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c h a p t e r

5Autonomous Equations

and Systems

An autonomous differential equation is a differential equation in which the independent variable
does not appear explicitly. The decay equation y′ = −ky and the linear oscillator ay′′ + by′ +
cy = 0 are examples. A natural process is autonomous if the rates of change depend only on the
state of the system, and not on the time or position; such processes are modeled by autonomous
differential equations. Autonomous problems are worth special study for two reasons: they are
common in nature, and the special properties they have are the basis for some useful techniques.
This chapter introduces some of these techniques: the phase line and phase plane, the direction
field, trajectory analysis, and nullcline analysis.

The modeling in the chapter focuses on population dynamics, including both single popula-
tions and systems of two interacting populations. Several population models are introduced in a
unified manner in Section 5.1, and these models are discussed as the methods for their study are
developed in later sections.

In Section 5.2, we study the phase line, a special case of the slope field, for single autonomous
first-order equations.

The remaining sections of Chapter 5 focus on autonomous systems of two first-order equations.
The phase plane interpretation of such systems is introduced in Section 5.3, with the focus on
trajectories taken by solutions. The direction field is introduced in Section 5.4, as are equilibrium
solutions and the notion of stability. Nullcline analysis is presented in Section 5.5; this useful
technique is similar to the isocline technique of Section 2.3.

5.1 Population Models

Mathematical models in the physical sciences are based on physical laws that are supported by a
wealth of quantitative data. In the life sciences and social sciences, there is seldom such a clear
starting point. Population growth, for example, does not seem to be governed by anything as
definite as Newton’s laws of motion. Instead, models for population growth tend to follow largely
from educated guesses. Nevertheless, such models are able to reproduce the qualitative features
of observations and can sometimes even produce accurate quantitative results. Population models
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280 Chapter 5 Autonomous Equations and Systems

begin with assumptions about how the relative rate of change1 of a population depends on the
current size of the population and whatever environmental factors, such as food supply or the
presence of natural enemies, are considered relevant.

The simplest differential equation model of population growth is based on the assumption that
the relative rate of change of a population is constant.2 Thus,

1

p

dp

dt
= r,

or

dp

dt
= r p,

where r is a positive constant with dimension time−1. This natural growth equation is the same
as the decay equation that we saw in Chapter 1, except that the relative growth rate is positive
rather than negative. As before, solutions have the form

p = p0ert .

The model therefore predicts that population growth will be exponential.3

As simple as it is, the natural growth model is still useful for populations that are not signif-
icantly affected by resource limitations or crowding. It also serves as a good starting point for
discussing population growth. In particular, any better model for population growth has to include
a mechanism to account for limited capacity. In the remainder of Section 5.1, we consider several
ways to do this.

MODEL PROBLEM 5.1

Construct population models that include reasonable mechanisms for limiting the growth of a
rabbit population because of either limited food or predation by carnivores.

Logistic Growth

The best-known mathematical model of population growth to incorporate a limited capacity
is the logistic growth model.4 We assume that there is a limiting population value K that represents
the environmental capacity. Instead of assuming a constant relative growth rate r , we assume a
relative growth rate that is r when the population is small but decreases to zero when the population
reaches the value K . The simplest such model assumes that the relative growth rate is a linear

1Section 1.1.
2This model is attributed to Thomas Malthus (1766–1834).
3Malthus was not so naive as to predict that any natural population would undergo exponential growth for all time. Rather,
he recognized that population increase leads to increases in disease and starvation. His point was that it was not possible
to end starvation because abundant food would simply allow the population to grow to a point where food became limited
again.
4In the military, the term logistics is used to describe the process of delivering adequate supplies to troops in the field. In
our context, the growth is described as “logistic” because it is limited by availability of supplies. This model is attributed
to P. F. Verhulst (1804–1849).
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function of the population. The relative growth rate is to have the value r when p = 0 and the
value 0 when p = K (see Fig. 5.1.1); thus we have

1

p

dp

dt
= r

(
1 − p

K

)
,

or

dp

dt
= r p

(
1 − p

K

)
. (1)

p

r

K

dp
dt

1
p

Figure 5.1.1
Relative population growth rate as a function of population in the logistic growth model.

INSTANT EXERCISE 1

Derive the formula r (1 − p/K ) from the requirements that the function be linear and yield r for p = 0 and
0 for p = K .

The state of a system is the set of values of the dependent variables in the system. The
independent variable t does not appear explicitly in either the natural growth equation or the
logistic growth equation; thus, the rates of change depend only on the state of the system. A
differential equation or system is autonomous if the functions representing the rates of change
depend only on the state of the system.

The Lotka–Volterra Model

Another way to limit population growth is to incorporate the effects of competition between
populations. Consider populations of rabbits and coyotes living in a grassland. We can think of
the coyotes as a mechanism for limiting the population of rabbits. Let x(t) be the rabbit population
in a given region, and let y(t) be the coyote population in that region. Both of these functions are
unknown, so the model requires two differential equations, each prescribing the growth rate of
one of the species. Suppose we assume that the rabbit population exhibits natural growth in the
absence of coyotes but decreases in the presence of coyotes. One possibility is

dx

dt
= r x − sxy, (2)

where r is a positive constant with dimension time−1 and s is a positive constant with dimension
coyotes−1time−1.
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Why should we make this choice? In the absence of any fundamental principle or real data,
we don’t know what to choose, so it makes sense to start with the simplest function that has the
right qualitative properties. The function r x − sxy has these properties:

• It is proportional to the rabbit population.

• It assumes that the loss of rabbits due to coyotes is proportional to the product of the rabbit
and coyote populations.

• It corresponds to a relative rabbit growth rate that is a linear function of the coyote
population.

All these properties seem reasonable. Twice as many rabbits ought to produce a growth rate twice
as large. Coyotes eat rabbits some fraction of the time that coyotes and rabbits encounter each
other, and it makes sense that the rate at which these encounters occur would be proportional to
each population.5 The encounter rate would be proportional to each population if creatures moved
about randomly, as do molecules in a gas. For movement of living creatures, proportionality is only
a rough approximation. Nevertheless, linear functions make models simpler, so it makes sense
to choose a linear function for a first attempt. We have no way to know in advance whether the
choice r x − sxy will produce a successful model. One way to decide this question is to compare
the predictions the model makes with observations of real populations.6 Meanwhile, we should
not have much faith in the model, since it is not based on strong evidence.

What about a differential equation to model changes in the coyote population? First we need
to make assumptions about the factors most directly responsible for increases or decreases in the
number of coyotes. The most logical choice for the cause of coyote population decrease is the
starvation that would occur if there were no rabbits. In the absence of rabbits, we might expect
that the coyote population would experience a constant relative decay rate, as in a radioactive
decay model. The key factor promoting growth in the coyote population is the consumption of
rabbits. The differential equation, assuming that these two factors are the only ones needed, is

dy

dt
= csxy − my, (3)

where m is a positive constant with dimension time−1 and c is a positive dimensionless constant.
The term csxy is the gain in coyote population as a result of the coyote-rabbit interaction; c is
the conversion factor of rabbit loss into coyote gain. The constant m represents the per capita
mortality rate of the coyotes in the absence of rabbits.

The model given by Equations (2) and (3) is the Lotka–Volterra7 predator-prey model. The
specific species that serve as the predator and as the prey are unimportant as long as the designated
prey is the principal food source of the designated predator, which in turn is the primary cause of
death for the prey. There are also two important assumptions hidden in the model:

• The region is approximately uniform in population densities. Otherwise, it would be
necessary to consider spatial variations.

• The region is closed, meaning that predator and prey cannot move in or out of the region.

5The letter s is chosen for this model because the constant that it represents is a measure of both the search rate of the
predator and the probability of success in hunting.
6If the model fails this test, it still requires some thought to determine which feature of the model is the most likely
problem.
7The model is named after the mathematicians Alfred J. Lotka and Vito Volterra, who independently proposed it in 1925
and 1926.
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INSTANT EXERCISE 2

In the predator-prey model

dp

dt
= p(2q − 3),

dq

dt
= q(5 − 8p),

which is the predator and which is the prey? How do you know?

Mathematically, the Lotka–Volterra model is a coupled system of two autonomous nonlinear
first-order differential equations because the rate of change of each variable depends explicitly
on the other variable. If one of the equations in a system can be solved first without considering
the other, the system is uncoupled.

EXAMPLE 1

The system

dx

dt
= −t y2,

dy

dt
= y

is an uncoupled system. The second equation can be solved immediately, with solution

y = Aet .

The first equation then becomes

dx

dt
= −A2te2t .

This can be integrated immediately, with the result

x = A2

4
(1 − 2t)e2t + C.

INSTANT EXERCISE 3

Integrate the differential equation for x in Example 1 to obtain the final result.

Solution formulas cannot generally be obtained for a coupled system of two nonlinear equa-
tions such as the Lotka–Volterra equations. Nevertheless, we will discover methods that can yield
a wealth of useful qualitative information about the solutions of such systems.8 They can also be
solved approximately by the rk4 method9 or other numerical method.

Interacting Populations in General

We could have thought of the rabbit population as being limited by the amount of plant life
rather than the number of coyotes. The plants would grow naturally, but be eaten by the rabbits.

8This chapter is devoted to such methods. See also Section 6.7.
9Section 2.6.
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We would then have gotten a predator-prey model in which the rabbits were the predators and
the plants were the prey. In this context, the model is often called a consumer-resource model
rather than a predator-prey model, and it may be preferable to think of the dependent variables
as representing the biomasses of the population, rather than the number of individuals. There are
other types of interspecies interactions, and it is interesting to try to construct models for some of
these.

Consider the different possibilities for the relative growth rate of a population x to be a linear
function of another population y. Assuming that the constants a and b are positive, we have four
possibilities:

1.
1

x

dx

dt
= a + by,

2.
1

x

dx

dt
= a − by,

3.
1

x

dx

dt
= −a + by,

4.
1

x

dx

dt
= −a − by.

Not all these possibilities are reasonable, however. For the population to have a chance to
survive, there must be a possibility of a positive growth rate, and this eliminates type 4. There
must be some mechanism to limit the population growth, and this requirement eliminates type 1.
Linear relative growth rates work only if the terms have opposite signs. In the Lotka–Volterra
model, the rabbit equation is of type 2 and the coyote equation is of type 3. Could we get a
meaningful model if both equations are of the same type?

Suppose both relative growth rates are of type 2. Each species has a positive growth rate if
the other species is absent. Each species has its growth rate decrease in the presence of the other.
This is a simple model for competing species. Similarly, suppose both relative growth rates are
of type 3. Then each species requires the other for its survival. Clearly this is a simple model
of cooperating species. We shall see in the subsequent analysis of these models in Section 5.5
that neither is satisfactory. In both cases, what appears to be a sufficient means of limiting the
populations is actually not sufficient. Understanding why the models fail leads to better models
for competing or cooperating species.

INSTANT EXERCISE 4

Which of the three types of interacting populations (predator-prey, competing species, cooperating species)
could be represented by this system?

da

dt
= a(3 − 2b),

db

dt
= b(1 − 3a).

A Complete Family of Examples by Nondimensionalization

Each of the relative growth rate formulas in the interacting species models has two parameters,
so our families of simple predator-prey, competing species, and cooperating species models are
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four-parameter families. Having so many parameters makes it difficult to determine results general
enough to apply to the whole family of models. As is typical in mathematical modeling, we can
reduce the number of parameters to a reasonable number by nondimensionalization.10

Consider the logistic growth equation (1). The dimensions of the parameter K and of the
variable p are the same (only a dimensionless number can be subtracted from the dimensionless
number 1), so a dimensionless population variable can be defined by

P = p

K
.

The relative growth rate is zero for a population p = K and positive for p < K . A small initial
population can grow toward K , but cannot exceed K . Thus, K is an upper bound for p. In
addition to having the right dimensions, it is a value that is good for comparison. Regardless of
what species we are studying with the logistic growth equation or how large the area that the
population occupies, P = 0.5 will mean that the population is one-half of the upper bound K .

Similarly, note that the relative growth rate is at most r . During a period of maximum growth,
we can approximate population changes by

�p ≈ dp

dt
�t ≈ r p �t.

Rearranging this relationship gives us

�t ≈ 1

r

�p

p
.

This shows that the relative growth rate r has units of inverse time, and it also shows that significant
population changes require a time period on the order of 1/r . Thus, 1/r is a good reference value
for time. Accordingly, we can choose the variable τ defined by

τ = r t

as a dimensionless measure of the time.
It remains to convert the original logistic equation to a dimensionless version by replacing p

with P and t with τ . We begin by substituting KP for p:

d(KP)

dt
= r KP(1 − P).

The constant K can be removed from the derivative, yielding

d P

dt
= r P(1 − P).

Now to remove t from the equation, note that P is supposed to be a function of τ rather than t .
Applying the chain rule, we have

d P

dt
= d P

dτ

dτ

dt
.

The second factor is determined from the equation τ = r t to be r ; hence

d P

dt
= r

d P

dτ
.

10Section 2.1.
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This substitution reduces the model to
d P

dτ
= P(1 − P). (4)

Note that the new model is similar to the original, but the parameters K and r have disappeared.
Instead of a two-parameter family of equations to analyze, we have one single equation. The results
produced by the logistic growth model are the same for all species in that the shape of the graph
is the same. The only differences are in the amount of actual time that corresponds to τ = 1 and
the actual number of individuals that corresponds to P = 1.

