Glossary

The Maple procedures and operators used in this manual are listed, in alphabetical order. If appropriate, a brief description of syntax and output is also included. In all cases see the corresponding Maple Help page for more complete explanations.

e	Composition operator for functions. Syntax: f@g is the composition of functions f and g. (f@@5) is f composed with itself 5 times. (D@@5)(f) is the fifth derivative of f.
ab	The range of values from a to b. > int(sin(x), x=12); output: cos(1)-cos(2)
Add	A procedure in the LinearAlgebra package for adding vectors or matrices. Syntax: $Add(A,B)$
add	The procedure to use when adding a few numbers, vectors, etc. Syntax: add(f(k), k=1n). > add(k*(k+1), k=-13); output: 20
alias	Used to create an alias of a long Maple name. Syntax: alias(H=Heaviside); Output: H
animate	A plot procedure that animates plots. In the plot package. Syntax: animate(plot command, [Input for plot command], param=ab, frames=n)
animatecurve	A procedure that creates an animation of the plotting of a 2-d graph. In the plots package. Syntax: animatecurve($f(x), x=ab, frames=n$) Also applies to parametrized curves and works in polar coordinates (funky).
anonymous functio	A function with no name. > (x->x^2)(3); Output: 9
args	The name of the sequence of inputs in a procedure. > f:=proc() "Hello", args[1], "how are you." end proc: f(world, x, z); Output: "Hello", world, "how are you."
arguments	The inputs in a procedure are called its arguments. See args and nargs .
array	A Maple data structure like a list but more versatile because the index set can include negative integers and zero. Multiple indices can also be used. Syntax: array(ab,cd,, list). > A := array(-31,[1,2,3,4,5]): A[-1],A[0]; output: 3, 4
arrow	Creates and plots arrows. In the plots package. Syntax: arrow([a,b]) plots an arrow from [0,0] to [a,b] arrow([a,b], [c,d]) plots an arrow at [a,b] with direction [c,d] arrow([a,b], [c,d], difference=true) plots an arrow from [a,b] to [c,d] Optional equations control the shape and size of the arrow.

arrow definition of	a function
	A function f can be created using the syntax $f := x \rightarrow expression in x$. This is referred to as an arrow definition.
	> f := x -> sin(x)/x; f(0) := 1:
arrows	The optional equation arrows=none in the DEplot procedure will suppress the arrows. Use arrows=line to draw line segments instead of the default harpoon arrows.
assign	 A procedure that converts an equation, equations, or a set or a list of equations into assignments. Syntax: assign(x=expression) > assign(x=5); output: none, but henceforth x will be a name for 5. To free the x variable use either unassign('x') or x := 'x'
:=	The assignment operator. Assigns a name to an expression. Syntax: name := expression > $\mathbf{y} := \mathbf{sin}(\mathbf{t}): \mathbf{t} = \mathbf{z}: \mathbf{y} + \mathbf{x};$ output: $\sin(t) + x$ Note that the equation $\mathbf{t} = \mathbf{z}$ does not assign the name t to the expression z.
assume	<pre>The optional equation assume=property in the simplify procedure can be used to tell Maple to make the simplification under the stated assumption. > simplify(sqrt(a^2), assume=positive); Output: a The entry > assume(x::positive); tells Maple to assume x is positive in all calculations.</pre>
assuming	<pre>Place an assumption on x in a particular calculation by adding assuming x::property. > simplify(sqrt(a^2)) assuming a::negative; Output: - a</pre>
backward quotes	Use backward quotes `` to make any list of symbols into a name. > `A big number`:=10: `A big number`, `A big number`^2; output: 10, 100
base	<pre>Keyword for convert. Converts an integer to a different base.</pre> <pre>> convert(114,base,3); Output: [0, 2, 0, 1, 1]</pre>
BesselJ	Maple's symbol for the Bessel functions of the first kind. BesselY denotes the Bessel functions of the second kind.
binary function	A function of two variables, (x,y) -> expression in x and y.
binomial	The binomial coefficient function: $binomial(m,n) = m!/n!/(m-n)!$
boolean connective	Maple supports the boolean connectives implies, and, or, xor (exclusive or) as well as the unary not. > is(2=5 or 2=2); output: true > is(2=5 and 2=2); output: false
boolean function	<pre>A function having the values true, false. > f := t-> type(t,numeric): f(sin(2)); Output: false (sin(2) is of type constant.)</pre>

