
May 19, 2004 11:40 vra60857_ch06 Sheet number 1 Page number 315 black

315

c h a p t e r

6
Combinational-Circuit Building

Blocks

Chapter Objectives

In this chapter you will learn about:

• Commonly used combinational subcircuits

• Multiplexers, which can be used for selection of signals and for implementation
of general logic functions

• Circuits used for encoding, decoding, and code-conversion purposes

• Key VHDL constructs used to define combinational circuits

May 19, 2004 11:40 vra60857_ch06 Sheet number 2 Page number 316 black

316 C H A P T E R 6 • Combinational-Circuit Building Blocks

Previous chapters have introduced the basic techniques for design of logic circuits. In practice, a few types
of logic circuits are often used as building blocks in larger designs. This chapter discusses a number of these
blocks and gives examples of their use. The chapter also includes a major section on VHDL, which describes
several key features of the language.

6.1 Multiplexers

Multiplexers were introduced briefly in Chapters 2 and 3. A multiplexer circuit has a
number of data inputs, one or more select inputs, and one output. It passes the signal value
on one of the data inputs to the output. The data input is selected by the values of the select
inputs. Figure 6.1 shows a 2-to-1 multiplexer. Part (a) gives the symbol commonly used.
The select input, s, chooses as the output of the multiplexer either input w0 or w1. The
multiplexer’s functionality can be described in the form of a truth table as shown in part (b)

of the figure. Part (c) gives a sum-of-products implementation of the 2-to-1 multiplexer,
and part (d) illustrates how it can be constructed with transmission gates.

Figure 6.2a depicts a larger multiplexer with four data inputs, w0, . . . , w3, and two
select inputs, s1 and s0. As shown in the truth table in part (b) of the figure, the two-bit
number represented by s1s0 selects one of the data inputs as the output of the multiplexer.

(a) Graphical symbol

f

s

w
0

w
1

0

1

(b) Truth table

0
1

f

fs

w
0

w
1

(c) Sum-of-products circuit

s

w
0

w
1

f

s

w
0

w
1

(d) Circuit with transmission gates

Figure 6.1 A 2-to-1 multiplexer.

May 19, 2004 11:40 vra60857_ch06 Sheet number 3 Page number 317 black

6.1 Multiplexers 317

(a) Graphical symbol

f

s
1

w
0

w
1

00

01

(b) Truth table

w
0

w
1

s
0

w
2

w
3

10

11

0
0
1
1

1
0
1

fs
1

0

s
0

w
2

w
3

f

(c) Circuit

s
1

w
0

w
1

s
0

w
2

w
3

Figure 6.2 A 4-to-1 multiplexer.

A sum-of-products implementation of the 4-to-1 multiplexer appears in Figure 6.2c. It
realizes the multiplexer function

f = s1s0w0 + s1s0w1 + s1s0w2 + s1s0w3

It is possible to build larger multiplexers using the same approach. Usually, the num-
ber of data inputs, n, is an integer power of two. A multiplexer that has n data inputs,
w0, . . . , wn−1, requires � log2n � select inputs. Larger multiplexers can also be constructed
from smaller multiplexers. For example, the 4-to-1 multiplexer can be built using three
2-to-1 multiplexers as illustrated in Figure 6.3. If the 4-to-1 multiplexer is implemented
using transmission gates, then the structure in this figure is always used. Figure 6.4 shows
how a 16-to-1 multiplexer is constructed with five 4-to-1 multiplexers.

May 19, 2004 11:40 vra60857_ch06 Sheet number 4 Page number 318 black

318 C H A P T E R 6 • Combinational-Circuit Building Blocks

s
0

w
0

w
1

0

1

w
2

w
3

0

1

f
0

1

s
1

Figure 6.3 Using 2-to-1 multiplexers to build a 4-to-1
multiplexer.

w
8

w
11

s
1

w
0

s
0

w
3

w
4

w
7

w
12

w
15

s
3

s
2

f

Figure 6.4 A 16-to-1 multiplexer.

May 19, 2004 11:40 vra60857_ch06 Sheet number 5 Page number 319 black

6.1 Multiplexers 319

Example 6.1Figure 6.5 shows a circuit that has two inputs, x1 and x2, and two outputs, y1 and y2. As
indicated by the blue lines, the function of the circuit is to allow either of its inputs to be
connected to either of its outputs, under the control of another input, s. A circuit that has
n inputs and k outputs, whose sole function is to provide a capability to connect any input
to any output, is usually referred to as an n×k crossbar switch. Crossbars of various sizes
can be created, with different numbers of inputs and outputs. When there are two inputs
and two outputs, it is called a 2×2 crossbar.

Figure 6.5b shows how the 2×2 crossbar can be implemented using 2-to-1 multiplexers.
The multiplexer select inputs are controlled by the signal s. If s = 0, the crossbar connects
x1 to y1 and x2 to y2, while if s = 1, the crossbar connects x1 to y2 and x2 to y1. Crossbar
switches are useful in many practical applications in which it is necessary to be able to
connect one set of wires to another set of wires, where the connection pattern changes from
time to time.

