π).

If σ > 0, there are no solutions to the eigenvalue problem. If σ = 0, then f = g = 1 is
a solution to the eigenvalue problem. If σ = −λ2 < 0, then f = A cosλθ + B sinλθ. The
boundary conditions are satisfies for λn = nπ. The solution for the g equation is gn = e−k2t.
Thus the solution of the original problem can be written in the form

u = a0 +
∞∑

n=1

e−n2t(an cosnθ + bn sinnθ).

From Section 8.5, Equations (5) and (6), we have

a0 = f̄ =
1
2π

∫ π

−π
φ(θ) dθ, an =

1
π

∫ π

−π
φ(θ) cos nθ dθ, bn =

∫ π

−π
φ(θ) sin nθ dθ.

Section A.8

1. (a) We break this into two subproblems. The first is

uxx + uyy = 0, 0 < x, y < 1
u(x, 0) = 0, u(x, 1) = 0, u(0, y) = 0, , u(1, y) = y

The substitution u = f(y)g(x) leads to the eigenvalue problem

f ′′ + kf = 0, f(0) = f(1) = 0, g′′ − kg = 0, g(0) = 0.

The solutions are fn = sinnπy and gn = sinhnπx, and the full series solution is

u =
∞∑

n=1

bn sinhnπx sinnπy.

The remaining condition is

y =
∞∑

n=1

bn sinhnπ sinnπy,

4Exercise A.7.11 contains typographical errors in the first printing. The spatial domain should be −π < 0 ≤ π
and the initial condition should be u(θ, 0) = φ(θ).
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from which we obtain bn sinhnπ = 2
∫ 1
0 y sinnπy dy = −2(−1)n/(nπ). Thus, the solution

of this problem is

u1 =
2
π

∞∑

n=1

(−1)n+1

n sinhnπ
sinhnπx sinnπy.

The second problem is

uxx + uyy = 0, 0 < x, y < 1
u(x, 0) = 0, u(x, 1) = x, u(0, y) = 0, , u(1, y) = 0

This problem can be obtained from the first problem by interchanging x and y; hence,
its solution is u1(y, x). The solution of the full problem is

u =
2
π

∞∑

n=1

(−1)n+1

n sinhnπ
(sinhnπx sinnπy + sinhnπy sinnπx).

(b) See Figure 102. The solution seems to oscillate if you do not use enough terms and the
solution seems to become zero in a region near (1, 1). These problems occur because the
boundary conditions for the two subproblems are not continuous at (1,1).

(c) See Figure 102.
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Figure 102: Exercise A.8.1

3. The solution of the homogeneous part of the problem is given by Equation (12) in the text
as

u = ¯sin θ +
∞∑

n=1

rn(an cosnθ + bn sinnθ).

The remaining boundary condition is

sin θ = ¯sin θ +
∞∑

n=1

(an cosnθ + bn sinnθ),

which immediately yields b1 = 1 and all other coefficients are 0. The solution is

u = r sin θ = y,

which is easily verified by direct substitution.
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Figure 103: Exercises A.8.3 and A.8.5

5. (a) Let Y = 1− y, U(x, Y ) = u(x, 1− y). Then the problem is

Uxx + UY Y = 0, 0 < x < 2, 0 < y < 1,

U(x, 1) = 2x− x2, UY (x, 0) = 0, U(0, Y ) = 0, U(2, Y ) = 0.

The eigenvalue problem is

f ′′ + kf = 0, f(0) = f(2) = 0, g′′ − kg = 0, g′(0) = 0,

and the solutions are fn = sin 1
2nπx and gn = cosh 1

2nπY . We therefore have the series
solution

U =
∞∑

n=1

bn cosh
nπY

2
sin

nπx

2
.

The coefficients must satisfy

2x− x2 =
∞∑

n=1

bn cosh
nπ

2
sin

nπx

2
;

hence,

bn cosh
nπ

2
=

∫ 2

0
(2x− x2) sin

nπx

2
dx =

16[1− (−1)n]
n3π3

.