break	An execution control command. The entry break tells Maple to immediately leave the current repetition statement (fordoend do) and continue execution with the next input. See next and return .
	<pre>> for k from 1 to 10 do if isprime(k) then break end if; end do; k^2; Output: 4</pre>
bу	Used to make a repetition statement. > for k from 6 by -2 to 0 while not isprime(k) do k end do; Output: The numbers 6, 4 on separate output lines.
cat	<pre>Concatenation function: cat(a,b) concatenates symbols a and b. If a and b are strings the output is a string. The symbol serves as a concatenation operator. allb and cat(a,b) have same output when a and b are unassigned symbols. > cat(a,b); a b; Output: Line1, ab Line2, ab > cat("Hello", "World"); Output: "HelloWorld" > cat(x,15); Output: x1, x2, x3, x4, x5 > cat(x,15,y); Output: x1y, x2y, x3y, x4y, x5y</pre>
collect	A procedure that collects like terms in an expression. Use it to make polynomials. > collect($x*(y+x*(w+x*t))$, x); output: $tx^3 + wx^2 + xy$
:: (double colon)	The double colon is used by Maple to assign a property to a name. > simplify(abs(x)) assuming x::negative; Output: -x
coeff	Calculates the coefficients in a polynomial. Syntax: coeff(polynom, x, 4) or coeff(polynom, x^4) > coeff(x*y^6 + x^3 + 3*x,x,1); Output: y ⁶ + 1
Column	 A procedure in the LinearAlgebra package. Returns a column of a matrix. Syntax: Column(A,k) Column(<<1,2,3> <4,5,6> <7,8,9>>,2); output: The second column of the matrix.
ColumnSpace	A procedure in the LinearAlgebra package. Returns a list of basis vectors for the column space of a matrix. Syntax: ColumnSpace(A) > ColumnSpace(<<1,2,3> <4,5,6> <7,8,9>>); output: A list containing <1,0,1> and <0,1,2>
combine	<pre>The opposite of expand. Use keywords to combine subexpressions. > combine(exp(a)*exp(b)+sin(x)*sin(2*x)); Output: exp(a+b) + cos(x)/2 - cos(3x)/2</pre>
concatenation	The symbol (two vertical bars) is called the <i>concatenation operator</i> . Use it to form names by combining two sub names. The use of this operator is discouraged. Use cat instead. > x (14); output: x1, x2, x3, x4 > cat(x,14) ; output: x1, x2, x3, x4
confrac	<pre>Keyword for convert, converts real numbers and rational polynomial expressions to continued fraction form. > convert((t^2+1)/(t^3-t), confrac, t);</pre>

contourplot	Plots 2-d contours of the form F(x,y) = c. In the plots package. Syntax? contourplot(F(x,y), x=ab, y=cd, contours=n) Also accepts contours=[list of values]
convert	<pre>A procedure that converts expressions of one type into those of a similar type. Does partial fractions via parfrac. Syntax: convert(expression, type) > convert([[1,2],[3,4]], Matrix); > convert(1/t^2/(t-1)^2, parfrac, t);</pre>
coordplot	Plots 2 dimensional coordinate lines. In the plots package. Syntax: coordplot(polar) coordplot3d plots 3 dimensional coordinate surfaces.
cylinderplot	Plots in cylindrical coordinates. In the plots package. Plots r as a function of theta and z. Syntax: cylinderplot(r(theta,z), theta=ab, z=cd)
D	The derivative operator. Used to differentiate functions. Syntax: D(f) > f := x->x*sin(x): D(f); output: x -> sin(x) + x cos(x)
DEtools	A package of procedures used to analyze differential equations or a system of differential equations. Load it using with(DEtools).
DEplot	A procedure in the DEtools package. Plots numerical solutions to differential equations and systems. Can also generate direction fields and vector fields. Syntax: DEplot(DE, y(x), x=-22, y=-22) will plot the direction field for a first order ode named DE if its independent variable is x and its dependent variable is $y(x)$. Add a set of initial conditions of the form { [a,b], [c,d], etc. } to generate solution curves.
degree	Calculates the degree of a polynomial. Include the principal variable. > degree(x*y^6 + x^3 + 3*x,x); Output: 3
Determinant	Procedure in LinearAlgebra to compute the detenminant of a matrix: Determinant(A).
diff	<pre>The differentiation procedure used for the differentiation of expressions. Syntax: diff(expression, variable). Also computes partial derivatives. Inert form: Diff. > diff(sin(x), x); output: cos(x) For the second derivative put in the independent variable twice. > diff(sin(x), x, x); output: - sin(x)</pre>
Dirac	<pre>The Dirac delta function. Dirac is the derivative of Heaviside. Dirac's derivative is denoted Dirac(1,x), etc. > diff(Dirac(x),x); output: Dirac(1,x)</pre>
dirgrid	The optional equation dirgrid=[m,n] can be used to control the number of arrows drawn by the DEplot procedure.
discont	An optional equation for the plot procedure: discont=true tells Maple <i>not</i> to connect the end points at a jump discontinuity. The default is discont=false .