Example 6.2We introduced field-programmable gate array (FPGA) chips in section 3.6.5. Figure 3.39
depicts a small FPGAthat is programmed to implement a particular circuit. The logic blocks
in the FPGA have two inputs, and there are four tracks in each routing channel. Each of the
programmable switches that connects a logic block input or output to an interconnection
wire is shown as an X. A small part of Figure 3.39 is reproduced in Figure 6.6a. For clarity,

x
1 0

1

x
2 0

1

s

y
1

y
2

x
1

x
2

y
1

y
2

(a) A 2x2 crossbar switch

(b) Implementation using multiplexers

s

Figure 6.5 A practical application of multiplexers.

May 19, 2004 11:40 vra60857_ch06 Sheet number 6 Page number 320 black

320 C H A P T E R 6 • Combinational-Circuit Building Blocks

i
1

i
2

f

(a) Part of the FPGA in Figure 3.39

Storage
cell

0/1

0/1

i
1

i
2

f

(b) Implementation using pass transistors

i
1

i
2

f

(c) Implementation using multiplexers

0/1 0/1 0/1

0/1 0/1 0/1

0/10/1

0/10/1

Figure 6.6 Implementing programmable switches in an FPGA.

May 19, 2004 11:40 vra60857_ch06 Sheet number 7 Page number 321 black

6.1 Multiplexers 321

the figure shows only a single logic block and the interconnection wires and switches
associated with its input terminals.

One way in which the programmable switches can be implemented is illustrated in
Figure 6.6b. Each X in part (a) of the figure is realized using an NMOS transistor controlled
by a storage cell. This type of programmable switch was also shown in Figure 3.68. We
described storage cells briefly in section 3.6.5 and will discuss them in more detail in section
10.1. Each cell stores a single logic value, either 0 or 1, and provides this value as the output
of the cell. Each storage cell is built by using several transistors. Thus the eight cells shown
in the figure use a significant amount of chip area.

The number of storage cells needed can be reduced by using multiplexers, as shown
in Figure 6.6c. Each logic block input is fed by a 4-to-1 multiplexer, with the select inputs
controlled by storage cells. This approach requires only four storage cells, instead of eight.
In commercial FPGAs the multiplexer-based approach is usually adopted.

6.1.1 Synthesis of Logic Functions Using Multiplexers

Multiplexers are useful in many practical applications, such as those described above. They
can also be used in a more general way to synthesize logic functions. Consider the example
in Figure 6.7a. The truth table defines the function f = w1 ⊕ w2. This function can be
implemented by a 4-to-1 multiplexer in which the values of f in each row of the truth table
are connected as constants to the multiplexer data inputs. The multiplexer select inputs are
driven by w1 and w2. Thus for each valuation of w1w2, the output f is equal to the function
value in the corresponding row of the truth table.

The above implementation is straightforward, but it is not very efficient. A better
implementation can be derived by manipulating the truth table as indicated in Figure 6.7b,
which allows f to be implemented by a single 2-to-1 multiplexer. One of the input signals,
w1 in this example, is chosen as the select input of the 2-to-1 multiplexer. The truth table
is redrawn to indicate the value of f for each value of w1. When w1 = 0, f has the same
value as input w2, and when w1 = 1, f has the value of w2. The circuit that implements
this truth table is given in Figure 6.7c. This procedure can be applied to synthesize a circuit
that implements any logic function.

Example 6.3Figure 6.8a gives the truth table for the three-input majority function, and it shows how the
truth table can be modified to implement the function using a 4-to-1 multiplexer. Any two
of the three inputs may be chosen as the multiplexer select inputs. We have chosen w1 and
w2 for this purpose, resulting in the circuit in Figure 6.8b.

May 19, 2004 11:40 vra60857_ch06 Sheet number 8 Page number 322 black

322 C H A P T E R 6 • Combinational-Circuit Building Blocks

(a) Implementation using a 4-to-1 multiplexer

f

w
1

0

1

0

1

w
2

1

0

0
0
1
1

1
0
1

fw
1

0

w
2

1

0

(b) Modified truth table

0

1

0
0
1
1

1
0
1

fw
1

0

w
2

1

0

f
w
2

w
1

0
1

fw
1

w
2

w
2

(c) Circuit

Figure 6.7 Synthesis of a logic function using mutiplexers.

Example 6.4 Figure 6.9a indicates how the function f = w1 ⊕ w2 ⊕ w3 can be implemented using 2-to-1
multiplexers. When w1 = 0, f is equal to the XOR of w2 and w3, and when w1 = 1, f is the
XNOR of w2 and w3. The left multiplexer in the circuit produces w2 ⊕ w3, using the result
from Figure 6.7, and the right multiplexer uses the value of w1 to select either w2 ⊕w3 or its
complement. Note that we could have derived this circuit directly by writing the function
as f = (w2 ⊕ w3) ⊕ w1.