There are several different ways to nondimensionalize the two-species interaction models. All
result in dimensionless counterparts with only one parameter; for example,
Predator-prey

X ′ = X (1 − Y ), Y ′ = kY (X − 1), (5)

Competing species

X ′ = X (1 − Y ), Y ′ = kY (1 − X ), (6)

Cooperating species

X ′ = X (Y − 1), Y ′ = kY (X − 1), (7)

where derivatives are with respect to a suitable time variable τ and the dimensionless parameter
k is suitably defined.

5.1 Exercises

1. Consider the logistic growth model

p′ = 4p
(

1 − p

10

)
.

Under what circumstances will the population increase? Under what circumstances will the
population decrease?

2. Consider the predator-prey model

x ′ = x(1 − 2y), y′ = y(x − 1).

a. Are there any values of x and y for which the populations will remain unchanged? If so,
what are they?

b. Suppose x(0) = 1 and y(0) = 1. Will each of these populations be larger than 1 or smaller
than 1 shortly after time 0?

3. Which of the following systems are predator-prey models? Indicate which variable represents
the predator and which the prey.

a. x ′ = −3x + 2xy, y′ = −4y + 3xy
b. x ′ = 3x − 2xy, y′ = −4y + 3xy
c. x ′ = 3x − 2xy, y′ = 4y − 3xy

4. One of the systems in Exercise 3 represents a model for two cooperative species. Which one
is it and how do you know?
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5. One of the systems given below represents a model for two species that are competing for
the same resources. Which one is it and how do you know?

a. x ′ = x(1 − x − y), y′ = y(3 − 2y + x)
b. x ′ = x(1 − x − y), y′ = y(3 + 2y − x)
c. x ′ = x(1 − x − y), y′ = y(3 − 2y − x)

6. Consider the general Lotka–Volterra model in Equations (2) and (3). Define the new variables

X = csx

m
, Y = sy

r
, τ = r t.

a. Use the chain rule to obtain a set of differential equations for X (τ ) and Y (τ ).
b. Define the dimensionless parameter k to obtain the dimensionless model (5).
c. The dimensionless parameter k represents a ratio of two rates. What are these rates? Do

you expect k > 1 or k < 1?

7. Consider the general competition model

dx

dt
= r x − sxy,

dy

dt
= ay − bxy.

Define new dimensionless variables and a dimensionless parameter to obtain the dimension-
less model (6).

8. Consider the general cooperation model

dx

dt
= axy − mx,

dy

dt
= bxy − ny.

Define new dimensionless variables and a dimensionless parameter to obtain the dimension-
less model (7).

9. Suppose the prey in the predator-prey model is limited by logistic growth in the absence of
predators. Incorporate this assumption into the predator-prey model.

10. Suppose y(t) is the proportion of people in a city who have heard a particular rumor. Suppose
the rate at which the rumor is spread, relative to the population of people who have not yet
heard the rumor, is proportional to the proportion of people who have heard the rumor. Derive
the differential equation for the spread of the rumor. This model is also used for the spread
of technological innovations within a given society.

11. The standard SIS (susceptible, infective, susceptible) epidemic model divides a population
into two classes: the infective class (I), consisting of individuals who are capable of transmit-
ting the disease, and the susceptible class (S), consisting of individuals who are not infective,
but could become infective. Let S(t) and I (t) be the populations of the susceptible and infec-
tive classes, respectively.

a. Derive a system of differential equations for the SIS model, using the following
assumptions:

1. Changes of classification for any individual occur by only two mechanisms: A suscep-
tible individual can become infected, and an infected individual can recover to become
susceptible again.

2. The rate at which susceptible people become infected is proportional to the susceptible
population and to the infective population, with proportionality coefficient r .
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3. The rate at which infective people recover is proportional to the infective population,
with proportionality coefficient γ .

b. Explain why assumptions 2 and 3 are reasonable.

12. The standard SIR epidemic model divides a population into three classes: the infective class (I),
consisting of individuals who are capable of transmitting the disease; the susceptible class (S),
consisting of individuals who are not infective but could become infective; and the removed
class (R), consisting of individuals who have had the disease and are no longer able to be
infected. Let S(t), I (t), and R(t) be the populations of the susceptible, infective, and removed
classes, respectively.

a. Derive a system of differential equations for the SIR model, using the following
assumptions:

1. Changes of classification for any individual occur by only two mechanisms: A suscep-
tible individual can become infected, and an infected individual can become removed.

2. The rate at which susceptible people become infected is proportional to the susceptible
population and to the infective population, with proportionality coefficient r .

3. The rate at which infective people become removed is proportional to the infective
population, with proportionality coefficient γ .

b. Explain why assumptions 2 and 3 are reasonable.
c. Show that the sum of the populations in the three classes is constant. Use this fact to

obtain a system of equations for the variables S and I .
d. Explain why this model is not suitable for the common cold.

13. In this exercise, we derive a model for a waste treatment process that utilizes bacteria.

a. Let w(t) be the amount of waste in a vessel of volume V , and let x(t) be the population
of bacteria in the vessel. Assume that the waste is consumed at the rate kwx , where k is
a constant that measures the relative reaction rate of waste per unit amount of bacteria.
Let c be a conversion factor for bacteria growth from waste consumption, similar to the
parameter c in the Lotka–Volterra predator-prey model. Let m be the relative death rate
of the bacteria. Construct the differential equations for the waste and the bacteria.

b. It is possible to remove all the parameters from the differential equation by nondimen-
sionalization, but it is not obvious what to choose for the reference quantities. Let wr ,
xr , and tr be the as yet undetermined reference quantities for nondimensionalization. Let
W = w/wr , X = x/xr , and τ = t/tr be the variables in the dimensionless version of the
problem. Determine the differential equations for W (τ ) and X (τ ).

c. Observe that the differential equations from part b include a total of three terms, each of
which has a dimensionless coefficient that includes at least one of the reference quanti-
ties. Determine the values of the reference quantities needed to make each of the three
dimensionless coefficients equal to 1.

14. One of the first mathematical studies of epidemics was done by Daniel Bernoulli in 1760.
Bernoulli’s goal was to determine the likely effect of a controversial program to immunize
young people against smallpox. The model assumes that survivors of the disease have lifetime
immunity. Let P(t) be the population of a cohort of individuals who are the same age, with
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t = 0 corresponding to their birth year. Let S(t) be the population of susceptible individuals
from this cohort. Let m(t) be the relative death rate of the cohort in the absence of small-
pox. This relative rate of decrease is not constant because the population is to be tracked long
enough that mortality must be considered a function of age. We might expect, for example, that
m(t) (at least in 1760) was quite large for infants and decreased as the cohort aged toward adult-
hood. The populations P and S in Bernoulli’s model are described by the differential equations

S′ = −r S − m(t)S, P ′ = −br S − m(t)P,

where r is a constant and b is the fraction of smallpox cases that result in death.

a. The first term on the right side of the first equation is the rate at which susceptible
individuals become infected. For some diseases, this term would have been −k I S, where
I is the population of infectives. Explain the assumption we are making about smallpox
in choosing −r S rather than −k I S.

b. The differential equations in the model are impossible to analyze fully without detailed
information about m(t). This information is not needed if our goal is simply to deter-
mine y = S/P , the proportion of individuals who are still susceptible at time t . Let
z = y−1 = P/S. Use the chain rule to differentiate z; substitute the equations of the
Bernoulli model to obtain a differential equation that contains only z, along with the param-
eters b and r . The equation for z should be similar to Newton’s law of cooling (Section 1.1).

c. Solve the differential equation for z. Use the initial condition corresponding to the assump-
tion that babies are never born with smallpox. Obtain a formula for y from the formula for z.

d. Bernoulli estimated b = r = 1
8 from the limited data available. Given these data, what

fraction of 20-year-olds is susceptible to smallpox? At what age does susceptibility to
smallpox hold for only 5% of the population?

5.1 INSTANT EXERCISE SOLUTIONS

1. The most general linear function of p is f (p) = mp + b, where m is the slope and b the intercept. Given
the requirement f (0) = r , we have b = r . The additional requirement f (K ) = 0 yields 0 = f (K ) =
mK + r , or K m = −r . Thus, m = −r/K and f (0) = −r p/K + r = r (1 − p/K ).

2. The predator is p because the interaction term pq contributes to the growth of p and the decrease of q.

3. We have

x =
∫

−A2te2t dt = − A2

2

∫
t(2e2t ) dt = − A2

2

∫
t(e2t )′ dt.

Integrating by parts, we have

x = − A2

2

(
te2t −

∫
e2t dt

)
= − A2

2

(
te2t − 1

2
e2t

)
+ C = A2

4
(1 − 2t)e2t + C.

4. The interaction term is negative for both species. Since each decreases because of the other, the system
could represent competing species.
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5.2 The Phase Line

The autonomous first-order differential equation

dy

dt
= f (y)

represents a process for which changes in the quantity of interest depend only on the level of the
quantity and not on the time. In such cases, it might be of interest to know what will eventually
happen if the process is allowed to continue indefinitely. We will use the term longtime behavior
to describe the possible behaviors of a process or system left alone indefinitely.

MODEL PROBLEM 5.2

Identify the possible longtime behaviors for solutions of the equation
dy

dt
= y(1 − y),

and determine which longtime behavior results from any given initial condition.

Since we want to know how the solution depends on the initial condition, it makes sense to
include the initial data as a parameter in the problem. We therefore consider the one-parameter
family of problems

dy

dt
= y(1 − y), y(0) = y0. (1)

Longtime Behavior and the Limitations of Solution Formulas

Separation of variables yields the solution formula for Model Problem 5.2:

y = y0

y0 + (1 − y0)e−t
. (2)

INSTANT EXERCISE 1

Derive the solution of the initial-value problem (1).

To understand the solution, we cannot simply graph the function defined by Equation (2),
because it is a one-parameter family of functions. We can graph the solution for any particular
y0, but how can we be sure that the graphs for some specific values represent all the possible
behaviors? Instead, we might look at the properties of the family.

Observe that the second term in the denominator of the solution gradually disappears as t
increases. Indeed,

lim
t→∞ y =

{
1 y0 	= 0
0 y0 = 0.
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The solution of an initial-value problem may not exist for all t . We have established that the limit
as t → ∞ of the function defined by the solution formula (2) is always 1 (except for the special
case y0 = 0). But this does not by itself mean that solutions of Equation (1) approach y = 1. As
demonstrated in Section 1.2, functions do not always represent the solution of an initial-value
problem over their whole domain.

Consider as an example the case y0 = 2. Here, the solution formula is

y = 2

2 − e−t
.

This function is continuous for all t > 0, so it defines a solution for all t > 0, which therefore
approaches 1 as t → ∞. Similarly, the case y0 = 1

2 gives the solution formula

y = 1

1 + e−t
,

which is also continuous for t > 0 and so defines a solution that approaches 1 as t → ∞. But
now suppose we try y0 = − 1

2 . This time, the solution formula is

y = 1

1 − 3e−t
.

This situation is different. The denominator approaches 0 as t → ln 3. Thus, the solution of the
initial-value problem with y0 = − 1

2 exists only on the interval t < ln 3. The three solutions we
have already found are plotted together in Figure 5.2.1. Clearly the longtime behavior of a solution
of Model Problem 5.2 depends in an important way on the initial condition.

y

2

1

0

−1

−2

t
4321

Figure 5.2.1
Some solutions of y′ = y(1 − y).

We’ve seen that solution formulas do not always give a complete picture of the longtime
behavior. However, the longtime behavior of an autonomous differential equation can be inferred
directly from the differential equation itself, without the need for a solution formula, and we now
explore this possibility.
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Critical Points and Equilibrium Solutions

The model differential equation is of the form

dy

dt
= f (y),

with

f (y) = y(1 − y).

The function f represents the rate of change of y as a function of the quantity y. Of particular
interest are values of y for which the rate of change is 0. A value of y for which f (y) = 0 is
called a critical point of the differential equation dy/dt = f (y). The function y(t) = yc, with
yc a critical point, is an equilibrium solution of the differential equation. The use of the term
critical point is consistent with its meaning in calculus. In both settings, given a differentiable
function, the term refers to points on a graph where the tangent line is horizontal; the difference
is that these points are identified by the independent variable in calculus and by the dependent
variable for solutions of autonomous differential equations.

The critical points for Model Problem 5.2 are the solutions of

y(1 − y) = 0,

namely, y = 0 and y = 1. The functions y ≡ 0 and y ≡ 1 are equilibrium solutions. The impor-
tance of equilibrium solutions stems in part from the consequences of the existence and unique-
ness theorem (Theorem 2.4.2). This theorem guarantees a unique solution for dy/dt = y(1 − y)
through any point in the (t, y) plane, given that f (y) = y(1 − y) and its derivative are continuous
everywhere. This means that solution curves cannot cross in the (t, y) plane. The horizontal lines
y = 0 and y = 1 are solution curves; hence, they divide the (t, y) plane into three distinct regions
where there could be significant differences in long-term behavior.

