Appendix A2. Picard Iteration

The following first order initial value problem

$$
y^{\prime}(t)=f(t, y(t)), y(0)=0
$$

can be reformulated as the an integral equation

$$
y(t)=\int_{0}^{t} f(s, y(s)) d s
$$

See Ledder, Appendix A.2.
Assume that $f(t, y)$ and its y partial are continuous on a rectangle containing the point $(0,0)$. Then starting with an initial "guess" for a solution

$$
y_{0}(t)=g(t),
$$

the recursive relation

$$
y_{n}(t)=\int_{0}^{t} f\left(s, y_{n-1}(s)\right) d s
$$

generates a sequence of functions converging to the solution. These functions are called the Picard iterates generated by $g(t)$.

Maple can generate some of these iterates, use a for..do loop.
The following example is taken from Ledder, see Chapter A.2, Exercise 2.
Example Obtain the first three Picard iterates for the following IVP, generated by the function $g(t)=0$.

$$
\frac{d}{d t} y(t)=t+t^{2} y(t), y(0)=0
$$

Sketch their graphs and the graph of the exact solution.
Start with the definition of the function f.
$>\mathrm{f}:=(\mathrm{t}, \mathrm{y})->\mathrm{t}+\mathrm{t}^{\wedge} 2 * \mathrm{y}$;

$$
f:=(t, y) \rightarrow t+t^{2} y
$$

Use it to define the diffenential equation.

$$
\begin{array}{r}
>\mathrm{DE}:=\operatorname{diff}(\mathbf{y}(\mathrm{t}), \mathrm{t})=\mathbf{f}(\mathrm{t}, \mathrm{Y}(\mathrm{t})) ; \\
\\
\qquad D E:=\frac{d}{d t} y(t)=t+t^{2} y(t)
\end{array}
$$

Compute the first three iterates.

```
> Y[0] := t -> 0:
    for n from 1 to 3
        do
```

```
        int(f(s,Y[n-1](s)),s=0..t):
        Y[n] := unapply(%,t):
        end do:
unassign('n');
```

The formulas for the initial guess and the three iterates are displayed below.
$>$ for n from 0 to 3 do $y[n](t)=Y[n](t)$ end do; unassign('n');

$$
\begin{gathered}
y_{0}(t)=0 \\
y_{1}(t)=\frac{1}{2} t^{2} \\
y_{2}(t)=\frac{1}{2} t^{2}+\frac{1}{10} t^{5} \\
y_{3}(t)=\frac{1}{80} t^{8}+\frac{1}{10} t^{5}+\frac{1}{2} t^{2}
\end{gathered}
$$

The actual solution formula is obtained next. It is not pretty.

$$
\begin{aligned}
& >\text { soln }:=\text { dsolve }(\{\mathrm{DE}, \mathbf{y}(0)=0\}) ; \\
& \operatorname{soln}:=y(t)=\frac{\mathbf{e}^{\left(\frac{1}{6} t^{3}\right)} 9^{(2 / 3)}\left(t^{3} \text { WhittakerM }\left(\frac{1}{3}, \frac{5}{6}, \frac{1}{3} t^{3}\right)+5 \text { WhittakerM }\left(\frac{4}{3}, \frac{5}{6}, \frac{1}{3} t^{3}\right)\right)}{10 t\left(t^{3}\right)^{(1 / 3)}}
\end{aligned}
$$

The plot of the solution, red and thick, and the three iterates, blue, green, black:

```
> plot([rhs(soln),Y[n](t)$n=1..3], t=0..2, y=0..5,
    color=[red,blue,green,black], thickness=[2,1$3]);
```


The next output reveals that the Picard iterates are the partial sums to the Taylor series for the solution.
> dsolve($\{\mathrm{DE}, \mathrm{y}(0)=0\}, \mathrm{y}(\mathrm{t})$, type=series, order=9);

$$
y(t)=\left(\frac{1}{2} t^{2}+\frac{1}{10} t^{5}+\frac{1}{80} t^{8}+O\left(t^{9}\right)\right)
$$

Ask the FunctionAdvisor about the Whittaker functions.
> FunctionAdvisor(Whittaker);
The 2 functions in the "Whittaker" class are:
[WhittakerM, WhittakerW]
This is enough to get to a Help page. Go see what they are all about.