Figure 6.10 gives an implementation of the three-input XOR function using a 4-to-1
multiplexer. Choosing w1 and w2 for the select inputs results in the circuit shown.

May 19, 2004 11:40 vra60857_ch06 Sheet number 9 Page number 323 black

6.1 Multiplexers 323

w
3

w
3

f

w
1

0

w
2

1

(a) Modified truth table

(b) Circuit

00
0
1
1

1
0
1

fw
1

0

w
2

1

0 0

0 1

1 0

1 1

0

0

0

1

0 0

0 1

1 0

1 1

0

1

1

1

w
1
w
2
w
3

f

0

0

0

0

1

1

1

1

w
3

Figure 6.8 Implementation of the three-input majority function
using a 4-to-1 multiplexer.

(a) Truth table

0 0

0 1

1 0

1 1

0

1

1

0

0 0

0 1

1 0

1 1

1

0

0

1

w
1
w
2
w
3

f

0

0

0

0

1

1

1

1

w
2

w
3

⊕

w
2

w
3

⊕

f

w
3

w
1

(b) Circuit

w
2

Figure 6.9 Three-input XOR implemented with 2-to-1 multiplexers.

May 19, 2004 11:40 vra60857_ch06 Sheet number 10 Page number 324 black

324 C H A P T E R 6 • Combinational-Circuit Building Blocks

f

w
1

w
2

(a) Truth table (b) Circuit

0 0

0 1

1 0

1 1

0

1

1

0

0 0

0 1

1 0

1 1

1

0

0

1

w
1
w
2
w
3

f

0

0

0

0

1

1

1

1

w
3

w
3

w
3

w
3

w
3

Figure 6.10 Three-input XOR implemented with a 4-to-1 multiplexer.

6.1.2 Multiplexer Synthesis Using Shannon’s Expansion

Figures 6.8 through 6.10 illustrate how truth tables can be interpreted to implement logic
functions using multiplexers. In each case the inputs to the multiplexers are the constants
0 and 1, or some variable or its complement. Besides using such simple inputs, it is
possible to connect more complex circuits as inputs to a multiplexer, allowing functions to
be synthesized using a combination of multiplexers and other logic gates. Suppose that we
want to implement the three-input majority function in Figure 6.8 using a 2-to-1 multiplexer
in this way. Figure 6.11 shows an intuitive way of realizing this function. The truth table
can be modified as shown on the right. If w1 = 0, then f = w2w3, and if w1 = 1, then
f = w2 + w3. Using w1 as the select input for a 2-to-1 multiplexer leads to the circuit in
Figure 6.11b.

This implementation can be derived using algebraic manipulation as follows. The
function in Figure 6.11a is expressed in sum-of-products form as

f = w1w2w3 + w1w2w3 + w1w2w3 + w1w2w3

It can be manipulated into

f = w1(w2w3) + w1(w2w3 + w2w3 + w2w3)

= w1(w2w3) + w1(w2 + w3)

which corresponds to the circuit in Figure 6.11b.
Multiplexer implementations of logic functions require that a given function be decom-

posed in terms of the variables that are used as the select inputs. This can be accomplished
by means of a theorem proposed by Claude Shannon [1].

May 19, 2004 11:40 vra60857_ch06 Sheet number 11 Page number 325 black

6.1 Multiplexers 325

(a) Truth table

0 0

0 1

1 0

1 1

0

0

0

1

0 0

0 1

1 0

1 1

0

1

1

1

w
1
w
2
w
3

f

0

0

0

0

1

1

1

1

(b) Circuit

0
1

fw
1

w
2
w
3

w
2

w
3

+

f

w
3

w
1w

2

Figure 6.11 The three-input majority function implemented using a
2-to-1 multiplexer.

Shannon’s Expansion Theorem
Any Boolean function f (w1, . . . , wn) can be written in the form

f (w1, w2, . . . , wn) = w1 · f (0, w2, . . . , wn) + w1 · f (1, w2, . . . , wn)

This expansion can be done in terms of any of the n variables. We will leave the proof of
the theorem as an exercise for the reader (see problem 6.9).

To illustrate its use, we can apply the theorem to the three-input majority function,
which can be written as

f (w1, w2, w3) = w1w2 + w1w3 + w2w3

Expanding this function in terms of w1 gives

f = w1(w2w3) + w1(w2 + w3)

which is the expression that we derived above.