Thus,

U =
16
π3

∞∑

n=1

[1− (−1)n]
n3

cosh nπY
2

cosh nπ
2

sin
nπx

2

and

u =
16
π3

∞∑

n=1

[1− (−1)n]
n3

cosh nπ(1−y)
2

cosh nπ
2

sin
nπx

2
.

See Figure 103.
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(b) Instead we can solve the problem

wxx + wyy = 0, 0 < x, y < 2
w(0, y) = 0, w(2, y) = 0, w(x, 0) = x(2− x), w(x, 2) = x(2− x)

To solve this we break it into two subproblems. The first is

wxx + wyy = 0, 0 < x, y < 2
w(0, y) = 0, w(2, y) = 0, w(x, 0) = 0, w(x, 2) = x(2− x),

whose solution by Model Problem A.8a is

w =
16
π3

∞∑

n=1

[1− (−1)n]
n3

sinh nπy
2

sinhnπ
sin

nπx

2
.

The second is

wxx + wyy = 0, 0 < x, y < 2
w(0, y) = 0, w(2, y) = 0, w(x, 0) = x(2− x), w(x, 2) = 0,

whose solution, using the symmetry in y, is

w =
16
π3

∞∑

n=1

[1− (−1)n]
n3

sinh nπ(2−y)
2

sinhnπ
sin

nπx

2
.

Thus

w =
16
π3

∞∑

n=1

[1− (−1)n]
n3

sinh nπy
2 + sinh nπ(2−y)

2

sinhnπ
sin

nπx

2
.

Then

wy(x, 1) =
16
π3

∞∑

n=1

[1− (−1)n]
n3

nπ

2
cosh(nπ/2)− cosh(nπ/2)

sinhnπ
sin(nπx/2) = 0.

(c) Part (a) requires us to solve only one problem. Part (b) has us solve two problems but
they are both somewhat easier than the problem in part (a). The work in part (b) is also
much more symmetric, so the calculations are easier to follow. The solutions actually
are identical. Using the identity 2 cosh a sinh b = sinh(b + a) + sinh(b− a), we have

cosh nπ(1−y)
2

cosh nπ
2

=
2 cosh nπ(1−y)

2 sinh nπ
2

2 cosh nπ
2 sinh nπ

2

=
sinh nπy

2 + sinh nπ(2−y)
2

sinhnπ
sin

nπx

2
.

11. (a) Letting u = 1− r + w(r, θ) means that w satisfies

wrr +
1
r
wr +

1
r2

wθθ =
1
r
, 0 < r < 1, 0 < θ < π

w(1, θ) = 0, w(r, 0) = 0, w(r, π) = 0.

(b) The substitution w(r, θ) = f(θ)g(r) yields the eigenvalue problem f ′′+λf = 0, f(0) = 0,
f(π) = 0. The solutions are fn = sin nθ for n = 1, 2, 3, . . ..
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(c) The given form for w leads to the equation

∞∑

n=1

(
r2g′′n + rg′n − n2gn

)
sinnθ = r.

(d) The quantity on the left of the equation of part (c) is a Fourier series; hence, it must be
the same as the Fourier series for the quantity on the right. Equating coefficients, we
have

r2g′′n + rg′n − n2gn =
2
π

∫ π

0
r sinnθ dθ =

2[1− (−1)n]
nπ

.

We also have boundary conditions g(1) = 0 and |g(0)| < ∞.

(e) The complementary solution of the differential equation is gnc = c1r
n + c2r

−n, and the
boundedness condition at r = 0 then forces c2 = 0. The particular solutions are 2r ln r/π
for n = 1 and 2[1 − (−1)n]r/[n(1 − n2)π] for n ≥ 2. With the initial conditions, we
obtain the results

g1 =
2
π

r ln r, gn = −2[1− (−1)n]
n(n2 − 1)π

(r − rn), n ≥ 2.

Thus, the solution of the original problem is

u = 1− r +
2
π

r ln r sin θ − 2
π

∞∑

n=3

[1− (−1)n]
n(n2 − 1)

(r − rn) sin nθ.

(Note that the even terms in the sum are all 0; hence, the sum starts at n = 3.)

(f) See Figure 104.
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Figure 104: Exercise A.8.11
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