display	<pre>A procedure that displays several plots at one time. In the plots package. Call it using plots[display]. > P1 := plot(sin(x),x=0Pi): P2 := plot(cos(t),t=Pi2*Pi): plots[display](P1,P2); output: The two plots on the same set of axes.</pre>
divide	 Boolean to determine if polynomial g divides polynomial f: divide(f,g); The entry divide(f,g,'q') tells Maple to store the quotient with the name q. divide(x^3+x+2,x+1); Output: true divide(x^3+x+2,x+1,'q'); q; Output: Line1, true, Line2, x^2 - x + 2
doend do	A do statement. Used in Maple programming. Typically appears as part of a for statement. > S := {}: for k from 1 to 10 do S := S union {k}: end do: S; output: {1, 2,, 10}
dsolve	A procedure for solving differential equations, both symbolically and numerically. Syntax: dsolve(DE), dsolve({DE, inits}), dsolve({DE, inits}, y(x), type=numeric) where DE is a differential equation and inits is a sequence of initial values. > dsolve(diff(y(t),t) = y(t)); output: y(t) = _C1 e^t
Eigenvalues	Procedure in LinearAlgebra packate. Eigenvalues(A) returns A's eigenvalues in a column vector.
Eigenvectors	Procedure in LinearAlgebra packate. Eigenvectors(A) returns A's eigenvalues in a column vector and its eigenvectors as columns in a matrix.
elif	Abbreviation for "or else if". Used in ifthen statements. > a:=1: b:=2: if a>b then OK elif a=b then NOT else BIG end if; Output: BIG
else	Used in ifthen statements. See the example above.
eval	<pre>A procedure used to evaluate an expression or the expression represented by a symbol. Syntax: eval(expression) or eval(expression, variable=value) > eval(sin(2*x), x=Pi); output: 0 The entry eval(symbol,n) evaluates symbol to level n. > x:=y: y:=z: z:=3: eval(x,2),eval(x,1),eval(x); Output: z, y, 3</pre>
evalf	A procedure used to evaluate a symbolic constant to floating point form. > evalf(sin(Pi/4), 4); output: 0.7070
evaluation rules	Maple applies the rule of <i>full evaluation</i> to most names that are defined in a worksheet. <i>First level evaluation</i> applies to all local variables in a procedure. <i>Last name evaluation</i> applies to symbols representing some objects (tables and arrays). Use eval or print to force full evaluation.
expand	Applied to an expression, expand multiplies out, applies trig identities, expands exponential and log expressions, etc. to break the input into smaller pieces (not necessarily simpler). > expand($sin(x+y)$; Output: $sin(x) cos(y) + cos(x) sin(y)$
expression	Any group of symbols that makes sense to Maple. That is, Maple can process it and produce an output

(which might be NULL).

expression tree	Expression tree refers to a graph constructed from the data structure of a Maple expression. The procedures and the symbols in the expression appear as nodes. An expression sequence does not have an expression tree.
factor	Used to factor polynomials, not integers. Use ifactor to factor integers. > factor(x^4-x); Output: x(x-1)(x^2+x+1)
factorset	<pre>A procedure in the numtheory package. Finds the prime factors of an integer. > factorset(1234567890); output: {2, 3, 5, 3607, 3803}</pre>
fieldplot	Plots vectors in a 2-d vector field. In the plots package. Syntax: fieldplot($[f(x,y),g(x,y)]$, x=ab, y=cd, arrows=slim, dirgrid=[12,12]) Other arrow styles are available. Default, harpoon arrows.
first level evaluatio	on An evaluation rule. First level evaluation applies to local variables in a Maple procedure. > f:=proc() local x,y,z; x:=y; y:=z; z:=3; x; end proc: f(); Output: y
floor	A function that returns the largest integer less than or equal to the input number. > floor(Pi), floor(-Pi); output: 3, -4
for	Starts a for statement, useful in Maple programming. Often used in conjunction with a do statement. Syntax: for k from a to b by c (or, for k from a by c to b) S:=0: for k from -1 to 3 by 1/2 do S:=S+k: end do: S,k; output: 7/2, 9
full evaluation	An evaluation rule. A name or symbol used in a Maple worksheet is generally given <i>full evaluation</i> when called in subsequent entries. > x:=y: y:=z: z:=3: x; Output: 3
fsolve	<pre>A procedure for obtaining floating point (approximate) solutions to an equation in one variable. Specify a search interval by adding a range ab. > fsolve(sin(x) = sqrt(x)*cos(x), x, 01); output: .6948992874</pre>
function	Can refer to the classic function concept. To create such a function use the arrow operator. > f := x -> x*sin(x); output: f:= x -> x sin(x)
GAMMA	The Gamma function: $GAMMA(x) = (x-1)!$ when x is a positive integer. > GAMMA(3), GAMMA(4), GAMMA(1/2); output: 2, 6, sqrt(Pi)
gamma	Euler's constant.
gcđ	<pre>Polynomial greatest common divisor function. > gcd(x^2+4*x+4,x^2+x-2); Output: x + 2</pre>
global	A variable used in a Maple procedure can be declared global. Such variables, which are fully evaluated,