May 19, 2004 11:40 vra60857_ch06 Sheet number 12 Page number 326 black

326 C H A P T E R 6 • Combinational-Circuit Building Blocks

For the three-input XOR function, we have

f = w1 ⊕ w2 ⊕ w3

= w1 · (w2 ⊕ w3) + w1 · (w2 ⊕ w3)

which gives the circuit in Figure 6.9b.
In Shannon’s expansion the term f (0, w2, . . . , wn) is called the cofactor of f with respect

to w1; it is denoted in shorthand notation as fw1 . Similarly, the term f (1, w2, . . . , wn) is
called the cofactor of f with respect to w1, written fw1 . Hence we can write

f = w1fw1 + w1fw1

In general, if the expansion is done with respect to variable wi, then fwi denotes
f (w1, . . . , wi−1, 1, wi+1, . . . , wn) and

f (w1, . . . , wn) = wifwi + wifwi

The complexity of the logic expression may vary, depending on which variable, wi, is used,
as illustrated in Example 6.5.

Example 6.5 For the function f = w1w3 + w2w3, decomposition using w1 gives

f = w1fw1 + w1fw1

= w1(w3 + w2) + w1(w2w3)

Using w2 instead of w1 produces

f = w2fw2 + w2fw2

= w2(w1w3) + w2(w1 + w3)

Finally, using w3 gives

f = w3fw3 + w3fw3

= w3(w2) + w3(w1)

The results generated using w1 and w2 have the same cost, but the expression produced
using w3 has a lower cost. In practice, the CAD tools that perform decompositions of this
type try a number of alternatives and choose the one that produces the best result.

Shannon’s expansion can be done in terms of more than one variable. For example,
expanding a function in terms of w1 and w2 gives

f (w1, . . . , wn) = w1w2 · f (0, 0, w3, . . . , wn) + w1w2 · f (0, 1, w3, . . . , wn)

+ w1w2 · f (1, 0, w3, …̧, wn) + w1w2 · f (1, 1, w3, . . . , wn)

This expansion gives a form that can be implemented using a 4-to-1 multiplexer. If Shan-
non’s expansion is done in terms of all n variables, then the result is the canonical sum-of-
products form, which was defined in section 2.6.1.

May 19, 2004 11:40 vra60857_ch06 Sheet number 13 Page number 327 black

6.1 Multiplexers 327

(a) Using a 2-to-1 multiplexer

f

w
2

w
1

w
3

f

w
1

w
2

w
3

(b) Using a 4-to-1 multiplexer

1

Figure 6.12 The circuits synthesized in Example 6.6.

Example 6.6Assume that we wish to implement the function

f = w1w3 + w1w2 + w1w3

using a 2-to-1 multiplexer and any other necessary gates. Shannon’s expansion using w1

gives

f = w1fw1 + w1fw1

= w1(w3) + w1(w2 + w3)

The corresponding circuit is shown in Figure 6.12a. Assume now that we wish to use a
4-to-1 multiplexer instead. Further decomposition using w2 gives

f = w1w2fw1w2 + w1w2fw1w2 + w1w2fw1w2 + w1w2fw1w2

= w1w2(w3) + w1w2(w3) + w1w2(w3) + w1w2(1)

The circuit is shown in Figure 6.12b.

Example 6.7Consider the three-input majority function

f = w1w2 + w1w3 + w2w3

May 19, 2004 11:40 vra60857_ch06 Sheet number 14 Page number 328 black

328 C H A P T E R 6 • Combinational-Circuit Building Blocks

w
2

0

w
3

1

f

w
1

Figure 6.13 The circuit synthesized in Example 6.7.

We wish to implement this function using only 2-to-1 multiplexers. Shannon’s expansion
using w1 yields

f = w1(w2w3) + w1(w2 + w3 + w2w3)

= w1(w2w3) + w1(w2 + w3)

Let g = w2w3 and h = w2 + w3. Expansion of both g and h using w2 gives

g = w2(0) + w2(w3)

h = w2(w3) + w2(1)

The corresponding circuit is shown in Figure 6.13. It is equivalent to the 4-to-1 multiplexer
circuit derived using a truth table in Figure 6.8.

Example 6.8 In section 3.6.5 we said that most FPGAs use lookup tables for their logic blocks. Assume
that an FPGA exists in which each logic block is a three-input lookup table (3-LUT).
Because it stores a truth table, a 3-LUT can realize any logic function of three variables.
Using Shannon’s expansion, any four-variable function can be realized with at most three
3-LUTs. Consider the function

f = w2w3 + w1w2w3 + w2w3w4 + w1w2w4

Expansion in terms of w1 produces

f = w1fw1 + w1fw1

= w1(w2w3 + w2w3 + w2w3w4) + w1(w2w3 + w2w3w4 + w2w4)

= w1(w2w3 + w2w3) + w1(w2w3 + w2w3w4 + w2w4)

A circuit with three 3-LUTs that implements this expression is shown in Figure 6.14a.
Decomposition of the function using w2, instead of w1, gives

f = w2fw2 + w2fw2

= w2(w3 + w1w4) + w2(w1w3 + w3w4)

May 19, 2004 11:40 vra60857_ch06 Sheet number 15 Page number 329 black

6.2 Decoders 329

w
2

w
3

f

w
4

w
1

f w
1

(a) Using three 3-LUTs

(b) Using two 3-LUTs

f w
1

w
1

w
3

f

w
4

0

f w
2

w
2

0

Figure 6.14 Circuits synthesized in Example 6.8.