The Slope Field and Stability

A convenient way to study the longtime behavior of solutions of differential equations is to use the
slope field.11 Figure 5.2.2 shows the slope field for Model Problem 5.2, along with the same three
solution curves and the equilibrium solutions. The slope field clearly confirms what we have al-
ready learned for the cases y0 = 2, y0 = 1

2 , and y0 = −1. It also gives a complete picture of the
longtime behavior of all the solutions. Solutions beginning with positive values of y0 tend toward
1 as t → ∞, and solutions beginning with negative values of y0 tend toward −∞ in finite time.

Qualitatively, the slope field gives more information than the solution formula because it gives
a clear picture of the solution behavior. Solutions that begin near the critical point y = 1 tend
toward that point as time increases, while solutions beginning near the critical point y = 0 tend
away from that point as time increases. In this example and in general, some critical points tend to
attract nearby solutions, while others repel them. This idea is the basis of the concept of stability.
The idea is essentially that critical points, and the corresponding equilibrium solutions, are stable
if they attract nearby solutions and are unstable if they repel them. Some care is required in the
formal definition to give precise meaning to the notions of attraction and repulsion.

11Section 2.3.
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Figure 5.2.2
The slope field for dy/dt = y(1 − y), along with some solution curves.

An equilibrium solution12 y ≡ yc for a differential equation y′ = f (y) is asymptotically
stable if there is some open interval (yc − ε, yc + ε) with the property that lim

t→∞ y(t) = yc

for any solution that is initially in the interval. An equilibrium solution is unstable if there
is some open interval (yc − ε, yc + ε) with the property that lim

t→∞ |y(t) − yc| > ε for any

solution, other than y ≡ yc, that is initially in the interval.

Consider first the equilibrium solution y ≡ 1. If y0 > 1, then the slope of the solution curve
through (t, y0) is

f (y0) = y0(1 − y0) < 0.

Thus, the solution is decreasing. It must continue to decrease as long as y > 1; hence, it must
either reach y = 1 in finite time or approach y = 1 in the limit as t → ∞. The argument is similar
for 0 < y0 < 1. In summary, we have

lim
t→∞ y = 1 whenever y0 > 0.

Thus, the equilibrium solution y ≡ 1 is asymptotically stable.
The equilibrium solution y ≡ 0 is unstable by the definition. Solution curves beginning above

y = 0 move toward y = 1, while solutions beginning below y = 0 decrease without bound. In
either case, solutions cannot stay within a small interval containing the point y = 0. The combined
stability results completely describe the longtime behavior of the solutions. If y0 > 0, then the
solution approaches y = 1; if y0 < 0, then the solution decreases without bound.

12The terms critical point and equilibrium solution are almost synonymous, the only distinction being that the critical
point is a value of the dependent variable y while an equilibrium solution is a function that takes the same value all the
time. Statements about stability can be made using either term; the choice of equilibrium solution in this context is a
matter of taste.
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The Phase Line

Look again at the slope field in Figure 5.2.2. All the minitangents on a given horizontal line are
parallel. This is always true for autonomous equations. In the example, the slope is 0 at all points
(t, 1) and 1

4 at all points (t, 1
2 ). Now suppose we illustrated only the minitangents at t = 0, as in

Figure 5.2.3a. With fewer arrows and less horizontal space, this plot includes all the essential
information that is in the full slope field.

2
1.5

1
0.5

0

−0.5
−1

y

1

0

y

(b)(a)

Figure 5.2.3
(a) A portion of the slope field for y′ = y(1 − y); (b) with the phase line.

An even simpler view of the differential equation can be made by placing the arrows directly
on the y axis, using them to show only whether the solution curves are increasing or decreasing.
This is the phase line, as depicted in Figure 5.2.3b. All information about the rates of increase
or decrease with respect to t is lost in the phase line picture. However, the essential information
needed to determine the stability of equilibrium solutions and the longtime behavior of other
solutions is efficiently contained in the phase line.

The phase line shows the same properties that we found from the slope field: solution curves
beginning below y = 0 move off to −∞, solution curves beginning between y = 0 and y = 1
move up toward y = 1, and solution curves beginning above y = 1 move down toward y = 1. A
rough sketch of the solution curves is easily obtained from the phase line.

One advantage of using the phase line is that it is very easy to sketch the phase line from
the graph of f (y) for the differential equation y′ = f (y). Equilibrium solutions are given by the
zeros of f . Regions where f is positive correspond to regions on the phase line where the arrow
points up, and regions where f is negative correspond to regions on the phase line where the
arrow points down. This interpretation is illustrated in Figure 5.2.4. In this example, the function
f vanishes at 0 and 1, and these give the locations of the critical points on the phase line. The
function f is positive between 0 and 1; since the differential equation is y′ = f (y), this means that
y′ is positive between y = 0 and y = 1, and this information gives the direction of the arrowhead
between the two critical points on the phase line. The arrowheads in other regions of the phase
line are obtained in the same manner. The phase line in Figure 5.2.4 is oriented horizontally to
make the connection with f (y) clearer.

INSTANT EXERCISE 2

Sketch the phase line for y′ = y(y − 2), and use it to determine the stability of the critical points.
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Figure 5.2.4
The function f (y) = y(1 − y) and the phase line for y′ = y(1 − y).

The Logistic Growth Equation

The logistic growth model, from Section 5.1, is

dp

dt
= r p

(
1 − p

K

)
. (3)

The dimensionless form of the model, with P = p/K , is

d P

dτ
= P(1 − P),

which is exactly the same as Model Problem 5.2. All the results obtained in this section hold for the
dimensional logistic growth model (3), with appropriate changes in the variable values. The critical
point p = K in Equation (3) corresponds to y = 1 in Model Problem 5.2; it is asymptotically
stable. The critical point p = 0, corresponding to y = 0, is unstable. Solution curves beginning
with positive values of p tend toward p = K , while those beginning with negative values of
p, corresponding to initial conditions that are inappropriate for the model, tend toward negative
infinity. Of course it is also possible to get these results directly by applying the qualitative methods
to the logistic equation (3).

A Final Comment

The solution of an initial-value problem can be thought of as a point that moves along the phase line
in time. At any given point in the solution’s progress, the phase line shows the value of the depen-
dent variable, but not that of the independent variable. The phase line is only used for autonomous
equations y′ = f (y). The lack of a time coordinate on the phase line is not very important for an
autonomous equation. The current value of y is all that is needed to determine the rate of change
of y. We would not want to use the phase line for a general problem y′ = f (t, y) because in such
a case the current value of y is not sufficient to determine the current rate of change of y.

5.2 Exercises

1. Sketch the function f (P) = r P(1 − P/K ), and use it to obtain a sketch of the phase line
for the logistic equation. Note that your graphs will be identical to those obtained for Model
Problem 5.2 except for the variable values that appear on the axes.



P1: GIG

PB469-05 Ledder-0223T PB469-Ledder-v24.cls May 11, 2004 20:9

296 Chapter 5 Autonomous Equations and Systems

For each of Exercises 2 through 8, (a) list the equilibrium solutions, (b) sketch y′ as a function
of y, (c) sketch the phase line, and (d) determine the stability of all equilibrium solutions. An
equilibrium solution is semistable if solutions on one side of it tend to approach it while solutions
on the other side tend to recede from it.

2. y′ + ky = kS, k > 0, S > 0

3. y′ = y(y2 − 4)

4. y′ = −3y(1 − y)(3 − y)

5. y′ = 1 − e−y

6. y′ = sin y

7. y′ = −arctan y

1 + y2

8. y′ = y2(1 − y2)

9. One of the equations in Exercises 2 through 8 represents a model of a population that can
become extinct if it drops below a critical value. Which one is it? What is the critical value?
Is the critical value a critical point? If so, what kind is it?

10. Sketch the phase line for the model of rumor spreading from Exercise 10 in Section 5.1.
Discuss the behavior of the model.

11. Consider the differential equation y′ = f (y). Suppose y0 is a point satisfying f (y0) = 0 and
f ′(y0) < 0. Show that y0 is a stable critical point.

12. The Gompertz model for population growth is

p′ = kp ln
M

p
, p > 0, k > 0, M > 0.

a. Sketch the graph of p′ as a function of p, sketch the phase line, and determine the stability
of any equilibrium solutions.

b. Solve the Gompertz equation by utilizing the substitution y = ln (M/p).
c. Use the solution from part b to verify the results of part a.

13. The rate at which a drug disseminates into the bloodstream is governed by the differential
equation

x ′ = B(A − x),

where A and B are positive constants. Find the stable equilibrium value of x . At what time is
the concentration one-half of the equilibrium value if there is no drug in the patient’s system
prior to time 0?

14. Let x(t) be the mass of chemical A in a chemical reactor that initially contains 50 liters (L)
of pure water. A solution of A having a concentration 2 kg/L flows into the reactor at a rate
of 5 L/min. The solution inside the reactor is kept well mixed and flows out of the reactor at a
rate of 5 L/min. The chemical reaction inside the reactor decreases the mass of chemical A at
a rate equal to 0.4 times the amount of A present. Determine a differential equation for x(t).
Find the equilibrium value and sketch the phase line. Solve the problem to determine x(t).
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15. Suppose the population of deer in a forest is governed by a logistic growth equation. Suppose
further that the agency charged with managing the deer population grants a limited number of
permits to deer hunters. If we assume that the number of deer killed by hunters is proportional
to the deer population and the number of hunting permits, we obtain the differential equation

dp

dt
= r p

(
1 − p

K

)
− Ep,

where r and K are as in the logistic equation and E is a parameter with units of time−1 that
measures the amount of hunting effort and is taken to be proportional to the number of permits
issued. This model is called the Schaefer model; it is named after the biologist M. B. Schaefer,
who applied it to fishery management.

a. The model is easier to analyze if it is scaled by a suitable change of variables. Define new
variables y and τ and a new parameter h by

y = p

K
, τ = r t, h = E

r
.

Note that y is the population relative to the environmental capacity and h is the hunting ef-
fort relative to the natural growth rate. Change variables to arrive at the differential equation

y′ = y(1 − y) − hy,

where the superscript prime represents d/dτ .
b. Assume E > r . What will happen to the deer population?
c. Show that there is a positive equilibrium value ye if E < r , and use the phase line to

show that ye is stable.
d. Observe that the value of ye can be manipulated to achieve any value between 0 and 1

by controlling the number of hunting permits. Sketch a graph of h versus ye. This graph
could be used to determine the appropriate number of permits for any desired equilibrium
deer population.

e. Suppose the goal of the management program is to allow a maximum amount of sustain-
able deer hunting. The hunting is represented by the term hy in the differential equation,
so the goal is to maximize the function Y (h) = hye. Sketch the graph of the function Y .

f. Determine the value of h that maximizes Y .

16. Stefan’s law of radiative cooling says that the rate of change of temperature T of a body that
interacts with a medium of temperature M is given by

T ′ = K (M4 − T 4).

The temperatures T and M must be given on an absolute temperature scale such as the Kelvin
or Rankine, and not in Celsius or Fahrenheit.

a. Sketch the phase line for Stefan’s law. Discuss the behavior of an object whose temperature
is initially hotter than that of the medium.

b. Suppose the temperatures T and M are roughly comparable. Factor the polynomial M4 −
T 4. The resulting equation can be approximated if it is done carefully. Replace T with
M in sums, but not in differences; for example, replace M2 + T 2 by 2M2. Show that the
resulting approximation leads to Newton’s law of cooling.
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5.2 INSTANT EXERCISE SOLUTIONS

1. The differential equation is separable, so we can write it as

1

y(1 − y)

dy

dt
= 1

and integrate with respect to t to get ∫
1

y(1 − y)
dy =

∫
dt.

The integral in y can be done by a partial fraction decomposition. We need to find the numerators A and
B so that

A

y
+ B

1 − y
= 1

y(1 − y)
.

Multiplying both sides of this equation by the common denominator gives

A(1 − y) + By = 1,

or

A + (B − A)y = 1 + 0y.

For this equation to hold for all y, we must have A = 1 and B − A = 0. Thus A = B = 1. We may
therefore rewrite the integral equation as∫ (

1

y
+ 1

1 − y

)
dy =

∫
dt.

Now we integrate:

ln |y| − ln |1 − y| = t + C.

The two terms on the left combine to give

ln

∣∣∣∣ y

1 − y

∣∣∣∣ = t + C.

Raising both sides over e yields ∣∣∣∣ y

1 − y

∣∣∣∣ = et+C = eC et .

Thus,
y

1 − y
= ±eC et = Aet ,

where A is an arbitrary constant whose value must be determined from the initial condition. Substituting
y = y0 and t = 0 gives the result A = y0/(1 − y0). We now have the solution of the initial-value problem,
still in implicit form, as

y

1 − y
= y0

1 − y0
et .

Multiplying both sides by 1 − y, 1 − y0, and e−t yields

(1 − y0)e−t y = y0(1 − y).
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Putting terms with y on the left side and other terms on the right side gives

[y0 + (1 − y0)e−t ]y = y0,

leading to the final answer (2).

2.

0 2 y

The critical point y = 2 is unstable while the critical point y = 0 is asymptotically stable. The phase
line could just as well have been oriented vertically.