	<pre>will interact with variables used outside of the procedure as if they were defined outside the procedure. See full evaluation. Maple discourages the use of global variables in a procedure. Use a name declaration in the input instead. See name declaration. > f:=proc(y,x,der::name) der:=diff(y,x); end proc: y:=sin(t^2): f(y,t): yprime; Output: 2 cos(t^2) t</pre>
has	<pre>Binary boolean to determine if an expression has a certain sub-expression. > has(x^2 + sin(x) - 2, sin); Output: true</pre>
Heaviside	The unit step function. Heaviside(0) is undefined.
identify	<pre>Attempts to identify a floating point approximation as an exact number > identify(3.14159); Output: Pi Do not use it for "easy" numbers like 5.2. > identify(5.2); Output: 5.</pre>
ifthen	ifthen statements are useful programming tools in Maple. Finish with end if. > a:=1: b:=2: if (a+1 <b-1) -1<="" a+b="" a-b="" else="" end="" if;="" output:="" th="" then=""></b-1)>
ifactor	Used to factor integers. Use factor to factor polynomials. > ifactor(123456); Output: (2 ⁶)(3)(643)
igcd	Integer greatest common divisor. > igcd(123,456,789); Output: 3
ilcm	Integer least common multiple. > ilcm(123,456,789); Output: 4917048
implicitplot	Plots equations in two variables (implicitly). In the plots package. Syntax: implicitplot($x^2 + y^2 = 1$, x=-22, y=-22) Use grid=[m,n] to get smoother curves. Use implicitplot3d for 3-d plots.
intersect	Set intersection. Syntax: A intersect B > {1,2,3} intersect {2,3,4}; output: {2,3}.
inequal	Plots inequalities. In the plots package. Put the inequalities in a list. Syntax: inequal([Inequalities], x=ab, y=cd) Use optional equations: optionsfeasible=(color=red), optionsexcluded=(color=yellow) to color the regions.
infinity	Used to designate "larger than any positive number". Prints as the infinity symbol (sideways 8) > limit(sin(x)/x, x=infinity); output: 0
infolevel	A Maple procedure that can be used to request more information about a particular Maple procedure. For example, the entry infolevel[dsolve] := 2 causes Maple to list the methods it applies when dsolve is used to solve a differential equation.

int	<pre>The integration procedure, both indefinite and definite. Syntax: int(expression, variable). Inert form: Int. > int(sin(x), x); output: - cos(x) > int(sin(x), x=0Pi); output: 2</pre>
interface	Maple procedure used to set interface variables (those Maple variables that effect the interaction between Maple and the user). interface(verboseproc=2); Output: Current value for verboseproc (default = 1). Henceforth Maple will print more information about procedures.
iquo	The integer quotient function: iquo(a,b) is the greatest integer less than or equal to a/b, (a, b integers). The entry iquo(a,b,'r') stores the remainder with the name r. > iquo(10,3); Output: 3 > iquo(10,3,'r'): r; Output: 1
irem	The integer remainder function: irem(a,b) is the remainder when a is divided by b (a, b integers). The entry irem(a,b,'q') stores the quotient with the name q. > irem(10,3); Output: 1 > irem(10,3,'q'): q; Output: 3
is	A procedure used to ask a question having an answer that is either true or false. Syntax: is(expression, property or type) > n:=1.5: m:=3/2: is(10*n,integer), is(10*m,integer); output: false, true Question: What happened here? Answer: 10*n evaluates as the floating point number 15.0 which Maple does not consider to be an integer. 10*m evaluates as the integer 15.
isprime	<pre>Boolean function that determines if an integer is prime.</pre> <pre>> isprime(1234567); Output: false</pre>
	> isprime(1234567); Output: false
isprime last name evaluat	> isprime(1234567); Output: false
	 > isprime(1234567); Output: false ion An evaluation rule. Maple applies last name evaluation to symbols representing some types of data (including tables and arrays). Use eval or print to force full evaluation. > A := array(02,[1,2,3]): B := A: B; Output: A
last name evaluat	 > isprime(1234567); Output: false An evaluation rule. Maple applies last name evaluation to symbols representing some types of data (including tables and arrays). Use eval or print to force full evaluation. > A := array(02,[1,2,3]): B := A: B; Output: A > eval(B); Output: ARRAY([02], [(0)=1, (1)=2, (2)=3]) Polynomial least common multiple function.
last name evaluat lcm	 > isprime(1234567); Output: false An evaluation rule. Maple applies last name evaluation to symbols representing some types of data (including tables and arrays). Use eval or print to force full evaluation. > A := array(02,[1,2,3]): B := A: B; Output: A > eval(B); Output: ARRAY([02], [(0)=1, (1)=2, (2)=3]) Polynomial least common multiple function. > lcm(x^2+4*x+4,x^2+x-2); Output: (x+2)(x^2 + x - 2) Calculates the least degree of a polynomial. Include the principal variable.
last name evaluat lcm ldegree	 > isprime(1234567); Output: false An evaluation rule. Maple applies last name evaluation to symbols representing some types of data (including tables and arrays). Use eval or print to force full evaluation. > A := array(02,[1,2,3]): B := A: B; Output: A > eval(B); Output: ARRAY([02], [(0)=1, (1)=2, (2)=3]) Polynomial least common multiple function. > lcm(x^2+4*x+4,x^2+x-2); Output: (x+2)(x^2 + x - 2) Calculates the least degree of a polynomial. Include the principal variable. > ldegree(x*y^6 + x^3 + 3*x,x); Output: 1 Used to make a left hand limit.