Observe that f w2
= fw2 ; hence only two 3-LUTs are needed, as illustrated in Figure 6.14b.

The LUT on the right implements the two-variable function w2fw2 + w2f w2
.

Since it is possible to implement any logic function using multiplexers, general-purpose
chips exist that contain multiplexers as their basic logic resources. Both Actel Corporation
[2] and QuickLogic Corporation [3] offer FPGAs in which the logic block comprises an ar-
rangement of multiplexers. Texas Instruments offers gate array chips that have multiplexer-
based logic blocks [4].

6.2 Decoders

Decoder circuits are used to decode encoded information. A binary decoder, depicted in
Figure 6.15, is a logic circuit with n inputs and 2n outputs. Only one output is asserted
at a time, and each output corresponds to one valuation of the inputs. The decoder also
has an enable input, En, that is used to disable the outputs; if En = 0, then none of the
decoder outputs is asserted. If En = 1, the valuation of wn−1 · · · w1w0 determines which of
the outputs is asserted. An n-bit binary code in which exactly one of the bits is set to 1 at a

May 19, 2004 11:40 vra60857_ch06 Sheet number 16 Page number 330 black

330 C H A P T E R 6 • Combinational-Circuit Building Blocks

w
0

w
n 1–

n
inputs

EnEnable

2n

outputs

y
0

y
2n 1–

Figure 6.15 An n-to-2n binary decoder.

time is referred to as one-hot encoded, meaning that the single bit that is set to 1 is deemed
to be “hot.” The outputs of a binary decoder are one-hot encoded.

A 2-to-4 decoder is given in Figure 6.16. The two data inputs are w1 and w0. They
represent a two-bit number that causes the decoder to assert one of the outputs y0, . . . , y3.
Although a decoder can be designed to have either active-high or active-low outputs, in

(b) Graphical symbol(a) Truth table

0
0
1
1

1
0
1

y
0

w
1

0

w
0

(c) Logic circuit

w
1

w
0

x x

1
1

0

1
1

En

0
0
0

1

0

y
1

1
0
0

0

0

y
2

0
1
0

0

0

y
3

0
0
1

0

0

y
0

y
1

y
2

y
3

En

w
0

En

y
0

w
1

y
1

y
2

y
3

Figure 6.16 A 2-to-4 decoder.

May 19, 2004 11:40 vra60857_ch06 Sheet number 17 Page number 331 black

6.2 Decoders 331

w
2

w
0

y
0

y
1

y
2

y
3

w
0

En

y
0

w
1

y
1

y
2

y
3

w
0

En

y
0

w
1

y
1

y
2

y
3

y
4

y
5

y
6

y
7

w
1

En

Figure 6.17 A 3-to-8 decoder using two 2-to-4 decoders.

Figure 6.16 active-high outputs are assumed. Setting the inputs w1w0 to 00, 01, 10, or 11
causes the output y0, y1, y2, or y3 to be set to 1, respectively. A graphical symbol for the
decoder is given in part (b) of the figure, and a logic circuit is shown in part (c).

Larger decoders can be built using the sum-of-products structure in Figure 6.16c, or
else they can be constructed from smaller decoders. Figure 6.17 shows how a 3-to-8 decoder
is built with two 2-to-4 decoders. The w2 input drives the enable inputs of the two decoders.
The top decoder is enabled if w2 = 0, and the bottom decoder is enabled if w2 = 1. This
concept can be applied for decoders of any size. Figure 6.18 shows how five 2-to-4 decoders
can be used to construct a 4-to-16 decoder. Because of its treelike structure, this type of
circuit is often referred to as a decoder tree.

Example 6.9Decoders are useful for many practical purposes. In Figure 6.2c we showed the sum-of-
products implementation of the 4-to-1 multiplexer, which requiresAND gates to distinguish
the four different valuations of the select inputs s1 and s0. Since a decoder evaluates the
values on its inputs, it can be used to build a multiplexer as illustrated in Figure 6.19. The
enable input of the decoder is not needed in this case, and it is set to 1. The four outputs of
the decoder represent the four valuations of the select inputs.