5.3 The Phase Plane

The phase line for an autonomous first-order differential equation is a one-dimensional space
with the dependent variable on the axis and arrows to indicate whether solutions increase or
decrease. The phase line plot displays many qualitative features of the solutions of the differential
equation. Similarly, the phase plane for an autonomous second-order differential equation y′′ =
f (y, y′) is a two-dimensional space with one axis for the dependent variable y and the other for
its derivative y′. A solution can be represented as a parameterized curve in the phase plane with
the independent variable as the parameter; these curves are called trajectories. The phase plane
for an autonomous system of two equations,

dx

dt
= f (x, y),

dy

dt
= g(x, y), (1)

is similarly a two-dimensional space with coordinates for the dependent variables x and y. The
use of arrows in the phase plane is discussed in Section 5.4; here, we concentrate on the notion
of the phase plane and on trajectories.

EXAMPLE 1

The initial-value problem

y′′ + 2y′ + 26y = 0, y(0) = 1, y′(0) = 0

has solution (Section 3.5, Example 2)

y = e−t (cos 5t + 0.2 sin 5t).

This initial-value problem could represent the movement of a mass on a spring, in which case the unknown
function y represents the distance measured from the rest position. We might also be interested in the
velocity, given by

v = y′ = −5.2e−t sin 5t.
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Figure 5.3.1
The solution of Example 1 in the phase plane.

Now suppose we are interested specifically in the relationship between distance and ve-
locity. We could think of the solution as defining a curve with coordinates (y(t), v(t)) =
(e−t (cos 5t + 0.2 sin 5t), −5.2e−t sin 5t). By plotting points for various values of t , we obtain the curve
shown in Figure 5.3.1. The solution begins at the point (1, 0) and moves around the origin in the clock-
wise direction. As the velocity becomes more and more negative, the distance decreases from 1 toward
0. Eventually, at the point corresponding to the bottom of the curve, the velocity reaches its most neg-
ative value. The distance soon becomes negative, while the velocity becomes less negative. When the
point at the left of the curve is reached, the distance is at its most negative value while the velocity is
zero, indicating that the mass is momentarily motionless. The remainder of the curve can be similarly
interpreted.

INSTANT EXERCISE 1

Let y(t) be the solution of the initial-value problem

d2 y

dt2
+ y = 0, y(0) = 1,

dy

dt
(0) = 0.

Describe how the solution appears in a plot with y on the horizontal axis and v = y′ on the vertical axis.

Compare Figure 5.3.1 with Figure 3.5.4. Both graphs show the solution of Example 1 on
the time interval 0 < t < 5, but they show the information in different ways, with different
disadvantages. The graph of y(t) in Figure 3.5.4 shows the complete history of the distance y, but
it does not show the velocity except by inference. The phase plane graph of Figure 5.3.1 shows the
relationship of distance and velocity, but it does not give any indication of the time corresponding
to any point on the curve. It does not even give the direction of the motion (clockwise inward
spiral or counterclockwise outward spiral) except by inference.

In the case of systems, the phase plane is an alternative to a pair of plots for the two dependent
variables against time. The phase plane is useful whenever there is added value to being able to
plot the dependent variables in a plane, even though the information about time is lost. Phase
plane plots are almost always used when the longtime behavior is the feature of greatest interest.
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MODEL PROBLEM 5.3

Suppose a projectile is fired upward with speed v0 from a point y0 above the surface of the
moon. Determine the motion of the projectile; in particular, determine whether it will return
to the moon.

Since Model Problem 5.3 is about motion, we begin with Newton’s second law,

F = ma,

or

dv

dt
= F

m
.

For a flight on the moon, there is no air resistance, so the only force that needs to be included in
the model is the force of gravity, which is given by13

Fg = −mg
R2

(R + z)2
,

where z(t) is the height of the projectile above the moon’s surface, R is the radius of the moon,
and g is the gravitational constant at the surface of the moon. Thus we have

dv

dt
= − gR2

(R + z)2
.

The model is not quite complete because there are two unknown functions, v and z. There are two
ways to complete the model. One is to rewrite the left-hand side of the equation as d2z/dt2 so
as to obtain a second-order differential equation for z. This is generally preferable whenever the
second-order equation can be solved, as solution methods for higher-order equations are usually
more efficient than solution methods for the corresponding system. The other option is to add
the equation dz/dt = v and obtain a system of two autonomous first-order equations. This is
preferable when a model is to be studied in the phase plane because some phase plane techniques
require the problem to be written as a system. Since our plan is to use the phase plane, we have
the initial-value problem

dz

dt
= v,

dv

dt
= − gR2

(R + z)2
, z(0) = z0,

dz

dt
(0) = v0, (2)

where z0 is the height from which the projectile is launched and v0 is the velocity of the projectile
at launch.

Writing a Higher-Order Equation as a System

Suppose we had written the differential equation of Model Problem 5.3 as the second-order
differential equation

d2z

dt2
= − gR2

(R + z)2
.

Then we could convert the equation to the system (2) by defining v = dz/dt as a second dependent
variable and using dv/dt in place of d2z/dt2 in the differential equation. Any second-order

13Section 2.1.
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differential equation

y′′ = f (t, y, y′)

can be converted to the system

y′ = v, v′ = f (t, y, v)

in this manner. Differential equations of order n > 2 can be similarly converted to higher-
dimension systems by defining new variables to represent derivatives up to order n − 1. Writing
higher-order equations as systems is often convenient. Not only does phase space analysis work
only with (autonomous) systems, but also numerical packages are usually designed to work
only on first-order equations and systems. When the higher-order equation can be solved by the
methods of Chapters 3 and 4, it is almost always better to do so than to try to solve the corre-
sponding system.

INSTANT EXERCISE 2

Write the equation

d2 y

dt2
+ 2

dy

dt
+ 3y = 0

as an autonomous system of two first-order equations.

Nondimensionalization

The differential equations of the current model have two parameters, R and g. We could find
numerical values for these parameters and use them. However, it is a better practice to remove the
parameters from the problem by nondimensionalization, as was done with the population models
in Section 5.1. Results for the dimensionless version of the model will be correct not only on the
moon, but on other small astronomical bodies as well.14 To perform the nondimensionalization,
we need to find or construct a reference length, velocity, and time from the parameters R, g, z0,
and v0. If possible, these quantities should be representative values for z, v, and t so that the
problem is properly scaled.

Both the radius R and the initial height z0 are lengths. Of these, z0 is not suitable for a reference,
because its value could be zero, while R ought to be representative of the height for projectiles
that are moving almost fast enough to escape the moon’s gravity. Thus, R is an excellent choice
for the reference length. There are two reasonable choices for a reference velocity. The initial
velocity v0 is one. The other can be found from a combination of the parameters R and g. Since
R has dimension of length and g has dimension of length per time squared, the product gR has
dimension of velocity squared. Thus,

√
gR is a velocity that is somehow representative of the

astronomical body. Given that the goal is to determine whether or not the projectile returns to
the surface, the moon-based velocity

√
gR is the better choice for the reference velocity. Given

the length R and the velocity
√

gR, a reasonable choice for the reference time is the time required
to move a distance R at velocity

√
gR, and this is

√
R/g.

14For a large body with a significant atmosphere, the accuracy of the model is affected by the damping of the atmosphere
on the motion.
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Define dimensionless variables Z , V , and τ by

Z = z

R
, V = v√

gR
, τ =

√
g t√
R

.

We first replace z by RZ and v by
√

gR V . After simplification, this yields

d Z

dt
=

√
g

R
V,

dV

dt
= −

√
g

R

1

(1 + Z )2
.

Now we use the chain rule:

d Z

dt
= d Z

dτ

dτ

dt
=

√
g

R

d Z

dτ
,

and similarly with V , to get the dimensionless model

d Z

dτ
= V,

dV

dτ
= − 1

(1 + Z )2
, Z (0) = Z0, V (0) = V0, (3)

where Z0 = z0/R and V0 = v0/
√

gR. The dimensionless model is the same as the original model,
except that the distance Z is measured in terms of moon radii rather than meters or miles, the
velocity V is measured in terms of

√
gR rather than meters per second or miles per hour, and the

time τ is measured in terms of
√

R/g rather than seconds. Values for these reference quantities
are needed to obtain results in familiar units, but not to determine the behavior of the model.

Trajectories and the Phase Portrait

A solution of an autonomous system (1) is a pair of functions x(t) and y(t), which define a trajectory
in the phase plane. We can visualize any nonequilibrium solution as a point that moves along
some trajectory. Each trajectory represents a family of solutions, because any solution passing
through a point on a given trajectory at some time must stay on that trajectory for all time.15

The set of all trajectories is the phase portrait for the equation or system. Of course one
cannot display the entire phase portrait, with curves through every point in a region. Instead,
sketches of the phase portrait show a representative set of trajectories. This is analogous to the
distinction in Section 2.3 between the slope field, consisting of infinitely many minitangents, and
a sketch of the slope field. Standard terminology is to use the term phase portrait to denote a
sketch of the phase portrait; nevertheless, it is important to realize that a phase portrait sketch
includes only some of the trajectories. Good visualization of the behavior of a system depends on
making a good choice of which trajectories to display in the phase portrait sketch. In Example 1,
just one spiral trajectory is sufficient to illustrate the phase portrait. Adding a second trajectory
makes the graph more confusing without adding important information. Systems with simpler or
more varied trajectories require a larger and thoughtfully chosen sample of trajectories to make a
good phase portrait sketch.

For most systems of practical interest, the trajectories have an important property, which is
summarized in the following theorem.

15This is so because the problem is autonomous. No matter when a solution passes through the point (0, 0), for example,
it must follow the same path as other solutions that pass through the same point, since the rates of change depend only on
the position in the phase plane and not on the time.
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Theorem 5.3.1 Uniqueness of Trajectories If the functions f (x, y) and g(x, y) have continuous first
derivatives with respect to both x and y on a region in the xy plane, then the system

dx

dt
= f (x, y),

dy

dt
= g(x, y),

has exactly one trajectory through each point (x0, y0) in the interior of the region.

Theorem 5.3.1 means that trajectories cannot cross each other except possibly at points where the
derivatives dx/dt and dy/dt are not both smooth functions.

The Differential Equation for the Trajectories

It is sometimes convenient to determine a differential equation relating the dependent variables
of a system. In Equations (3), suppose we think of V as a function of Z . Since Z is in turn a
function of τ , the chain rule gives us

dV

dτ
= dV

d Z

d Z

dτ
.

Substitution from Equations (3) yields a first-order differential equation for V as a function of Z .
Along with this differential equation, we have an initial condition that identifies V0 as the velocity
that goes with the height Z0. Thus, the trajectories are determined by the initial-value problem

V
dV

d Z
= − 1

(1 + Z )2
, V (Z0) = V0. (4)

The differential equation for V (Z ) is separable. Integrating both sides with respect to Z and
applying the initial condition yields the solution formula

V 2 = V 2
0 + 2

1 + Z
− 2

1 + Z0
. (5)

INSTANT EXERCISE 3

Confirm the solution (5) by solving the problem (4) for the trajectories.

We can now sketch the phase portrait by plotting some of the trajectories. The result is shown
in Figure 5.3.2. Note that there appear to be two different types of trajectories. Assuming an
initial height of 0, corresponding to a launch from the moon’s surface, the trajectories that start at
V = 1.2 and below clearly indicate that projectiles fired at those speeds will reach a maximum
height and then fall back to the surface. The trajectories that start at higher initial velocities
appear to indicate that projectiles fired at those speeds continue to move away from the surface
and eventually escape the moon’s gravity. Separating these two types of trajectories is the critical
trajectory for which V approaches zero as Z approaches infinity. This happens when V 2

0 = 2, as
can be seen by taking a limit of the trajectory equation as V → 0 and Z → ∞, given Z0 = 0.
To interpret this result, we restate it in terms of the original variables of the problem. The critical
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1.5
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0.5

0

−0.5

−1.0

V

32.521.510.5

Z

Figure 5.3.2
The phase portrait for Model Problem 5.3.

velocity is V = √
2, or

v√
gR

=
√

2.

The parameter

ve =
√

2gR

for any astronomical body is called the escape velocity.

Some Conclusions

Note that some information is lost in the phase portrait. One sees the path taken by the solution
but cannot see the speed with which the solution progresses along the path. Often the end of
the path is approached only in the limit t → ∞. One can also plot separate graphs of the two
functions x(t) and y(t). These time series graphs are very useful, but they are often difficult to
obtain because two-dimensional systems are hard to solve. Much of the important information
about solutions of systems can be obtained from the phase plane in the same way that much of
the important information about solutions of single first-order equations can be obtained from the
phase line. Just as it is easier to sketch the phase line than to solve a scalar differential equation,
so is it easier to sketch phase portraits than to solve a system of differential equations. Symbolic
solution of autonomous linear systems is the subject of Chapter 6.

Throughout this chapter, we consider methods for obtaining the phase portrait of a two-
dimensional system (either a system of two first-order equations or a single second-order equation).
We have seen two of these in this section.

• If we have solution formulas for the system, we can sketch in the phase plane the curves
represented parametrically by those solution formulas.

• If the differential equation for the solution curves can be solved symbolically, we can sketch
the solutions in the phase plane.

Neither of these methods works very often. Solution formulas are generally available only
for second-order linear equations with constant coefficients, as in Example 1. We can always
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determine a differential equation for the trajectories, but we can only solve the differential equation
for the trajectories when it is of a type, such as separable, for which solutions can be found.

