Maple Technology Manual

by
Donald Hartig
Department of Mathematics
California Polytechnic State University
San Luis Obispo, CA
to accompany

Differential Equations and Mathematical Modeling by Glenn Ledder

Copyright ©2005 by The McGraw-Hill Companies, Inc. All rights reserved. No part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written consent of The McGraw-Hill Companies, Inc., including, but not limited to, in any network or other electronic storage or transmission, or broadcast for distance learning.

Preface

This manual provides a straightforward and practical introduction to the computer algebra system Maple for students and instructors who wish to use it in the study of ordinary differential equations. Readers will find what they need to get a quick start with the program in the context of simple numerical calculations, fundamental calculus computations, and elementary graphing techniques. Applications are interwoven with explanations of how Maple works and examples illustrating the important features of this important software tool.

Once a sufficient level of confidence has been attained, the reader is guided through Maple procedures designed to solve differential equations, analyze the behavior of solutions, and use solutions, both exact and approximate, in the mathematical modeling process. The exercises can be used to clarify the reader's understanding of how the procedures work. Annotated examples guide the reader through the more challenging problems.

Prerequisites and Corequisites

Instructions in the manual are written with the assumption that the reader knows how to start a computer and make a document using a word processor. The ability to use a mouse: point and click, select and drag, pull down a menu, etc. will be taken for granted. The only mathematics prerequisite is the successful completion of a university level calculus course or its equivalent. As a corequisite it is hoped that the reader is actively engaged in the learning of the fundamentals of ordinary differential equations. Please note that this is not a text in differential equations. Indeed, the reader will often be referred to a differential equations textbook (Ledder) for statements of definitions, algorithms, solution techniques, and solution formulas, as well as background material for some of the examples and exercises.

Software and Hardware Requirements

The manual was written on a Macintosh computer using Maple, version 9.5. As a warning to both students and instructors, the minimal requirements for Maple 9.5 on a Macintosh are OS X (10.3 or higher is best) and 256 MB of RAM; 512 MB would be even better to avoid frequent pageouts due to file swapping. Maple 9.5 will run on a G3 processor, but it is so slow that the G4 is recommended as a minimal configuration. Minimal requirements for a PC include 256 MB of RAM. As with a Macintosh, the more RAM the better.

The manual is divided into four (unequal) parts, Exercises, an Appendix, and solutions to selected exercises.

Part I. The Maple Worksheet

This is a brief overview of Maple's worksheet interface. The essential components of a worksheet are described and simple examples illustrate how to enter and process mathematics and text.

Part II. Calculations and Calculus with Maple

The second part contains a more detailed introduction to Maple and how to use it to "do mathematics." The input/output paradigm is stressed as the reader learns how to use Maple as a calculator. Input and output sequences are discussed. Maple output can be used as subsequent input by assigning the output a name, and then referring to it by that name just as one might do using paper and pencil. The notion of assignments are important for the successful use of any mathematics software to a problem that requires more than one calculation. This idea is illustrated several times using familiar examples from calculus. Graphing examples introduce plotting procedures.

Part III. First Order Ordinary Differential Equations

The discussion of differential equations in Maple starts here in the context of mathematical models requiring first order equations in their analysis. Readers who are already familiar with Maple are encouraged to skim over Parts I and II and begin in Part III. Direction fields and exact solution curves are plotted. Implementation of Euler's method provides the reader with an opportunity to learn how to write a Maple program that can easily be converted into a user-defined procedure.

Part IV. Linear Differential Equations

Linear differential equations, linear systems, and Laplace transforms are featured in this part of the manual. Procedures in the LinearAlgebra package are introduced to handle vectors and matrices gracefully.

Exercises

Exercise sets are divided by Part and Section. Solutions to asterisked exercises appear in the solution section.

Appendix

The appendix, which itself is divided into parts 1-5 contains miscellaneous items that did not fit nicely into Part I, II, III, or IV: Power series and special functions, Picard iterates, Partial differential equations, A glossary of the Maple terms and procedures, and some Sound advice and encouraging words.

Solutions to Selected Exercises

A list of solutions to the exercises that appear with an asterisk.