limit	The limit procedure. Syntax: limit(expression,variable=value). Inert form: Limit. > limit(sin(x)/x, x=0); output: 1
LinearAlgebra	a A package of procedures to handle vectors and matrices. Load it using with (LinearAlgebra).
LinearSolve	<pre>A procedure in the LinearAlgebra package for solving a matrix equation AX = B. Syntax: LinearSolve(A,B)</pre> > LinearSolve(<<1,2> <3,4>>,<5,6>); output: The column vector <-1,2>.
linestyle	The optional equation linestyle=2 in a plot procedure draws curves using dotted lines. There are four linestyles. The default is linestyle=1. Use the following input to see all four styles. > plot([1,2,3,4],05,05,linestyle=[1,2,3,4],color=black);
list	A sequence enclosed in square brackets. Syntax: [a, b, c,, d]
local	A variable used in a Maple procedure can be declared local. Such variables, which are only evaluated to the first level, do not interact with variables used outside of the procedure. See <i>first level evaluation</i> .
map	<pre>Used to map functions into expressions. > map(f,[x,y,z]); Output: [f(x), f(y), f(z)]</pre>
map2	<pre>Used to map functions f(x,y) into expressions. > map2(f,a,[x,y,z]); Output: [f(a,x), f(a,y), f(a,z)]</pre>
Matrix	A procedure used to create matrices. Use it whenever the matrix is to be manipulated by procedures in the LinearAlgebra package. Syntax: Matrix(m,n,[[a,b,,c],,[d,e,f]]) creates an m x n matrix with rows [a,b,,c],, [d,e,,f]. The same matrix can be made by entering $\langle a,b,,c \rangle \dots \langle d,e,\dots,f \rangle$. An entry of the form Matrix(m,n,(i,j)->f(i,j)) can also be used.
maximize	<pre>A procedure that returns the maximum value of an expression of one variable. Syntax: maximize(expression, variable=ab). > maximize(sin(x), x=0Pi); output: 1 minimize works in the same way.</pre>
Maximize	 A numerical procedure in the Optimization package (Maple 9.5). Syntax: Maximize(expression, set of constraints). > Maximize(sin(x), {x >= 0, x<=Pi}); output: [1.,x = 1.57079632679504266]. Minimize works the same way.
member	<pre>Binary boolean function to determine membership (set, list). > member(3, {1,2,3}); Output: true</pre>
minus	Set subtraction. Syntax: A minus B > {1,2,3} minus {2,3,4}; output: {1}.
Multiply	A procedure in the LinearAlgebra package for multiplying matrices.
	9

name declaration	<pre>Maple discourages the use of global variables in a procedure. Use a name declaration in the input instead. > f:=proc(y,x,der::name) der:=diff(y,x); end proc: y:=sin(t^2): f(y,t): yprime; Output: 2 cos(t^2) t</pre>
nargs	The number of inputs in a procedure. The inputs are called the <i>arguments</i> of the procedure. > f:=proc() "Hello you",nargs,"how are you." end proc: f(world,x,z); Output: "Hello you",3,"how are you."
next	An execution control command. The entry next tells Maple to immediately increment the counter in a forwhile do loop. See break and return . > for k from 1 to 5 do if isprime(k) then next end if; k; end do; Output: 1 and 4 on separate output lines.
nextprime	<pre>A Maple procedure, nextprime(n) returns the next prime after the integer n. > nextprime(11111111111); Output: 11111111123</pre>
numpoints	An option in plot procedures. For example, the equation numpoints=200 tells Maple to plot at least 200 points when making a line graph.
numtheory	The name of a package of special procedures to deal with questions in number theory. See factorset .
op, nops	The procedure op extracts the operands from an expression, nops counts them. Syntax: op(expression) returns a sequence of all the operands in an expression, op(k,expression) returns the kth operand, op(0,expression) returns the top level type of the expression nops(expression) returns the number of operands in an expression. > op(a+b), nops(a+b), op(2,a+b), op(0,a+b); output: a, b, 2, b, +
Optimization	A package of numerical optimization procedures. New to Maple 9.5.
output=array	Use the optional equation output=array(list) in the numeric dsolve procedure dsolve(, type=numeric) to get an output consisting of an array of approximate solution values.
parfrac	Keyword for convert , converts rational polynomial expressions to partial fraction form. > convert((t^2+1)/(t^3-t), parfrac, t); Output: $1/(t+1) - 1/t + 1/(t-1)$
patchcontour	One of several optional plot styles for 3d graphs. This one draws contour lines on the surface. Syntax: style=patchcontour. Other styles include patch, patchnogrid, contour, wireframe.
8	Percent sign, also called the <i>ditto operator</i> . Refers to the last Maple output, in time. > sin(Pi/4): evalf(%); output: .7071067810

Syntax: Multiply(A,B). The syntax **A.B** can also be used for matrix multiplication.