EXAMPLE 2

Consider the system

X ′ = X (1 − Y ), Y ′ = Y (X − 1),

corresponding to the Lotka–Volterra model from Section 5.1. It is possible to derive a differential equation
for the trajectories of the system. Think of Y as a function of X , which in turn is a function of t . By the
chain rule,

Y ′ = dY

d X
X ′.

Substituting the differential equations into this equation yields

Y (X − 1) = X (1 − Y )
dY

d X
.

This differential equation is separable and leads to the integral form∫
1 − Y

Y
dY =

∫
X − 1

X
d X.

Integration yields

ln Y − Y = X − ln X + C,

or

Y + X + C = ln XY.

This implicit solution formula cannot be solved explicitly for Y , nor does it have an obvious
parameterization. Nevertheless, the trajectories given by this equation can be plotted using a computer
algebra system. Figure 5.3.3 illustrates some of these trajectories.

Y

3.0

2.5

2.0

1.5

1.0

0.5

0

X
32.521.510.5

Figure 5.3.3
Trajectories for X ′ = X (1 − Y ), Y ′ = Y (X − 1).
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INSTANT EXERCISE 4

Use the differential equations of Example 2 to determine the direction of solutions traveling on the trajectories
of Figure 5.3.3.

Equations of the Form y′′ = f (y) In general, a system of two autonomous equations has the
form (1). The differential equation for the trajectories is then

dy

dx
= g(x, y)

f (x, y)
,

and it is unlikely for f and g to be such that the result is separable. The situation is a little better
for second-order equations

d2 y

dt2
= f

(
y,

dy

dt

)
.

Setting v = dy/dt always yields a system y′ = v, v′ = f , so the differential equation for trajec-
tories is

v
dv

dy
= f (y, v).

INSTANT EXERCISE 5

Derive the differential equation for the trajectories of the differential equation

d2 y

dt2
= f

(
y,

dy

dt

)
.

The trajectory equation is separable whenever f depends only on y. It is always possible to
sketch a phase portrait by solving the differential equation for the trajectories when the original
problem, like Model Problem 5.3, has the form

d2 y

dt2
= f (y).

EXAMPLE 3

For the differential equation y′′ = e−y , the trajectories are given by the equation

v
dv

dy
= e−y .

Integrating this equation yields ∫
2v dv =

∫
2e−y dy,

or

v2 = C − 2e−y .
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For any initial conditions y(0) = y0 and y′(0) = v0, the constant C is C = v2
0 + 2e−y0 . Thus,

v = ±
√

v2
0 + 2(e−y0 − e−y).

Some of the trajectories are illustrated in Figure 5.3.4. The direction of travel along the trajectories must
be inferred from the system of equations. For any system derived from a second-order equation, one of the
equations in the system is dy/dt = v. Hence, the sign of v gives the sign of dy/dt . Trajectories in the upper
half-plane show movement to the right, and trajectories in the lower half-plane show movement to the left.

v

0
321−1

y

2

1

−1

−2

Figure 5.3.4
Trajectories for y′′ = e−y .

In the final two sections of this chapter, we will develop more general methods for sketching
phase portraits.

5.3 Exercises

In Exercises 1 through 6, find and solve the differential equation for the trajectories and sketch
the phase portrait.

1. x ′ = −xy, y′ = −x

2. x ′ = y(1 + x2), y′ = 2xy

3. x ′ = 3y2, y′ = ex

4. x ′ = ey, y′ = e−x

5. y′′ + y2 = 0

6. y′′ = 1

1 + y2

7. Determine the differential equation for the trajectories of the simple competition model (6)
in Section 5.1 with k = 1, find an implicit solution formula, and plot some trajectories.
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8. Determine the differential equation for the trajectories of the simple cooperation model (7)
in Section 5.1 with k = 1, find an implicit solution formula, and plot some trajectories.

9. Plot some trajectories of the Lotka–Volterra model (5) in Section 5.1 with k = 0.2. Compare
with Figure 5.3.3 and explain the significance of the parameter k.

10. Consider the system

x ′ = 2y, y′ = x − y.

a. Determine the differential equation for the trajectories.
b. Let v = y/x . Determine the differential equation for the trajectories in the xv plane.
c. Solve the differential equation for the trajectories in the xv plane. Then replace v by y/x

to obtain the trajectories of the original system. Note: With proper simplification, the
result should have the form (x − By)(x + y)2 = C , for some constant B.

d. Plot the phase portrait of the system.

F. W. Lanchester in 1916 proposed a model to predict the results of combat based on the
size, efficiency, and character of the opposing forces. The simplest version of the Lanchester
model,

x ′ = −y, y′ = −x,

assumes that the forces are of equal quality but unequal size. Exercises 11 through 14
concern the Lanchester model and its application to a battle of historical significance.

11. a. Explain the assumptions the Lanchester model makes about how losses in combat occur.
b. Find and solve the differential equation for the trajectories.
c. If the larger force is initially twice the size of the smaller force and the battle lasts until

the smaller force is destroyed, what fraction of the larger force survives?
d. The British navy won a significant victory over the French navy at the battle of Trafalgar

in 1805. The battle began with 27 British ships and 33 French ships, with the ships roughly
comparable in combat strength. In a typical naval battle of the time, the ships of each fleet
formed two parallel lines so that they could fire cannons from their long sides at the enemy
ships. They kept firing until one side conceded the fight. Suppose the battle of Trafalgar had
followed standard naval procedure and continued until one fleet was completely destroyed.
Who would have won the battle, and how many of their ships would have survived?

e. Sketch the phase portrait for the simplified Lanchester model, including the trajectory that
would have been followed in the battle analyzed in part d.

12. Suppose the British commander at Trafalgar, Admiral Lord Nelson, had on his staff a math-
ematician familiar with the Lanchester model. (Ignore the fact that the battle occurred 111 years
before the model was published.) Could this mathematician have devised a winning strategy
for the British? One idea would be to divide the battle up into two sub-battles, one favoring
each side. Suppose the British navy had divided into a large group and a small group and had
managed to arrange the situation so that the larger British group engaged 17 French ships
while the smaller British group engaged 16 French ships. Show that both sides have the same
number of survivors if the British groups have 23 and 4 ships, respectively.
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13. Do equal numbers of survivors from the sub-battles of Exercise 12 guarantee equal chances
in the overall battle? This problem analyzes this question.

a. Use the Lanchester equations to derive a second-order differential equation for x(t), the
number of ships on one side of the battle.

b. Solve the equation from part a, and evaluate the constants, using the initial data x(0) = x0

and y(0) = y0.
c. Assuming x0 < y0, show that the time at which the battle ends is given by

t = arctanh
x0

y0
= 1

2
ln

y0 + x0

y0 − x0
,

where tanh is the hyperbolic tangent function defined by tanh u = (eu − e−u)/(eu + e−u)
and arctanh is the inverse of the hyperbolic tangent function.

d. Use the result from part c to determine the time that each sub-battle of Exercise 12 ends.
If the British had managed to arrange the two sub-battles, what would have happened at
Trafalgar?

14. The British strategy in the battle of Trafalgar was indeed to divide the battle into two unequal
portions, but they managed to do so in a way that actually did yield an advantage.

a. Suppose the British managed to arrange a sub-battle of 20 British ships against 12 French
ships and a second sub-battle of 7 British ships against 21 French ships. Use the results
from Exercises 11 and 13c to determine the number of British survivors for the first battle
and the time required for its completion.

b. Assume that the British admiral ordered the 7 ships in the second sub-battle to try to prolong
the fighting with a lot of maneuvering. This would correspond to a change in the model

F ′ = −aB, B ′ = −aF, F(0) = 21, B(0) = 7,

where a < 1 is a factor that measures the amount of stalling by the British. Solve the
model for this sub-battle.

c. Show that the number of survivors is not changed by a but that the total time for the
battle is changed by a. In particular, show that

t = 1

2a
ln 2,

for the second sub-battle.
d. Suppose a = 0.2. Which sub-battle ends first? At the time when the first sub-battle ends,

approximately how many ships are left for both sides, counting both sub-battles?

15. Consider the SIR model of Exercise 12, Section 5.1. This model has three dependent variables,
S, I , and R, but R can be determined after S and I by using the fact that the sum of the three
variables is constant. Thus, the system can be thought of as a system with two differential
equations for the unknowns S and I . Determine the differential equation for the trajectories
in the SI plane, and solve it. Explain why epidemics start only if r S0 > γ , where S0 is the
initial number of susceptibles. (Note that an epidemic requires a large number of susceptibles
but does not require many infectives. This explains why initial exposure of a few individuals
to European diseases caused severe epidemics in Native American populations.)

16. The equation for motion of a pendulum (suitably scaled) is

θ ′′ + sin θ = 0,
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where θ is the angle of the pendulum measured from the vertical and derivatives are with
respect to time t . (See Exercise 15 of Section 3.1.) Let ω = θ ′ (ω is the angular velocity).

a. Determine the equation for the trajectories in the θω phase plane.
b. Solve the equation for the trajectories.
c. Suppose the pendulum has angular velocity ω = ω0 when in the vertical position. Plot the

trajectories for a variety of values of ω0. You should see two distinct types of trajectories.
d. Explain the behavior of the pendulum for each of the two types of trajectories.

17. The simplest model for skydiving must consider two stages: a fast fall with the parachute still
closed and a slow fall with the parachute open. Let m be the mass of the skydiver and vI the
maximum safe-impact speed. (The velocity at impact is then −vI .)

a. A skydiving rule of thumb holds that the largest distance a person can fall and safely land
on his/her feet is 3 m. Write down a model for a fall from a height of 3 m, assuming
constant gravitational force and no damping. Determine the differential equation for the
solution curves and solve it. You will need to use the initial conditions appropriate for a
free fall from a height of 3 m. Use the solution to determine the velocity at impact, and
hence the maximum safe-impact speed.

b. Write down a model for a fall with a closed parachute, assuming constant gravitational
force and linear damping, with the damping coefficient b = 15 kg/s. Determine the ter-
minal closed-chute velocity vcc for a person of mass 75 kg. (The terminal velocity for a
falling object is the stable equilibrium velocity of the differential equation. Note that the
terminal velocity is negative in a coordinate system where up is positive.)

c. Skydivers choose a parachute size that yields a damping coefficient of about 1.4 times their
mass (in mass units per second). Write down a model for a fall with an open parachute,
assuming constant gravitational force and linear damping, with damping coefficient b =
1.4m. Determine the terminal open-chute velocity voc.

d. The damping coefficient b = 1.4m is achieved by selecting the appropriate parachute for
each jumper. Explain why this coefficient is a good choice.

e. Determine the differential equation for the solution curves for the open-chute stage. Solve
it and plot the phase portrait.

f. Determine the particular trajectory for which the jumper will hit the ground at the maximum
safe-impact speed. Now determine the minimum height at which the parachute can safely
be opened. You may assume that the jumper is moving with velocity vcc at the moment
the chute is opened.

18. Consider the dimensionless waste treatment model

W ′ = −W X, X ′ = W X − X,

where W is the amount of a waste chemical in a given volume of water and X is the population
of the bacteria in the water (see Exercise 13 of Section 5.1).

a. Determine the differential equation for the trajectories in the WX plane.
b. Solve the differential equation for the trajectories with initial data X = X0 at W = W0.
c. Plot trajectories in the region 0 < W < 3, 0 < X < 1. Describe the behavior of the treat-

ment system, paying particular attention to the direction in which the solutions move
along the trajectories. In particular, discuss the difference between trajectories whose W
intercept is less than 1 and those whose W intercept is greater than 1.
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19. Suppose a hoop is placed in a vertical plane so that it just touches the ground. The hoop is
then spun at a constant speed with a vertical axis of rotation. (See Fig. 5.3.5.) Suppose further
that the hoop is grooved, so that a small bead can slide up or down the hoop as it is spun.
Common sense says that the bead will always slide to the bottom of the hoop, as it would if
the hoop were not spinning. In this exercise we investigate this prediction.

a

O

Bead

θ

Figure 5.3.5
A bead on a rotating hoop.

Let θ be the angle formed by a vertical ray through the center of the hoop and a ray that
connects the center of the hoop to the bead. Thus, θ = 0 corresponds to the position of the
bead at the bottom of the hoop. It can be shown that, in the absence of damping forces, the
changes in the angle θ are modeled by the differential equation

θ ′′ = (a2 cos θ − 1) sin θ,

where the parameter a is proportional to the rotation speed of the hoop. (Note that the case
a = 0 corresponds to the pendulum model of Exercise 16.)

a. Let ω = θ ′. Determine the differential equation for the trajectories in the θω phase plane.
b. Solve the differential equation for the trajectories.
c. Plot the phase portrait for the model for the case where a = 1/

√
2.

d. Repeat part c, but for the case a = √
2.

e. Suggest an explanation for the differences between the behavior observed in parts c and d.

5.3 INSTANT EXERCISE SOLUTIONS
1. The solution is y = cos t ; hence, v = y′ = − sin t . By inspection, y2 + v2 = 1. The solution follows a

circle in the yv plane, beginning at (1, 0). The solution moves clockwise; to see this, note that v′(0) =
−cos 0 = −1. The solution moves down from the initial point.