Example 6.10In Figure 3.59 we showed how a 2-to-1 multiplexer can be constructed using two tri-state
buffers. This concept can be applied to any size of multiplexer, with the addition of a
decoder. An example is shown in Figure 6.20. The decoder enables one of the tri-state
buffers for each valuation of the select lines, and that tri-state buffer drives the output, f ,
with the selected data input. We have now seen that multiplexers can be implemented in
various ways. The choice of whether to employ the sum-of-products form, transmission
gates, or tri-state buffers depends on the resources available in the chip being used. For
instance, most FPGAs that use lookup tables for their logic blocks do not contain tri-state

May 19, 2004 11:40 vra60857_ch06 Sheet number 18 Page number 332 black

332 C H A P T E R 6 • Combinational-Circuit Building Blocks

w
0

En

y
0

w
1

y
1

y
2

y
3

y
8

y
9

y
10

y
11

w
2

w
0

y
0

y
1

y
2

y
3

w
0

En

y
0

w
1

y
1

y
2

y
3

w
0

En

y
0

w
1

y
1

y
2

y
3

y
4

y
5

y
6

y
7

w
1

w
0

En

y
0

w
1

y
1

y
2

y
3

y
12

y
13

y
14

y
15

w
0

En

y
0

w
1

y
1

y
2

y
3

w
3

En

Figure 6.18 A 4-to-16 decoder built using a decoder tree.

w
1

w
0

w
0

En

y
0

w
1

y
1

y
2

y
3

w
2

w
3

f

s
0

s
1

1

Figure 6.19 A 4-to-1 multiplexer built using a decoder.

May 19, 2004 11:40 vra60857_ch06 Sheet number 19 Page number 333 black

6.2 Decoders 333

w
1

w
0

w
0

En

y
0

w
1

y
1

y
2

y
3

f

s
0

s
1

1 w
2

w
3

Figure 6.20 A 4-to-1 multiplexer built using a decoder and tri-state
buffers.

buffers. Hence multiplexers must be implemented in the sum-of-products form using the
lookup tables (see Example 6.30).

6.2.1 Demultiplexers

We showed in section 6.1 that a multiplexer has one output, n data inputs, and � log2n �
select inputs. The purpose of the multiplexer circuit is to multiplex the n data inputs onto
the single data output under control of the select inputs. A circuit that performs the opposite
function, namely, placing the value of a single data input onto multiple data outputs, is
called a demultiplexer. The demultiplexer can be implemented using a decoder circuit. For
example, the 2-to-4 decoder in Figure 6.16 can be used as a 1-to-4 demultiplexer. In this
case the En input serves as the data input for the demultiplexer, and the y0 to y3 outputs
are the data outputs. The valuation of w1w0 determines which of the outputs is set to the
value of En. To see how the circuit works, consider the truth table in Figure 6.16a. When
En = 0, all the outputs are set to 0, including the one selected by the valuation of w1w0.
When En = 1, the valuation of w1w0 sets the appropriate output to 1.

In general, an n-to-2n decoder circuit can be used as a 1-to-n demultiplexer. However, in
practice decoder circuits are used much more often as decoders rather than as demultiplexers.
In many applications the decoder’s En input is not actually needed; hence it can be omitted.
In this case the decoder always asserts one of its data outputs, y0, . . . , y2n−1, according to
the valuation of the data inputs, wn−1 · · · w0. Example 6.11 uses a decoder that does not
have the En input.

May 19, 2004 11:40 vra60857_ch06 Sheet number 20 Page number 334 black

334 C H A P T E R 6 • Combinational-Circuit Building Blocks

Example 6.11 One of the most important applications of decoders is in memory blocks, which are used to
store information. Such memory blocks are included in digital systems, such as computers,
where there is a need to store large amounts of information electronically. One type of
memory block is called a read-only memory (ROM). A ROM consists of a collection of
storage cells, where each cell permanently stores a single logic value, either 0 or 1. Figure
6.21 shows an example of a ROM block. The storage cells are arranged in 2m rows with n
cells per row. Thus each row stores n bits of information. The location of each row in the
ROM is identified by its address. In the figure the row at the top of the ROM has address
0, and the row at the bottom has address 2m − 1. The information stored in the rows can
be accessed by asserting the select lines, Sel0 to Sel2m−1. As shown in the figure, a decoder
with m inputs and 2m outputs is used to generate the signals on the select lines. Since
the inputs to the decoder choose the particular address (row) selected, they are called the
address lines. The information stored in the row appears on the data outputs of the ROM,
dn−1, . . . , d0, which are called the data lines. Figure 6.21 shows that each data line has
an associated tri-state buffer that is enabled by the ROM input named Read. To access, or
read, data from the ROM, the address of the desired row is placed on the address lines and
Read is set to 1.

Sel
2

Sel
1

Sel
0

Sel
2m 1–

Address

Read

d
0

d
n 1– d

n 2–

m
-t

o-
2m

 d
ec

od
er

0/1 0/1 0/1

0/10/10/1

0/1 0/1 0/1

0/10/10/1

Data

a
0

a
1

a
m 1–

Figure 6.21 A 2m × n read-only memory (ROM) block.

May 19, 2004 11:40 vra60857_ch06 Sheet number 21 Page number 335 black

6.3 Encoders 335

Many different types of memory blocks exist. In a ROM the stored information can
be read out of the storage cells, but it cannot be changed (see problem 6.32). Another
type of ROM allows information to be both read out of the storage cells and stored, or
written, into them. Reading its contents is the normal operation, whereas writing requires
a special procedure. Such a memory block is called a programmable ROM (PROM). The
storage cells in a PROM are usually implemented using EEPROM transistors. We discussed
EEPROM transistors in section 3.10 to show how they are used in PLDs. Other types of
memory blocks are discussed in section 10.1.

