Appendix A3. Partial Differential Equations

The wave equation

The following entries show how Mathematica can be used to plot approximations to solutions of the wave equation on a finite domain: A string of length L with ends clamped at $x=0$ and $x=L$. Let $u(x, t)$ denote the vertical displacement of the string at point x at time t. For small vibrations u satisfies the wave equation

$$
u_{t t}=c^{2} u_{x x}
$$

The letter c denotes a positive constant determined by the characteristics of the string. Separation of variables leads to solutions of the following form

$$
U_{N}(x, t)=\sum_{n=1}^{N}\left(A_{n} \cos \left(\frac{c n \pi t}{L}\right)+B_{n} \sin \left(\frac{c n \pi t}{L}\right)\right) \sin \left(\frac{n \pi x}{L}\right), N \text { a positive integer. }
$$

See Ledder, Chapter 8, Section 3.

Set the string into motion

The string is set into motion at $t=0$ by giving it an initial shape $f(x)$ and an initial velocity distribution, $g(x)$. Thus the coefficients A_{n} and B_{n} should be chosen so that the function

$$
U_{N}(x, 0)=\sum_{n=1}^{N} A_{n} \sin \left(\frac{n \pi x}{L}\right)
$$

approximates $f(x)$ on $[0, L]$ and the function

$$
\partial_{t} U_{N}(x, 0)=\sum_{n=1}^{N} \frac{c n \pi B_{n}}{L} \sin \left(\frac{n \pi x}{L}\right)
$$

approximates $g(x)$. Consequently, A_{n} is the Fourier sine series coefficient for $f(x)$ and $\frac{c n \pi B_{n}}{L}$ is the Fourier sine series coefficient for $g(x)$.

The following entries define the functions f and g, calculate A_{n} and B_{n}, then create various solution curves. We assume that $L=1, c=1$ and the string is initially stretched "tent like" over the x axis with the shape

$$
f(x)=0.2 x+(0.2(1-x)-0.2 x) \text { UnitStep }(x-0.5)
$$

See the following definitions and plot.

```
L = 1; c = 1;
f[x_] := 0.2*x + (0.2*(1-x)-0.2*x)*UnitStep[x-0.5];
Plot[ f[x], {x,0,1}, PlotRange->{0,0.125}, AspectRatio->1/3 ]
```


Set the string into motion with a finger flick at a point one quarter of the way from the left endpoint

$$
g(x)=0.1 \operatorname{DirecDelta}(x-0.25)
$$

```
g[x_] := 0.1*DiracDelta[x - 0.25]
```

You may, of course, change these to fit any situation that you would like to explore.
The next entries calculate the formulas for the coefficients An and Bn.

$$
\begin{aligned}
& \text { An = 2/L*Integrate[f[x]*Sin[n*Pi*x/L], \{x,0,L\}] } \\
& B n=L /(C * n * P i) * \text { Integrate }[g[x] * S i n[n * P i * x / L],\{x, 0, L\}] \\
& 2\left(\frac{0 . \cos [1.5708 \mathrm{n}]}{\mathrm{n}}+\frac{0 . \cos [\mathrm{n} \pi]}{\mathrm{n}}+\frac{0.0405285 \operatorname{Sin}[1.5708 \mathrm{n}]}{\mathrm{n}^{2}}-\frac{0.0202642 \operatorname{Sin}[\mathrm{n} \pi]}{\mathrm{n}^{2}}\right) \\
& \frac{0.031831 \operatorname{Sin}[0.785398 \mathrm{n}]}{\mathrm{n}}
\end{aligned}
$$

This is the definition of the function U as a function on N, x, t :

```
U[N_,x_,t_] := Sum[ (An*Cos[C*n*Pi*t/L] + Bn*Sin[C*n*Pi*t/L])*Sin[n*Pi*x/L],
{n,\overline{1},N}
```

The first plot checks that the coefficients are correct for the velocily function g. (A check for the shape function f is made when we plot U at $t=0$ below).

```
Plot[ {g[x], Sum[ C*n*Pi*Bn/L*Sin[n*Pi*x/L], {n,1,30}]}, {x,0,L},
PlotRange->{-0.5,2}, PlotLabel->"Initial Velocity"]
                Initial Velocity
```


This curve is a typical approximation to a Dirac delta. The area under the curve is approximately $1 / 10$.
The fjollowing plot of $U(20, x, 0)$ shows that the An coefficients are also correct.

Plot [U[20, $x, 0]$, $\{x, 0, L\}$, PlotRange->\{0,0.12\}, PlotLabel->"Initial Waveform", AspectRatio->1/3]

A snapshot of the waveform at $t=0.2$.

Five snapshots, one every 0.2 seconds:
Plot[Evaluate[Table[U[50,x,t], \{t,0,1,0.2\}]], \{x,0,L\}]

A movie (see the Help Browser: A Practical Introduction to Mathematica/Graphics and Sound/Special Topic: Animated Graphics).

Animate[Plot[U[50, $x, t],\{x, 0, L\}, P l o t R a n g e->\{-0.1,0.1\}],\{t, 0,2,0.05\}]$

The waveform surface