2. Let v = dy/dt . Then dv/dt = d2 y/dt2 = −3y − 2 dy/dt = −3y − 2v. The system is

dy

dt
= v,

dv

dt
= −3y − 2v.

3. We have

2V dV = − 2

(1 + Z )2
d Z = −2u−2 du,
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where u = 1 + Z . Integration yields V 2 = 2u−1 + C = 2/(1 + Z ) + C . The constant is evaluated from
the initial condition: C = V 2

0 − 2/(1 + Z0). The solution follows from the substitution of C into the
general solution formula.

4. The solutions move counterclockwise. This can be determined by examining the system of equations in
a number of ways. Consider, for example, points with Y = 1 and X < 1. The equation Y ′ = Y (X − 1)
shows that Y ′ < 0 at these points. Hence, the direction of solutions to the left of the plot in Figure 5.3.3
is primarily downward, corresponding to counterclockwise motion.

5. With v = y′, the equation reduces to the first-order equation v′ = y′′ = f (y, v). Thus, dv/dy = v′/y′ =
f (y, v)/v or v(dv/dy) = f (y, v).

5.4 The Direction Field and Critical Points

Recall that the slope field16 of a scalar differential equation

dy

dt
= f (t, y)

is a set of minitangents in the t y plane, each minitangent a line segment centered at some point
(t, y) and having the slope dy/dt given by the differential equation. The minitangent at a particular
point therefore indicates the direction of a solution curve passing through that point. The slope
field can be generated by a computer without having to solve the equation. It can then be used to
determine characteristics of the solutions. Autonomous two-dimensional systems can be studied
by a similar graphical method.

MODEL PROBLEM 5.4

Describe the trajectories of the systems

x ′ = −2x + 2y, y′ = 2x − 5y,

and

x ′ = −2x + 2y, y′ = 2x + y.

The Direction Field

The direction field for an autonomous system of two equations is the set of arrows in the phase
plane that point in the direction taken by a trajectory through the point at its center.

The direction field for an autonomous system is a lot like the slope field of a single nonau-
tonomous differential equation. Both indicate the direction on a graph corresponding to the
progress of solutions. The difference is in the coordinates on the axes. The slope field shows
the changes in the single dependent variable compared to changes in the independent variable.
The direction field shows the path in the two-dimensional phase space that solutions take as time
advances. It is not necessary to use arrows to indicate directions in a slope field, because the forward

16Section 2.3.
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direction for the independent variable is necessarily to the right. The independent variable does
not appear on an axis in a direction field, so the direction of forward movement must be indicated
with arrows.

The systems of Model Problem 5.4 can be thought of as pairs of formulas that indicate the
rates of change of the variables on the axes of a direction field plot. Consider the points that lie on
the x axis. For these points, both systems prescribe the rates of change as x ′ = −2x and y′ = 2x .
All these points have values of x ′ and y′ that are equal in magnitude but opposite in sign. Since
both coordinates are changing at the same rate, the direction of motion is along the line y = −x .
The actual rates of change of position with respect to time are different for each of these points.
We could indicate the overall rate of change by using different lengths for direction field arrows.
In this example, the arrow at the point (1, 0) could be of length 2 and the arrow at (2, 0) of length
4. A plot in which the lengths of the arrows are relative to the magnitudes of the rate of change is a
vector field. Vector fields are used sometimes in fluid flow, but they are not often used with other
systems of differential equations because the plots can be visually confusing. Direction fields
indicate only the direction of motion, not the rate at which the motion occurs.17

To sketch the direction field for a system of two autonomous differential equations, one can
compute values of x ′ and y′ at points on a grid and then compute the arrow slope from

dy

dx
= y′

x ′ (1)

It is not practical to do this by hand, but it is easy to use a computer algebra system to sketch
direction fields. The direction field for the first system in the model problem appears in Figure 5.4.1.
As we computed by hand, the slopes of the arrows at points on the x axis are all −1. Note that
the arrowheads point toward the upper left for x > 0 and toward the lower right for x < 0.

2

1

0

−1

−2

21−1−2

x

y

Figure 5.4.1
The direction field for x ′ = −2x + 2y, y′ = 2x − 5y.

The arrows in the direction field are tangent to the trajectories. Thus, we can use the direction
field to generate a sketch of the trajectories. Figures 5.4.2 and 5.4.3 show the phase portraits,
including the direction fields, for both systems of Model Problem 5.4.

17Some fluid flow maps use the width of the direction field arrows to indicate the speed of the flow, but this practice does
not appear to have caught on in mathematics.
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0
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1
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−2

Figure 5.4.2
The phase portrait for x ′ = −2x + 2y, y′ = 2x − 5y.

y

0 21−1−2

x

2

1

−1

−2

Figure 5.4.3
The phase portrait for x ′ = −2x + 2y, y′ = 2x + y.

Critical Points and Equilibrium Solutions

Like single autonomous first-order equations, autonomous systems have equilibrium solutions for
any values of the dependent variables that make the derivatives zero. A critical point for a system
x ′ = f (x, y), y′ = g(x, y) is a solution of the algebraic equations f (x, y) = 0, g(x, y) = 0. The
corresponding constant solution is an equilibrium solution.

The concept of stability for scalar equations holds equally well for systems, with some mod-
ifications. Some care is needed in the definitions. Let (xc, yc) be a critical point. For any point
(x, y), define the distance d(x, y) by d(x, y) =

√
(x − xc)2 + (y − yc)2. The distance d allows us

to be precise in describing the intuitive ideas of “staying near” a critical point and “approaching”
a critical point.

• An equilibrium solution is asymptotically stable if all trajectories that come within a
distance δ of the critical point enter the critical point in forward time. Formally, an
equilibrium solution is asymptotically stable if there is a positive number δ small enough
that lim

t→∞ d(x, y) = 0 for all initial points (x0, y0) for which d(x0, y0) < δ.
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• An equilibrium solution is stable if solution curves that begin close enough to the critical
point remain close to it. Formally, an equilibrium solution is stable if for any positive
number ε, there exists a positive number δ small enough that d(x, y) < ε for all initial points
(x0, y0) for which d(x0, y0) < δ.

• An equilibrium solution is unstable if it is not stable. The failure of stability occurs when
some solution curves that start arbitrarily close to the critical point move away from it.

Note that the requirement for asymptotic stability is stricter than that for mere stability.
For both systems of Model Problem 5.4, the origin is the only critical point. In Figure 5.4.2,

the origin appears to be asymptotically stable. The origin in the system of Figure 5.4.3 is a little
more difficult to characterize. Most trajectories seem to be moving toward the origin for a while
before turning away. The trajectories beginning at the points (2, −1) and (−2, 1), however, appear
to head directly into the origin. The origin in Figure 5.4.3 is an example of a saddle point. This
concept will be more carefully defined in Chapter 6. For now, it is sufficient to think of a saddle
point as a critical point for a two-dimensional system that is unstable in spite of having a pair of
trajectories that enter it in forward time.

So far, we have considered only systems with just one critical point. The same concepts apply
to systems with more than one critical point.

EXAMPLE 1

Consider the predator-prey model

X ′ = X (1 − Y ), Y ′ = 0.4Y (X − 1).

Critical points satisfy X (1 − Y ) = 0 and Y (X − 1) = 0. The first equation requires either X = 0 or
Y = 1. If X = 0, then the second equation requires Y = 0; if Y = 1, then the second equation is satisfied
only for X = 1. There are two critical points: (0, 0) and (1, 1). The phase portrait, shown in Figure 5.4.4,
suggests that the equilibrium solution x = 0, y = 0 is unstable while the equilibrium solution x = 1,
y = 1 is stable, but not asymptotically stable. The origin appears to be a saddle point because a trajectory
enters in along the Y axis. A critical point is a center if the nearby trajectories are a set of closed concentric
curves; it appears that (1, 1) is a center.

Y

2.0

1.5

1.0

0.5

X
21.510.5

0

Figure 5.4.4
The phase portrait for X ′ = X (1 − Y ), Y ′ = 0.4Y (X − 1).
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Note the tentative language used in Example 1. Definite conclusions cannot generally be
drawn from graphs, particularly graphs generated by numerical methods. A computer-generated
phase portrait often provides strong clues for the classification of equilibrium points, but symbolic
methods are necessary to confirm the results suggested by the phase portrait.

Separatrices

Systems with multiple critical points often have trajectories that serve to separate regions with
different qualitative behavior. These special trajectories are called separatrices.

EXAMPLE 2

Consider the competition model

X ′ = X (1 − Y ), Y ′ = 2Y (1 − X ).

As in Example 1, there are two critical points: (0, 0) and (1, 1). The phase portrait is shown in Figure 5.4.5.
The critical point (1, 1) appears to be a saddle point because most trajectories move away from it, but
there is a pair that seems to enter it. The equilibrium solution x = 0, y = 0 is unstable. All the trajectories
are unbounded, but tend to approach one of the axes as time increases. The two trajectories that enter the
saddle point divide the first quadrant between the region where trajectories approach the X axis and the
region where trajectories approach the Y axis. These two trajectories are separatrices.

Y

2.0

1.5

1.0

0.5

X
21.510.5

0

Figure 5.4.5
The phase portrait for X ′ = X (1 − Y ), Y ′ = 2Y (1 − X ).

There are several possible longtime behaviors for a two-dimensional system of autonomous
equations.

• Trajectories can terminate in an asymptotically stable equilibrium state.

• Trajectories can approach a closed (stable) trajectory, as in the Lotka–Volterra model
(Example 1), where all trajectories are closed.

• Trajectories can be unbounded, as in the simple competition model (Example 2).

Sometimes a system has more than one possible behavior as t → ∞. In these cases, there are
portions of the phase plane where the trajectories have one longtime behavior and other portions
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that have different longtime behavior, and the curves that are the boundaries of these regions are
the separatrices.

Separatrices are important because they determine the ultimate fate of a system. In the simple
competition model, one species wins and the other loses because the longtime behavior is for one
population to increase indefinitely while the other one appears to vanish. Which one wins depends
on the initial condition. Initial points to the upper left of the separatrices are on trajectories that
ultimately move up and to the left; thus, Y increases and X decreases. Note that the curve at the top
of the figure shows an initial decrease in both populations; however, eventually the Y population
reaches a minimum value and increases thereafter. Similarly, initial points to the lower right of
the separatrices are on trajectories that ultimately move down and to the right, with Y decreasing
toward zero and X apparently increasing without bound.

Recapitulation

The examples in this section have illustrated a variety of possibilities for the behavior of au-
tonomous systems. All critical points can be classified by stability. The classification of a critical
point can usually be obtained from a computer-generated sketch of the phase portrait, but not
with complete reliability. There is also an analytical (symbolic) method of classifying critical
points that is the focus of Chapter 6. Saddle points are particularly noteworthy because they have
a pair of trajectories that terminate at them even though most trajectories move away from them.
Centers are particularly noteworthy because trajectories near them are closed curves. Generally,
solutions evolve toward stable equilibrium solutions or closed curves, or are unbounded. Where
more than one of these ultimate behaviors is possible, the regions corresponding to each such
long-term behavior are separated by trajectories called separatrices.

5.4 Exercises

In Exercises 1 through 4, determine the critical points for the given system.

1. r ′ = 3r − 2cr, c′ = cr − 4c

2. u′ = 3u − 2v − 5, v′ = u + v − 5

3. x ′ = sin y, y′ = y − x

4. x ′ = y(x2 + y2 − 1), y′ = −x(x2 + y2 − 1)

In Exercises 5 through 10, use a computer or calculator to sketch the phase portrait; determine
whether the equilibrium solution x = 0, y = 0 is stable or unstable; and determine whether the
origin is a saddle point or a center.

5. x ′ = −x + y, y′ = x + y

6. x ′ = x − 2y, y′ = −2x

7. x ′ = −2y, y′ = x − 3y

8. x ′ = 3x − 2y, y′ = 2x − 2y

9. x ′ = 2x − 5y, y′ = x − 2y

10. x ′ = −x + y, y′ = −5x + 3y
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In Exercises 11 through 14, (a) determine the critical points, (b) use a computer or calculator to
sketch the phase portrait, (c) determine whether each equilibrium solution is stable or unstable,
(d) identify the saddle point, and (e) plot the separatrices. (Hint: to plot a separatrix, choose a
point that is near the saddle point and appears to lie close to the separatrix. Run the plot backward
in time to get a curve that is approximately the separatrix.)

11. x ′ = x2 − y, y′ = −x + y

12. x ′ = y, y′ = x − y − x3

13. x ′ = 2y − x, y′ = x(2x + y − 5)

14. x ′ = x + y, y′ = 1 − y2

15. The growth of a vapor bubble during the boiling process is governed by the differential
equation

2

3
rr ′′ + (r ′)2 = 1 − 1

r
,

where r is the radius of the bubble. Define a new variable v by v = r ′. Write the bubble growth
equation as a system, and determine the critical point(s) for this system. Use a computer or
calculator to sketch the phase portrait. Determine the stability of the equilibrium solution(s)
and identify any saddle points or centers. Note that a bubble radius cannot be negative, so
only the half-plane r ≥ 0 is of interest.