6.3 Encoders

An encoder performs the opposite function of a decoder. It encodes given information into
a more compact form.

6.3.1 Binary Encoders

A binary encoder encodes information from 2n inputs into an n-bit code, as indicated in
Figure 6.22. Exactly one of the input signals should have a value of 1, and the outputs
present the binary number that identifies which input is equal to 1. The truth table for a
4-to-2 encoder is provided in Figure 6.23a. Observe that the output y0 is 1 when either
input w1 or w3 is 1, and output y1 is 1 when input w2 or w3 is 1. Hence these outputs can be
generated by the circuit in Figure 6.23b. Note that we assume that the inputs are one-hot
encoded. All input patterns that have multiple inputs set to 1 are not shown in the truth
table, and they are treated as don’t-care conditions.

Encoders are used to reduce the number of bits needed to represent given information.
A practical use of encoders is for transmitting information in a digital system. Encoding
the information allows the transmission link to be built using fewer wires. Encoding is also
useful if information is to be stored for later use because fewer bits need to be stored.

2n

inputs

w
0

w
2n 1–

y
0

y
n 1–

n
outputs

Figure 6.22 A 2n-to-n binary encoder.

May 19, 2004 11:40 vra60857_ch06 Sheet number 22 Page number 336 black

336 C H A P T E R 6 • Combinational-Circuit Building Blocks

(a) Truth table

0
0
1
1

1
0
1

w
3

y
1

0

y
0

(b) Circuit

w
1

w
0

0
0
1

0

w
2

0
1
0

0

w
1

1
0
0

0

w
0

0
0
0

1

y
0

w
2

w
3

y
1

Figure 6.23 A 4-to-2 binary encoder.

6.3.2 Priority Encoders

Another useful class of encoders is based on the priority of input signals. In a priority
encoder each input has a priority level associated with it. The encoder outputs indicate the
active input that has the highest priority. When an input with a high priority is asserted, the
other inputs with lower priority are ignored. The truth table for a 4-to-2 priority encoder is
shown in Figure 6.24. It assumes that w0 has the lowest priority and w3 the highest. The
outputs y1 and y0 represent the binary number that identifies the highest priority input set
to 1. Since it is possible that none of the inputs is equal to 1, an output, z, is provided to
indicate this condition. It is set to 1 when at least one of the inputs is equal to 1. It is set to

d
0
0
1

0
1
0

w
0

y
1

d

y
0

1 1

0
1

1

1
1

z

1
x
x

0

x

w
1

0
1
x

0

x

w
2

0
0
1

0

x

w
3

0
0
0

0

1

Figure 6.24 Truth table for a 4-to-2 priority encoder.

May 19, 2004 11:40 vra60857_ch06 Sheet number 23 Page number 337 black

6.4 Code Converters 337

0 when all inputs are equal to 0. The outputs y1 and y0 are not meaningful in this case, and
hence the first row of the truth table can be treated as a don’t-care condition for y1 and y0.

The behavior of the priority encoder is most easily understood by first considering
the last row in the truth table. It specifies that if input w3 is 1, then the outputs are set to
y1y0 = 11. Because w3 has the highest priority level, the values of inputs w2, w1, and w0

do not matter. To reflect the fact that their values are irrelevant, w2, w1, and w0 are denoted
by the symbol x in the truth table. The second-last row in the truth table stipulates that if
w2 = 1, then the outputs are set to y1y0 = 10, but only if w3 = 0. Similarly, input w1

causes the outputs to be set to y1y0 = 01 only if both w3 and w2 are 0. Input w0 produces
the outputs y1y0 = 00 only if w0 is the only input that is asserted.

Alogic circuit that implements the truth table can be synthesized by using the techniques
developed in Chapter 4. However, a more convenient way to derive the circuit is to define
a set of intermediate signals, i0, . . . , i3, based on the observations above. Each signal, ik ,
is equal to 1 only if the input with the same index, wk , represents the highest-priority input
that is set to 1. The logic expressions for i0, . . . , i3 are

i0 = w3w2w1w0

i1 = w3w2w1

i2 = w3w2

i3 = w3

Using the intermediate signals, the rest of the circuit for the priority encoder has the same
structure as the binary encoder in Figure 6.23, namely

y0 = i1 + i3

y1 = i2 + i3

The output z is given by

z = i0 + i1 + i2 + i3

6.4 Code Converters

The purpose of the decoder and encoder circuits is to convert from one type of input
encoding to a different output encoding. For example, a 3-to-8 binary decoder converts
from a binary number on the input to a one-hot encoding at the output. An 8-to-3 binary
encoder performs the opposite conversion. There are many other possible types of code
converters. One common example is a BCD-to-7-segment decoder, which converts one
binary-coded decimal (BCD) digit into information suitable for driving a digit-oriented
display. As illustrated in Figure 6.25a, the circuit converts the BCD digit into seven signals
that are used to drive the segments in the display. Each segment is a small light-emitting
diode (LED), which glows when driven by an electrical signal. The segments are labeled
from a to g in the figure. The truth table for the BCD-to-7-segment decoder is given in
Figure 6.25c. For each valuation of the inputs w3, . . . , w0, the seven outputs are set to