10

Pi	Maple's symbol for the famous mathematical constant.
piecewise	A procedure used to make piecewise defined expressions. Syntax: piecewise($x<0$, x , $x<=2$, x^2 , $sin(x)$) makes the expression that evaluates to x if $x < 0$, x^2 if x is not less than 0 but is less than or equal to 2, and to $sin(x)$ otherwise.
plot	The Maple procedure for making 2 dimensional plots. Use plot3d for 3 dimensional plots. > plot(sin(x), x=0Pi); output: The graph of sin(x) from x = 0 to x = Pi.
plots	A Maple package of specialized plot procedures. Load it using with (plots). To call a particular procedure use plots[procedure]. > plots[implicitplot]($x^2 = y^2 - 1$, $x = -33$, $y = -33$); output: a 2d plot of the equation $x^2 = y^2 - 1$ in the window $-3 \le x \le 3$, $-3 \le y \le 3$.
pointplot	Plots points in 2-dimensions. In the plots package. Different symbols can be used (circle, box, cross, diamond). Syntax: pointplot([[a,b], [c,d],], symbol=cross, symbolsize=18)
polygonplot	Plots 2-d convex polygons. In the plots package. Put the vertices in a list. Syntax: polygonplot([Vertices]) Use polygonplot3d for polygons in 3 dimensions.
polyhedraplo	Plots 3 dimensional polyhedra. In the plots package. Syntax: polyhedraplot([a,b,c], polytype=dodecahedron, polyscale=1) Enter polyhedra_supported() to see a set of polyhedra that Maple can plot.
polynom	Abbreviation for polynomial. Used, for example, in the convert procedure. > convert(taylor(sin(x), x=0), polynom); output: x - x^3/6 + x^5/120
prevprime	A Maple procedure, prevprime(n) returns the prime preceding the integer n.prevprime(111111111111); Output: 11111111053
print	A procedure used to make Maple print something. Text can be printed if enclosed in backwards quotes as illustrated below. > print(`My name is Joe.`,5+4,int(sin(x),x)); output: My nam is Joe., 9, - cos(x)
printlevel	A Maple variable whose value determines how much information is included in a Maple output. Default value is printlevel := 1 , printlevel := -1 tells Maple to suppress all output. See infolevel .
proc	<pre>Makes user-defined procedures. > f := proc(x) x^2-x+sin(x) end proc: f(car); output: car² - car + sin(car) The same effect can be accomplished with the arrow notation. > f := x -> x²-x+sin(x); f(car); output: line1:f:= x -> x² - x + sin(x), line 2: car² - car + sin(car)</pre>
quo	Polynomial quotient function: $quo(f,g,x)$ is the quotient when polynomial f is divided by polynomial g

	<pre>(rational coefficients). The entry quo(f,g,x,'r') computes the quotient and stores the remainder with the name r. Inert form Quo, used in conjunction with mod p (p a prime), tells Maple to calculate over the ring of integers mod p. > quo(x^4+x^3+x+1,x^2-1,x); Output: 1 + x + x^2 > quo(x^4+x^3+x+1,x^2-1,x,'r'): r; Output: 2 + 2x > Quo(x^4+3*x^3+2*x^2+4,x^2-1,x) mod 3 Output: x</pre>
rationalize	<pre>Rationalizes expressions with fractional exponents. > rationalize((x+x^(1/3))/(x^(3/2)+x^3));</pre>
rand	A Maple procedure with no arguments. The entry rand() outputs a (pseudo) random 12 digit positive integer. An entry of the form rand(ab)() outputs a random integer in the range ab .
Rank	A procedure in the LinearAlgebra package. Returns the rank of a matrix. Syntax: Rank(A) > Rank(<<1,2,3> <4,5,6> <7,8,9>>); output: 2
ReducedRowEc	helonForm A procedure in the LinearAlgebra package. Returns the reduced row echelon form of a matrix.
	<pre>Syntax: ReducedRowEchelonForm(A) > ReducedRowEchelonForm(<<1,2,3> <4,5,6> <7,8,9>>); output: <<1,0,1,> <0,1,0> -1,2,0>></pre>
rem	Polynomial remainder function: rem(f,g,x) is the remainder when polynomial f is divided by polynomial g (rational coefficients). The entry rem(f,g,x,'q') computes the remainder and stores the quotient with the name q. Inert form Rem, used in conjunction with mod p (p a prime), tells Maple to calculate over the ring of integers mod p. > rem(x^4+x^3+x+1,x^2-1,x); Output: 2 + 2x > rem(x^4+x^3+x+1,x^2-1,x, 'q'): q; Output: 1 + x + x^2 > Rem(x^4+x^3+x+1,x^2-1,x) mod 2; Output: 0
remember	An option in a procedure. Tells Maple to remember values that it has calculated. They are stored in a table and used if needed in a subsequent calculation.
remove	<pre>Removes elements from and expression based on a boolean function criterion. Syntax: remove(boolean,expression). > remove(t->is(degree(t,x)>3),[x^2+x,x-x^4,x,x^5+3]); Output: [x^2 + x, x]</pre>
return	<pre>An execution control command used only in procedures. The entry return tells Maple to immediately leave the procedure and output what follows the word return. See break and next. > f:=proc(n) local k; for k from n+1 do if isprime(k) then return k end if; end do; end proc; > f(7); Output: 11.</pre>
rhs	Right hand side procedure. Outputs the right hand side of an equation. > rhs(E = m*c^2); output: m c^2
right	Used to make a right hand limit.