5.5 Qualitative Analysis

Qualitative accuracy means getting the general features right; quantitative accuracy means getting
agreement to within some satisfactory error tolerance. Both are important. The work we did in
Section 5.4 to classify equilibrium solutions was quantitative, as it was based on computer-
generated phase portrait sketches. One drawback of quantitative approximation is that it can only
yield information about the system for one set of parameter values at a time. Often it is important
to determine the longtime behavior of solutions and how that behavior depends on the parameter
values. This is the realm of qualitative analysis. The phase line of Section 5.2 is an example of a
qualitative technique. Nullcline analysis, which is the subject of this section, is a two-dimensional
analog of the phase line technique. Sometimes, qualitative analysis is enough to determine the
longtime behavior of a system. Other times, it is necessary to use the symbolic quantitative
methods that are the subject of Chapter 6.

MODEL PROBLEM 5.5

Use the information given in the differential equations

x ′ = 2y, y′ = x − y

to classify the equilibrium solution x = 0, y = 0 without having to solve the system or rely
on numerical approximations.
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Figure 5.5.1
The direction field for x ′ = 2y, y′ = x − y.

A plot of the direction field for Model Problem 5.5 appears in Figure 5.5.1. Notice that all the
arrows on the x axis point in a vertical direction. This is confirmed by the differential equation for
x : x ′ = 0 when y = 0. Curves consisting of points at which x ′ is always zero or points at which
y′ is always zero are useful tools for qualitative analysis.

A nullcline is a curve in the phase plane on which the arrows all point in a direction parallel
to a coordinate axis. In the xy plane, for example, an x nullcline is a curve on which x ′ = 0
and a y nullcline is a curve on which y′ = 0.

The first differential equation in Model Problem 5.5 is x ′ = 2y; thus, x ′ = 0 precisely when
y = 0. The line y = 0 is an x nullcline for the system. Note in the figure that all the arrows in the
upper half-plane show x increasing (because the x component of the vector is positive), while all ar-
rows in the lower half-plane show x decreasing. This illustrates an important property of nullclines:

The x nullclines divide the xy phase plane into regions, with each region consisting of
points where x is increasing or points where x is decreasing. Similarly, regions set off by y
nullclines consist of points where y is increasing or points where y is decreasing.

Note that we can determine which regions have x increasing and which have x decreasing
simply by looking at the differential equation for x . We have x ′ > 0 whenever 2y > 0, and this
is in the upper half-plane. A schematic diagram showing the result of the analysis of the equation
x ′ = 2y appears in Figure 5.5.2a. Some vertical minitangents appear on the line y = 0, which is
the x nullcline. Above the nullcline is an arrow indicating that x is increasing, and below it is an
arrow indicating that x is decreasing.

Figure 5.5.2b shows a similar schematic analysis of the equation y′ = x − y. The y nullcline is
the line y = x , on which y′ = 0. The horizontal minitangents indicate that this line is a y nullcline.
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(b)(a)
y nullclinesx nullclines

x
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y

Figure 5.5.2
The individual nullclines for the system x ′ = 2y, y′ = x − y.

The region x > y lies to the lower right of the nullcline, and this region is marked with an upward
arrow to indicate that this is a region where y is increasing. The region on the other side of the
nullcline is marked with a downward arrow because y′ = x − y < 0 for points in that region.
Note that the details regarding both nullclines can also be identified in the computer-generated
direction field of Figure 5.5.1. All the arrows on the line y = x are indeed horizontal, all arrows
above and to the left of this line show y decreasing, and all arrows below and to the right of the
line show y increasing.

INSTANT EXERCISE 1

Sketch the individual nullclines (as in Figure 5.5.2) for the system

x ′ = y − x, y′ = −x .

Note that the sketches in Figure 5.5.2 do not show arrowheads on the nullcline minitangents.
Each sketch was prepared using the information from just one of the differential equations.
Information from the x ′ equation cannot be used to determine whether y is increasing or decreasing
on the x nullclines. This information can only be found by studying the differential equations
together.

Nullcline Diagrams

Each of the sketches in Figure 5.5.2 is of some value by itself, but a lot more information is
obtained by combining the two into a full nullcline diagram. Figure 5.5.3 shows the result. The
minitangents on the y nullcline y = x now have arrowheads—these point to the right for the
portion above the x axis and to the left for the portion below the x axis. These details follow from
the information provided by the x nullclines. Similarly, the minitangents on the x nullcline have
arrowheads determined by the analysis of the y nullcline. There is one point where the nullclines
intersect. This is the critical point (0, 0). Since critical points are points where neither variable is
changing, they are always at the intersection of opposite nullclines. Taken together, the nullclines
of Model Problem 5.5 divide the phase plane into four regions, labeled A, B, C , and D in the figure.
All points in region A are below the y nullcline and above the x nullcline. Based on our analysis of
the nullclines, this means that both x and y are increasing in region A. The symbol consisting of
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Figure 5.5.3
The nullcline diagram for the system x ′ = 2y, y′ = x − y.

two connected arrows pointing up and to the right indicates the general trend of the direction
field for region A. Similarly, there are symbols in each of regions B, C , and D that indicate the
trends of the direction field. The directions of the arrowheads on the nullclines are provided by
the trends in the adjoining regions. For example, the nullcline y = x in the first quadrant has
horizontal arrows. Both regions A and B, which are adjacent to this nullcline, indicate a general
trend to the right; hence the arrows on this portion of the nullcline point to the right. Below the
x axis, the arrows on the same nullcline point to the left.

INSTANT EXERCISE 2

Sketch the complete nullcline diagram for the system

x ′ = y − x, y′ = −x .

Using Nullclines to Study Critical Points

It is helpful to look at the nullclines in Figure 5.5.3 as providing information about longtime
behavior in the same manner as the phase line, but generalized to two dimensions. This analysis is
based on the observation that solution curves can only cross a nullcline in the indicated direction.

Consider the behavior of the trajectory through some point in region A. Any solution in region
A has both x and y increasing. Stated differently, trajectories in region A can only move up and to
the right. What is more important is that they cannot leave region A. The arrows on the boundaries
between A and B and between A and D show that solutions can cross these boundaries only to
enter region A. Thus, trajectories that begin in A or enter A must thereafter stay in A. The same
property holds for region C ; trajectories that begin in C must stay in C . Solutions in regions A
and C always move away from the origin. This demonstrates that the equilibrium solution x = 0,
y = 0 is unstable.

Now consider regions B and D. Some trajectories in each of these regions move into A,
while others move into C . From this information, we can argue that there must be some trajectory
that enters the origin. Consider a thought experiment. Mark out all the points in D that are on
trajectories that enter A in one color, and mark all the points in D whose trajectories enter C in a
different color. There cannot be any white space between these two regions, nor can there be any
overlap, because (Theorem 5.3.1) there is a unique trajectory through every point, no matter how
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close the point is to the origin. Thus, the two regions must have a common boundary that passes
through the origin. This boundary is itself a trajectory; indeed, it is a separatrix because it divides
points that go into region C from points that go into region A.

Nullcline diagrams can sometimes confirm stability as well as instability, and there are also
systems for which no conclusions can be drawn from the nullcline diagram alone.

EXAMPLE 1

Figure 5.5.4 shows the nullclines for

x ′ = −2x + 2y, y′ = 2x − 5y.

As in Model Problem 5.5, trajectories in region A or region C must remain in that region. This time, those
trajectories move toward the origin, suggesting that the equilibrium solution at the origin is asymptotically
stable. To confirm this claim, it is necessary to examine regions B and D. Suppose there is a trajectory
in one of these regions that does not approach the origin. Such a trajectory cannot remain in region B
or D, but must instead enter either A or C . However, trajectories in A and C move toward the origin.
Ultimately, trajectories that begin in any of the four regions must go to the origin, so the origin is indeed
asymptotically stable. The phase portrait for this system appears in Figure 5.4.2; trajectories in the phase
portrait illustrate the predictions made by nullcline analysis.

x

y AB

C D

Figure 5.5.4
The nullcline diagram for the system x ′ = −2x + 2y, y′ = 2x − 5y.

EXAMPLE 2

Figure 5.5.5 shows the nullclines for

x ′ = −2y, y′ = x − 3y.

In this case there seems to be a general flow of solution curves from A to B to C to D and so on, which
suggests that the solution curves rotate around the origin, but does not offer any evidence concerning
stability. The phase portrait in Figure 5.5.6 reveals that the origin is asymptotically stable. Solution curves
do not spiral around the origin, but follow paths confined to one or two regions. For example, solution
curves beginning in the second quadrant move through region C into region D and then proceed to the
origin without leaving region D. The nullclines alone do not give enough information to distinguish this
behavior from trajectories that spiral around the origin, such as in Figure 5.3.1, or trajectories that are
closed curves, as in Figure 5.3.3.
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Figure 5.5.5
The nullcline diagram for the system x ′ = −2y, y′ = x − 3y.
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Figure 5.5.6
The phase portrait for x ′ = −2y, y′ = x − 3y, along with the nullcline x = 3y (dashed).

INSTANT EXERCISE 3

What conclusions, if any, can be drawn from the nullcline diagram for the system

x ′ = y − x, y′ = −x?

Nullcline Analysis of Some Population Models

Consider now the three basic models for interacting populations that were developed in Section 5.1.
These are the basic predator-prey model

X ′ = X (1 − Y ), Y ′ = kY (X − 1), (1)

the basic competition model

X ′ = X (1 − Y ), Y ′ = kY (1 − X ), (2)

and the basic cooperation model

X ′ = X (Y − 1), Y ′ = kY (X − 1). (3)
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Figure 5.5.7
Nullcline diagrams for the three basic models of interacting populations.

These models show, among other things, the power of abstraction. The nondimensionalization
process reduced the number of parameters from four to one, and now we get additional benefits
from the change of variables. In all three models, the X nullclines consist of the lines X = 0 and
Y = 1, and the Y nullclines are the lines Y = 0 and X = 1. The parameter k does not affect the
nullclines at all. The nullclines for the three models are shown in Figure 5.5.7. The only difference
among the three models is the direction of the arrowheads.

We now use the nullcline diagrams to study the three basic models. In particular, we want to
know what happens to the solutions as time increases. The insight of Malthus that populations
cannot grow unchecked leads us to require that, in any reasonable model, the solution curves be
bounded.

The Basic Predator-Prey Model The nullcline diagram for the basic predator-prey model
shows that the origin is a saddle point. This is so because the X axis is a solution that leaves
the origin, while the Y axis is a solution that enters the origin. The nullcline diagram does not
give enough information to classify the equilibrium point at (1, 1), nor does it guarantee that the
solution curves are bounded. Consider, for example, the region X, Y > 1. The nullcline diagram
shows that X is decreasing in this region while Y is increasing. It appears that the solution curves
will cross over the line X = 1 and enter into a region where Y is decreasing as well as X . But
this is not the only picture consistent with the nullcline diagram. It could be that X remains larger
than 1 while Y increases without bound, as would happen if the point (1, 1) were a source.

Of course we have more information than just the nullcline diagram. We also have the
computer-generated phase portrait for the case k = 0.4, as shown in Figure 5.4.4. This pic-
ture appears to confirm that the point (1, 1) is a center and that the solution curves are bounded.
This is strong evidence, but it is limited to a single value of the parameter k. The solution of the
differential equation for the trajectories as in Example 2 of Section 5.3, can be used to confirm
that solutions are bounded.

One final issue to explore is the significance of the parameter k. Figure 5.5.8 shows the phase
portraits for k = 1 and k = 0.5. The common nullcline diagram guarantees that these systems
have similar phase portraits, although there are some quantitative differences.

The Basic Competition Model The nullcline diagram for the competition model clearly indi-
cates that the equilibrium point (1, 1) is a saddle point, with the same argument as in Model Prob-
lem 5.5. The origin is unstable also. Both equilibrium solutions are saddles, so all the trajectories
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Figure 5.5.8
The phase portrait for the predator-prey model with k = 0 (left) and k = 0.5 (right).

must be unbounded. Whichever species loses the competition dies out, but then the other grows
without bound. This model is too simple to be a useful model for competing species. It can be
improved by adding logistic terms to the differential equations. Such models are considered in
the exercises.

The Basic Cooperation Model The nullcline diagram for the cooperation model indicates that
the point (1, 1) is again a saddle point. The origin, however, appears to be asymptotically stable.
Solutions that begin with X, Y < 1 move inevitably toward the origin, indicating that the two
species die out. Alternatively, solutions that begin with X, Y > 1 clearly increase without bound.
As in the competition model, the cooperation model requires some additional features in order
to work for all starting population levels. The model works only for starting levels too small to
sustain the populations and for short-term behavior with larger starting populations.

A Technical Note

Phase portrait plots show good numerical approximations of some example trajectories. Nullclines
indicate features that all trajectories in a region must have. Conclusions drawn from nullclines do
not rest on numerical approximations, nor are they deduced from examples. They are demonstrated
by evidence taken directly from the system of differential equations.

5.5 Exercises

For Exercises 1 through 8, sketch the nullclines for each variable separately, combine them to
form a nullcline diagram, and draw what conclusions you can about the nature of the critical
points. If there are any separatrices, indicate in which region(s) they lie in. Compare the results
with a computer-generated phase portrait.