The Table of Contents that follows is detailed enough to be used as a complete outline of the topics that are treated in the manual.

Table of Contents

Part I. The Maple Worksheet
Section 1. Execution groups: Input/Output 1
Input comments: Use a hash mark \# 1
The pull down menus 2
Section 2. Entering a Block of Text 4
Annotating input and output: An example 4
Undo it: Command-Z 5
Delete it: Command-[delete] 5
Part II. Calculations and Calculus with Maple
Section 1. Getting Started: Maple as a Calculator 6
Parentheses for grouping must be the round kind: () 7
Square brackets and set brackets 8
Input sequences: The sequence operator 9
More complicated sequences: The sequence procedure. 10
The sequence procedure is more versatile 11
But the sequence operator is more handy 11
Moving towards symbolic calculations: Factoring in Maple 12
Section 2. Symbolics: Equations and Assignments 14
Variables, equations, and assignments 14
Multiple assignments: Full evaluation 15
Solving equations exactly: The solve procedure 16
Check by substitution: simplify if needed 17
Solving equations approximately: The fsolve procedure 17
More about solve and fsolve 19
Using variables as functions 20
Section 3. Functions as Transformations 23
Using a transformation to define a function 23
Parametric plots 25
Plot several tangent lines 25
Find the length of the curve 26
An area calculation 27
Higher derivatives 28
Unevaluated derivatives 30
The chain rule 31
Just a little bit about differential equations 31
Working with the solution 32
Use the unapply procedure to make functions out of expressions 33
Part III. First Order Ordinary Differential Equations
Section 1. Entering and Solving 34
Solve this: dsolve 34
Checking the solution: odetest 34
Plotting solution curves 35
Solving an initial value problem 35
Getting information out of the solution formula 36
A solution formula in terms of the initial condition 36
Look before you leap 37
To obtain implicit solutions add the keyword implicit 40
Section 2. Working with Solutions: Modeling 43
Exponential Models 43
A more interesting problem 44
Monthly payments 45
Heating and cooling 46
Orthogonal trajectories 50
Section 3. Slope Fields: DEplot 53
The tool you need: DEplot 53
Step size matters 55
Keep your eye on $f(t, y)$ 56
Go with the flow. 59
Section 4. Approximate Solutions 62
One step at a time: Euler's algorithm 62
Make it yours: User defined procedures 64
Modify it: The Euler two step algorithm 65
Using dsolve to generate numeric solutions 67
The dsolve/numeric procedure 68
A preview of second order equations: An aging spring 70
Part IV. Linear Differential Equations
Section 1. Linear Oscillators 72
Solve this too: dsolve and the unforced equation 72
The phase plane trajectory 74
Simple harmonic motion 76
Damped unforced motion 76
The phase plane trajectory for underdamped oscillations 78
Phase plane trajectories and vector fields. 79
Section 2. State Space 82
Autonomous equations 82
Force it: A non-autonomous equation 84
State space trajectories: The spacecurve procedure. 86
Numerical solutions: DEplot 87
Numerical solutions: dsolve 89
Section 3. Two Dimensional Systems 92
Fields and flows 92
Numerical output: dsolve/numeric 94
Nullclines and critical points 94
Symbolic solutions, integral curves 95
Linear systems, linear flows 96
Section 4. Matrix Methods 99
The LinearAlgebra package: Matrices and Vectors 99
Maple's "column entry" method for vectors and matrices 101
Eigenvectors and eigenvalues 104
Eigenvector solutions to $\mathrm{v}^{\prime}=A v$, the 2 x 2 case 105
The matrix exponential 108
A three dimensional example, approximate solutions 108
Section 5. The Laplace Transform 112
The inttrans package 112
Piecewise vs Heaviside: Both are winners 113
Typical driver: Off, then on, then off again 114
Use an alias 117
The Dirac delta: Dirac 118
Applying the Laplace transform method to a linear system 119

Exercises

Appendices

A1. Power Series and Special Functions

A2. Picard Iteration
A3. Partial Differential Equations
A4. Glossary
A5. Sound advice and encouraging words Selected Solutions