	<pre>> limit(sin(x)/x^2, x=0, right); output: infinity</pre>
RootOf	A function that represents the roots (zeros) of an expression. Often appears in the output of the solve procedure to represent an exact value. > solve(tan(x) = x^2 , x); output: RootOf(-tan(_Z) + _Z^2)
\$	The sequence operator. Used to make sequences. Syntax: $f(k) \ k=ab$
Φ	> $k/(k^2+1)$ \$ $k=-13$; output: -1/2, 0, 1/2, 2/5, 3/10
select	Selects elements in and expression based on a boolean function criterion. Syntax: select(boolean,expression).
	<pre>> select(t->is(degree(t,x)>3),[x^2+x,x-x^4,x,x^5+3]); Output: [x - x^4, x^5 + 3]</pre>
selectremove	Selects and removes elements in and expression based on a boolean function criterion. Syntax: selectremove(boolean,expression).
	<pre>> selectremove(t->is(degree(t,x)>3),[x^2+x,x-x^4,x,x^5+3]); Output: [x - x^4, x^5 + 3], [x^2 + x, x]</pre>
seq	The sequence procedure. Used to make sequences. Syntax: seq(f(k), k=ab) > seq(k/(k^2+1), k=-13); output: -1/2, 0, 1/2, 2/5, 3/10
	<pre>> seq(k/(k²+1), k=[a,3,car]); output: a/(a²+1), 3/10, car/(car²+1)</pre>
sequence	A family of expressions, separated by commas.
series	<pre>Generates a series representation of an expression. Syntax: series(expression, variable=value). The default order of the representation is 6. > series(BesselJ(0,x), x=0);</pre>
setoptions	A procedure in the plots package used to set global options for the plots in a worksheet. Syntax: setoptions(color=black, font=[times,roman,10])
simplify	Applies standard simplification rules to an expression. Use it as a first attempt at simplifying a complicated expression.
	<pre>> simplify(cos(x)*(x^2 + 2*x + 1)/(x+1)); output: (x+1) cos(x)</pre>
sincos	<pre>Keyword for convert. Converts trig expressions to sines and cosines. > convert(tan(x)^2 + sec(x)^2, sincos);</pre>
single quotes	<pre>Single quotes ' ' are used in Maple to postpone evaluation one time. > 'int(sin(x), x=01)'; value(%);</pre>
	output: line 1: unevaluated integral, line 2: $-\cos(1) + 1$
Sketch	A sketch pad can be inserted into a Maple worksheet. See the Insert menu.
solve	A procedure for finding exact solutions to an equation in one variable. > solve($x^3 - x - 1 = 0$, x); output: 0, $1/2 + sqrt(5)/2$, $1/2 - sqrt(5)/2$