1. x ′ = −x + y, y′ = x + y (Section 5.4, Exercise 5)

2. x ′ = x − 2y, y′ = −2x (Section 5.4, Exercise 6)
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3. u′ = 3u − 2v − 5, v′ = u + v − 5

4. x ′ = 3x − 2y, y′ = 2x − 2y (Section 5.4, Exercise 8)

5. x ′ = x2 − y, y′ = −x + y (Section 5.4, Exercise 11)

6. x ′ = y, y′ = x − y − x3 (Section 5.4, Exercise 12)

7. x ′ = 2y − x, y′ = x(2x + y − 5) (Section 5.4, Exercise 13)

8. x ′ = x + y, y′ = 1 − y2 (Section 5.4, Exercise 14)

9. Prepare a nullcline diagram for the bubble growth equation

2

3
rr ′′ + (r ′)2 = 1 − 1

r
,

from Section 5.4, Exercise 15. Just consider the half-plane r ≥ 0 corresponding to the physical
interpretation of the model. Discuss what the nullcline diagram says about the growth of
bubbles of different initial size.

10. Consider the Lotka–Volterra predator-prey model

X ′ = X (1 − Y ), Y ′ = kY (X − 1).

The first study done with this model involved a curious observation made in the 1920s. Italian
fishermen at that time caught sharks as well as the more desirable fish. Prior to World War I,
about 10 to 12% of the catch consisted of sharks. During World War I, the percentage of
sharks rose to as high as 30%. By the mid-1920s the percentage was back down to about
15%. It was obvious that there was much less fishing during the war, but it was not at all clear
why that should affect the proportions of the species.

Assume that the model applies to the populations of sharks and food fish during the
war, when there was little or no commercial fishing. After the war, the resumption of fishing
changes the model by adding an extra term to each equation. Assuming that the rate of fish
caught is proportional to the population, the new model is

X ′ = X (1 − Y ) − aX, Y ′ = kY (X − 1) − bkY,

where a and b are positive parameters of fairly small magnitude. Note that the rate of decrease
of the shark population (Y ) from fishing is written as −bkY rather than −bY so that the
parameter k does not affect the nullclines.

a. Sketch the nullcline diagram for the revised model, and compare it with the predator-
prey model from Figure 5.5.7. Does the Lotka–Volterra equation adequately explain the
observations?

b. The reintroduction of fishing after World War I increased the ratio of food fish to sharks
by a factor of 3. Assuming a = b, how large must these parameters be in order to change
the equilibrium population ratio by this much?

c. The Lotka–Volterra model has also been applied to other problems. Consider a population
of rabbits and coyotes, and suppose the local chicken farmers want to hunt coyotes
to reduce losses of chickens. Use the Lotka–Volterra model with selective hunting of
predators (a = 0). What does the model predict will happen to the coyote and rabbit
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populations if b is increased in an attempt to remove the coyotes? Does this model
accurately predict the hunting of predators to extinction that has occurred in many areas?18

11. Perhaps the competitive population model would be improved by adding logistic growth.
Consider the model

X ′ = X

(
1 − Y − X

a

)
, Y ′ = Y

(
1 − X − Y

b

)
,

where a > 1 and b > 1.

a. Prepare a nullcline diagram. What does the model predict will happen? Discuss whether
this model is reasonable as a simple model for competing species.

b. Reconsider the model with a < 1 and b < 1. What does the model predict will happen?
Does the model work for competing species in this case?

12. Suppose the Lotka–Volterra model is modified by assuming that the population of prey, in the
absence of predators, is governed by a logistic growth model. With this change, the revised
model is

X ′ = X

(
1 − X

M
− Y

)
, Y ′ = kY (X − 1).

a. Prepare a nullcline diagram for this model, assuming M > 1.
b. Plot the phase portrait, using k = 1 and M = 5.
c. If we add hunting of predators to the model, we change the Y equation to

Y ′ = kY (X − 1 − b).

What does the model predict will happen to the coyote and rabbit populations if b is
increased in an attempt to remove the coyotes? Compare with Exercise 10.

5.5 INSTANT EXERCISE SOLUTIONS

1.

x nullclines

x

y

y nullclines

x

y

18The failure of the Lotka–Volterra model for selective hunting of predators is not a refutation of the model. It is, rather, a
warning that models must be fitted to the phenomena to be modeled. The model works well for the shark problem, but it
is not sufficient for the coyote problem. It is up to the applied mathematician to determine, through thought experiments
and examination of real data, whether a given model is appropriate for a given problem.
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2.

x

y A

B

C

D

3. No conclusions can be drawn without additional information.

CASE STUDY 5A Self-Limiting Population

There are many situations in which population growth is limited by environmental factors caused
by the population itself. A simpler example would be the population of microorganisms in a closed
environment, such as the population of yeast in a commercial fermentation process. Like all other
living creatures, yeast produces waste products. In a closed environment, the waste products
accumulate, making the environment less hospitable to the yeast.

The Model

We begin with a conceptual model for the problem. Our conceptual model includes a number of
assumptions:

1. The microorganisms are distributed uniformly throughout a closed container of fixed volume.
Otherwise we would have to consider spatial variations as well as evolution in time.

2. The only relevant quantities in the model are the population p(t) of microorganisms and the
amount w(t) of toxic waste material. We are ignoring the possibility that the system could be
affected by such things as temperature changes.

3. The rate of waste production is proportional to the population, with rate constant k.

4. In the absence of waste, the population would undergo logistic growth with maximum popu-
lation M and initial relative growth rate r .

5. The effect of the waste is to kill microorganisms at some rate dependent on both the population
and the amount of waste. A reasonable guess is that the death rate relative to the population
should be proportional to the amount of waste, with b the constant of proportionality. Intu-
itively, it makes sense that doubling the amount of waste should double the death rate.

6. Initially, there is a population p0 that is relatively small compared with the capacity M , and
there is no waste.

From these assumptions, we get a pair of differential equations, with initial conditions, for w

and p:
dw

dt
= kp, w(0) = 0, (1)

dp

dt
= r p

(
1 − p

M

)
− bpw, p(0) = p0. (2)
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The first differential equation follows from assumption 3, while the second is a combination of
assumptions 4 and 5.

In its current form, the model has five parameters: the rate constants k, r , and b; the population
capacity M ; and the initial population p0. It is very difficult to understand a model with this many
parameters. Following the procedure of Section 5.1, we can convert the model to dimensionless
form. Using the dimensionless variables

P = p

M
, W = bw

r
, τ = r t,

the model takes a simpler form (see Exercise 1).

Self-Limiting Population—Dimensionless Model

Determine the behavior of the system

W ′ = KP, W (0) = 0, (3)

P ′ = P(1 − P − W ), P(0) = P0, (4)

where K > 0 is a dimensionless parameter. Of particular interest is the behavior of the
system when P0 is very small.

The dimensionless version of the model has only two parameters, one of which is considerably
restricted in its possible values. In this form, the model is much easier to analyze.

Qualitative Analysis

The nullclines for the dimensionless system are obtained in the usual way, by setting each of the
derivatives equal to zero. The line

P = 0

is both a W nullcline and a P nullcline. This means that all points on the W axis are critical points.
When the critical points are connected like this, we cannot think of stability in the usual way. The
standard concept of stability applies only to isolated critical points. The only other nullcline is
the line

P + W = 1,

which is a P nullcline. The full nullcline diagram appears in Figure C5.1, including only the
realistic portion in the first quadrant. Note that neither K nor P0 appears in the equations for the
nullclines; thus, the model has a unique nullcline diagram. The dots along the W axis indicate
that all the points on that line are critical points.

The nullcline diagram gives us the general trend of trajectories. All trajectories progress to
the right, so we can obtain all of them by considering solutions that begin on the P axis. Those
beginning above P = 1 move down and to the right, corresponding to decreasing population and
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W

P

1

1

Figure C5.1
The nullcline diagram for W ′ = KP , P ′ = P(1 − P − W ).

increasing waste right from the beginning. Those beginning below P = 1 move up and to the
right until they reach the line P + W = 1, after which they also move down and to the right.
The waste increases in all cases. If the starting population is small, it will increase for a time, but
eventually it reaches a maximum value and decreases thereafter. The population must approach
zero as t → ∞, but it is not clear where on the W axis the trajectories terminate.

The Differential Equation for the Trajectories

Following the usual procedure, we can write the differential equation for the trajectories as

d P

dW
= 1 − P − W

K
. (5)

This equation is not separable, but it can be solved by a simple change of variables. Let Z (W ) be
defined by

Z = P + W.

It can be shown (see Exercise 2) that Z satisfies the differential equation

d Z

dW
= 1 + K − Z

K
. (6)

In the form (6), the differential equation for the trajectories is autonomous and therefore
separable. Before we write the solution of the equation, it is well to note that we can use the
phase line to study the autonomous equation for the trajectories. The phase line sketch appears in
Figure C5.2.

Z1 + K

Figure C5.2
The phase line for d Z/dW = (1 + K − Z )/K .

If the independent variable were time, the implication of the phase line sketch would be that Z
approaches 1 + K as time increases without bound. However, the variable W does not increase to
infinity, so the best we can say is that Z always changes toward 1 + K . This is useful information
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for the trajectories in the WP plane. Suppose Z is initially less than 1 + K . For the entire life
of the population, Z must then remain less than 1 + K , as indicated by the phase line sketch.
Translated to the actual variables of the problem, it means that any trajectories beginning at a
point (0, P0), with P0 < 1 + K , must always satisfy

P + W < 1 + K . (7)

This result also tells us something about the ultimate fate of the population. The waste W continues
to increase, but P + W is bounded by 1 + K . Eventually, P reaches 0, at which point we have

W < 1 + K .

Those trajectories that begin at (0, P0), with P0 < 1 + K intersect the W axis at a point to the left
of 1 + K .

A Formula for the Trajectories

The solution of the differential equation for the trajectories is

Z = 1 + K + Ae−W/K .

Since Z = P + W , this gives us the result

P = 1 + K − W + Ae−W/K . (8)

The phase portrait, unlike the nullclines, does depend on the value of the parameter K . We
continue now with K = 0.5 chosen as an example. With this value for K , the equation for the
trajectories is

P = 1.5 − W + Ae−2W . (9)

The phase portrait appears in Figure C5.3 along with the limiting line P + W = 1.5 and the
nullcline P + W = 1.

Discussion

The problem statement was deliberately open-ended, with the instructions being to “determine
the behavior of the system.” The analysis used a variety of tools, including nullclines and the
differential equation for the trajectories. Analysis of the latter equation required the phase line
and symbolic quantitative techniques to obtain the formula for the trajectories. Using a variety
of methods has the obvious advantage of giving the largest number of results, but it also has the
less obvious advantage of confirming results by consistency. Observe in the phase portrait that
the trajectories do indeed cross the nullcline with horizontal slope, and they are indeed bounded
above by the inequality P + W < 1 + K .

Note that we never solved the original problem of determining the population and waste as
functions of time. However, by making use of the autonomy of the model, we have obtained a
deep understanding of the history of the self-limiting population represented by the model. The
only thing we don’t know from our investigation is how rapidly the predicted changes occur.

We might also wonder about the implication of our study for real populations, such as the
population of humans on earth. Fortunately, this study says little about the human population.
While we create wastes that harm our environment, we live in an environment that is large enough
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Figure C5.3
The phase portrait for the dimensionless model with K = 0.5, along with the nullcline
P + W = 1 (dashed) and the limiting line P + W = 1 + K (dotted).

and rich enough to have mechanisms for eliminating waste. A more realistic study of human
populations would have to include a natural mechanism that decreases the waste.

Case Study 5 Exercises

1. Nondimensionalize the models (1) and (2), using dimensionless variables

P = p

M
, W = bw

r
, τ = r t.

Define dimensionless parameters K and P0 so that you get the dimensionless models (3) and
(4). What does K represent?

2. Derive Equation (6) for Z (W ).

3. Derive Equation (8) for the trajectories in the WP plane by solving the differential equation
(6) for the trajectories in the WZ plane. Note that the equation can be written in the same form
as that for Newton’s law of cooling from Section 1.1.

4. Complete the phase portrait of Figure C5.3 with some trajectories above the line P + W =
1 + K .

5. Prepare phase portraits with K = 0.25 and K = 1. Discuss the significance of the parameter K .

6. Results obtained with one tool often suggest investigations to be done with another. For exam-
ple, we might be interested in knowing the largest population value achieved when the starting
population is small. This point can be found in the phase portrait as the intersection of the
nullcline with the trajectory that passes through the origin. It can also be found symbolically.
Let K = 0.5. Set the formula for the trajectory equal to that for the nullcline. Find the waste
level at which the maximum population occurs and the corresponding population. How does
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the actual maximum population for this case compare with the theoretical limit (that where
there is no waste)?

7. Suppose we alter the model to allow for the gradual decrease of waste due to natural environ-
mental renewal. This change results in a new dimensionless model

W ′ = KP − QK W, P ′ = P(1 − P − W ).

a. Prepare a nullcline diagram for this model. Can any conclusions be drawn from the
nullcline sketch regarding the correct classification of the equilibrium points? Does it
matter what values are chosen for K and Q?

b. Take K = 0.5 and Q = 0.5. Plot the phase portrait for the system. Describe what happens
to populations of various initial sizes, assuming there is initially no waste.


