Appendix A1. Power Series and Special Functions

Series Solutions

Mathematica's Series function can be used to obtain a series solution to a differential equation, provided DSolve can solve it in terms of special functions. SeriesCoefficient can generate the nth coefficient in a series expansion.

Example Obtain a series solution to the following differential equation (Ledder, A4, Exercise 2).

$$
y^{\prime \prime}+2 x y^{\prime}-y=0
$$

Then obtain the first 6 non-zero terms of the series solution satisfying $y(0)=1, y^{\prime}(0)=3$. Plot the approximate and the exact solutions. (Think of a mass spring system with a "repelling" spring moving in a fluid that is thickening with time.)

First enter and name the ode.

$$
\begin{aligned}
& \text { DE }=\mathbf{y}^{\prime} \cdot[\mathrm{x}]+2 * \mathbf{x} \mathbf{y}^{\prime}[\mathrm{x}]-\mathrm{y}[\mathrm{x}]=\mathbf{0} \\
& -\mathrm{y}[\mathrm{x}]+2 \mathrm{x} \mathrm{y}^{\prime}[\mathrm{x}]+\mathrm{y}^{\prime \prime}[\mathrm{x}]=0
\end{aligned}
$$

The general solution is in terms of special functions. Note that it is obtained using generic initial values, $y(0)=y 0$ and $y^{\prime}(0)=y 1$.

$$
\begin{aligned}
\text { gensoln }= & \text { DSolve }\left[\left\{D E, y[0]==y 0, y^{\prime}[0]==y 1\right\}, y[x], x\right] \\
\{\{y[x] \rightarrow & -\frac{1}{3 \operatorname{Gamma}\left[\frac{5}{4}\right]}\left(e ^ { - x ^ { 2 } } \left(4 \sqrt{\frac{2}{\pi}} \mathrm{y} 1 \operatorname{Gamma}\left[\frac{5}{4}\right] \operatorname{Gamma}\left[\frac{7}{4}\right] \text { HermiteH }\left[-\frac{3}{2}, x\right]-\right.\right. \\
& 3 y 0 \text { Gamma }\left[\frac{5}{4}\right] \text { Hypergeometric1F1 }\left[\frac{3}{4}, \frac{1}{2}, x^{2}\right]- \\
& \left.\left.\left.\left.2 y 1 \operatorname{Gamma}\left[\frac{7}{4}\right] \text { Hypergeometric1F1 }\left[\frac{3}{4}, \frac{1}{2}, x^{2}\right]\right)\right)\right\}\right\}
\end{aligned}
$$

The next entry applies Series to gensoln to generate the first 5 terms in the Taylor series representation for the general solution, expanded about $x=0$. The syntax for the nth order Taylor series of an expression in x , expanded about $x 0$, is shown below.

```
                    Series[ expression, {x, x0, n} ]
sersoln = Series[ y[x]/.gensoln[[1]], {x,0,5} ]
```


The term $\mathrm{O}[x]^{6}$ representes the error in the approximation.
If you would like to see a particular coefficient, for example the 20th, first generate the 20th order series and then apply the function SeriesCoefficient.

```
Series[y[x]/.gensoln[[1]], {x,0,20}];
SeriesCoefficient[ %, 20]
- }\frac{713y0}{39105331200
```

Apply the FullSimplify function to simplify all of the coefficients in sersoln displayed above.

```
FullSimplify[sersoln]
y0 + y1x + \ y0 x
```

The Normal function can be used to convert the series solution into a polynomial approximation (i.e. eliminate the error term). When applied to the last output, Normal also collects the terms containing y0 and the ones containing yl.

Normal [\%]

$$
y_{0}+\frac{x^{2} y 0}{2}-\frac{x^{4} y 0}{8}+x y 1-\frac{x^{3} y^{1}}{6}+\frac{x^{5} y_{1}}{24}
$$

If initial values are given, like $y(0)=1$ and $y(0)=3$, they can be used in DSolve. To obtain the first 6 Taylor series terms ask for the order 6 series.

```
soln = DSolve[ {DE, y[0]==1, y'[0]==3}, y[x], x ];
Series[y[x]/.%[[1]], {x,0,6}];
approxsoln = Normal[FullSimplify[%]]
1+3x+\frac{\mp@subsup{x}{}{2}}{2}-\frac{\mp@subsup{x}{}{3}}{2}-\frac{\mp@subsup{x}{}{4}}{8}+\frac{\mp@subsup{x}{}{5}}{8}+\frac{7\mp@subsup{x}{}{6}}{240}
```

The following picture shows the exact and approximate solution curves. The approximation is the dashed curve.

```
Show[ Plot[ y[x]/.soln, {x,0,3} ],
    Plot[ approxsoln, {x,0,3}, PlotStyle->Dashing[{0.02,0.02}]],
    PlotRange->{{0,3},{0,8}}]
```


Special Functions

Mathematica has, built-in, most of the special functions that are found in elementary differential equations textbooks. For example, the Bessel functions of the first and second kind of order n are denoted BesselJ[n,x] and BesselY[n,x] respectively. Compare the plots below to the ones appearing in Chapter 3, Figures 3.7.3 and 3.7.4 in Ledder.

```
Show[ Plot[ BesselJ[0,x], {x,0,20} ],
    Plot[ BesselJ[1,x], {x,0,20}, PlotStyle->Dashing[{0.02,0.02}] ] ]
```


Show[Plot[Bessely[0,x], $\{x, 0,20\}$],
Plot[Bessely[1,x], \{x,0,20\}, PlotStyle->Dashing[\{0.02,0.02\}]]]

To see a list of the functions that are known to Mathematica go the Help Browser and choose
Built-in Functions/Mathematical Functions/(Alphabetical Listing)