sort	<pre>Sorts a polynomial in decreasing order of degree. Sorts a list of strings lexicographically. Add an optional binary boolean function to determine a sort criterion for a list. > sort(1+x^3-2*x^2); Output: x^3 - 2x^2 + 1 > sort([1,2,x,1-x^2,1/x],(u,v)->is(degree(u)>degree(v))); Output: [1-x^2, x, 2, 1, 1/x]</pre>
spacecurve	Plots parametrized curves in 3 dimensions. In the plots package. Syntax: spacecurve([f(t),g(t),h(t)], t=ab) Use plot3d for parametrized surfaces in 3 dimensions.
Spellcheck	On the Tools menu. Use it.
sphereplot	Plots in spherical coordinates. In the plots package. Plots rho as a function of theta and phi. Syntax: sphereplot(rho(theta,phi), theta=ab, phi=cd)
Spreadsheet	A spreadsheet can be inserted into a Maple worksheet. See the Insert menu.
stepsize	Use the optional equation stepsize=h to control the step size for dsolve(type=numeric) and DEplot .
string	Any number of typed symbols enclosed in double quotation marks. > "How are you? 123 $cos(x)$ "; output: "How are you? 123 $cos(x)$ "
subs	A procedure used to make substitutions. Syntax: subs(equations, expression). See algsubs and subsop. > subs(x=3,y=2,x^2 + x*y); output: 15
sum	<pre>The procedure to use when adding an infinite number of numbers, functions, etc. Inert form is Sum. Syntax: sum(f(k), k=1infinity). Also works for finite sums but is not recommended. > sum(1/k/(k+1), k=1infinity); output: 1 > sum(x^k/k!, k=0infinity); output: exp(x)</pre>
table	A data structure like an array but more flexible. The indices can be a number or a name. An entry of the form $T[1,2] :=$ expression tells Maple to set up a table with the name T and start to fill it with expression stored with index (1,2).
taylor	A procedure that generates the Taylor series representation of an expression. Syntax: taylor(expression, variable=value). The default order of the representation is 6. > taylor(sin(x), x=0); output: $x - x^{3}/6 + x^{6}/120 + O(x^{6})$
textplot	Creates text that can be displayed using display. In the plots package. Syntax: textplot([a,b,"text"]) or, for 3-d, textplot([a,b,c,"text") Accepts optional equations for font control and alignment. Default is align=CENTER.
thickness	The optional equation thickness=2 tells Maple to draw thicker lines in a 2 dimensional plot. The default thickness is 1. Thickness values can be 1, 2, 3, or 4.
tickmarks	An optional equation for the plot procedure: tickmarks=[m,n] sets the minimum number of values

	for the horizontal and vertical axes. Maple may refuse if m or n is too large.
time	A procedure for timing a Maple calculation. Syntax: time(input). The entry time() returns the total computing time from the beginning of the current session. > time(plot(sin(1/x), x=01, numpoints=300)); output: 0.580 > time(); output: 6.060
transparency	The optional equation transparency=n where n is between 0 and 1 controls the transparency of a 3-d surface. Default: transparency=0.
Transpose	<pre>A procedure in the LinearAlgebra package. Transposes a matrix. Syntax: Transpose(A) > Transpose(<<1,2> <3,4>>); output: <<1,3> <2,4>></pre>
trace	A Maple debugging tool, trace(proc_name) causes Maple to display the whole sequence of outputs when proc_name is invoked. Use untrace(proc_name) to stop tracing. See printlevel.
tubeplot	Plots tubular surfaces. In the plots package. Control the radius of the tube with radius= $r(t)$. Syntax: tubeplot([f(t),g(t),h(t)], t=ab, radius= $r(t)$,
type	Used to inquire about the data type of an expression. Output is true or false (binary boolean) Syntax: type(3, integer); output: true
unapply	The procedure to use to turn an expression into a function. Syntax: unapply(expression, variables) > g := unapply(x*sin(x*y), x, y); Output: g := (x,y) -> x sin(xy)
unassign	A procedure that is used to unassign values. Syntax: unassign('y') > y := sin(t): y = z; unassign('y'); y + x; output: line 1: sin(t) = z, line 2: y + x The assignment y := 'y' has the same effect as unassign('y').
union	Set union. Syntax: A union B. > {1,2,3} union {2,3,4}; output: {1,2,3,4}.
value	<pre>A procedure used to ask Maple the value of an expression or a name. Note the backward quotes in the second input. > X := 'int(sin(x), x)': value(X); output: - cos(x) > X := `int(sin(x), x)`: value(X); output: int(sin(x), x)</pre>
Vector	A procedure that makes column vectors. Syntax: Vector([a,b,,c]). Such a vector can also be created by entering <a,b,,c>. To create a row vector use either Vector[row]([a,b,,c]) or <a b c>.</a b c></a,b,,c>
verboseproc	A Maple variable whose value determines the amount of information that Maple outputs when a procedure is evaluated via eval(procedure) or print(procedure). The default value is 1.
whattype	A procedure that is used to ask Maple the data type of an expression. Syntax: whattype(expression)

	> whattype(3), whattype(3.0), whattype([1,2]); output: integer, float, list Also whattype(eval(expression)).
while	Used to make a repetition statement. > for k from -5 to 10 by 2 while not isprime(k) do k end do; Output: The numbers -5, -3, -1, 1 on separate output lines.
xtickmarks	An optional equation for the plot procedure: xtickmarks=m tells Maple to put at least m numbers on the horizontal axis. If m is too large, Maple will refuse.
ytickmarks	An optional equation for the plot procedure: ytickmarks=n tells Maple to put at least n numbers on the vertical axis. If n is too large, Maple will refuse.
zip	<pre>Procedure used to merge lists, vectors, matrices. The merge criterion is entered as a binary function. > zip((x,y)->x/(y+x),[1,2,3],[a,b,c]); Output: [1/(a+1), 2/(b+2), 3/(c+3)]</pre>