May 19, 2004 11:40 vra60857_ch06 Sheet number 24 Page number 338 black

338 C H A P T E R 6 • Combinational-Circuit Building Blocks

ce

1
0
1
1

1
1
1

w
0

a

1

b

0 1

1
1

1

0
1

1
0
1

0

0

w
1

0
1
1

0

0

w
2

0
0
0

0

1

w
3

0
0
0

0

0

c

1
0
1
0

0
1
1
0

1
1
1
0

0
0
0
1

1001

1
1
1
1

0
1
1

0

1 1

1
1

1

1
1

0
1
1

1

d

0

1
0

0

1
0

e

1
0
1

1

1

0
1

0

0
1

0
0
0

1

f

1

0
0

1

1
1

g

1
0
1

1

1

1
1

1

0
1

(c) Truth table

(a) Code converter

w
0

a

w
1

b

c

d
w
2

w
3

e

f

g

a

g

bf

d

(b) 7-segment display

Figure 6.25 A BCD-to-7-segment display code converter.

display the appropriate BCD digit. Note that the last 6 rows of a complete 16-row truth
table are not shown. They represent don’t-care conditions because they are not legal BCD
codes and will never occur in a circuit that deals with BCD data. A circuit that implements
the truth table can be derived using the synthesis techniques discussed in Chapter 4. Finally,
we should note that although the word decoder is traditionally used for this circuit, a more
appropriate term is code converter. The term decoder is more appropriate for circuits that
produce one-hot encoded outputs.

6.5 Arithmetic Comparison Circuits

Chapter 5 presented arithmetic circuits that perform addition, subtraction, and multiplication
of binary numbers. Another useful type of arithmetic circuit compares the relative sizes
of two binary numbers. Such a circuit is called a comparator. This section considers the

May 19, 2004 11:40 vra60857_ch06 Sheet number 25 Page number 339 black

6.6 VHDL for Combinational Circuits 339

design of a comparator that has two n-bit inputs, A and B, which represent unsigned binary
numbers. The comparator produces three outputs, called AeqB, AgtB, and AltB. The AeqB
output is set to 1 if A and B are equal. The AgtB output is 1 if A is greater than B, and the
AltB output is 1 if A is less than B.

The desired comparator can be designed by creating a truth table that specifies the three
outputs as functions of A and B. However, even for moderate values of n, the truth table is
large. A better approach is to derive the comparator circuit by considering the bits of A and
B in pairs. We can illustrate this by a small example, where n = 4.

Let A = a3a2a1a0 and B = b3b2b1b0. Define a set of intermediate signals called
i3, i2, i1, and i0. Each signal, ik , is 1 if the bits of A and B with the same index are equal.
That is, ik = ak ⊕ bk . The comparator’s AeqB output is then given by

AeqB = i3i2i1i0

An expression for the AgtB output can be derived by considering the bits of A and B in the
order from the most-significant bit to the least-significant bit. The first bit-position, k, at
which ak and bk differ determines whether A is less than or greater than B. If ak = 0 and
bk = 1, then A < B. But if ak = 1 and bk = 0, then A > B. The AgtB output is defined by

AgtB = a3b3 + i3a2b2 + i3i2a1b1 + i3i2i1a0b0

The ik signals ensure that only the first digits, considered from the left to the right, of A and
B that differ determine the value of AgtB.

The AltB output can be derived by using the other two outputs as

AltB = AeqB + AgtB

A logic circuit that implements the four-bit comparator circuit is shown in Figure 6.26. This
approach can be used to design a comparator for any value of n.

Comparator circuits, like most logic circuits, can be designed in different ways. Another
approach for designing a comparator circuit is presented in Example 5.10 in Chapter 5.

6.6 VHDL for Combinational Circuits

Having presented a number of useful circuits that can be used as building blocks in larger
circuits, we will now consider how such circuits can be described in VHDL. Rather than re-
lying on the simple VHDL statements used in previous examples, such as logic expressions,
we will specify the circuits in terms of their behavior. We will also introduce a number of
new VHDL constructs.

6.6.1 Assignment Statements

VHDL provides several types of statements that can be used to assign logic values to signals.
In the examples of VHDL code given so far, only simple assignment statements have been
used, either for logic or arithmetic expressions. This section introduces other types of

May 19, 2004 11:40 vra60857_ch06 Sheet number 26 Page number 340 black

340 C H A P T E R 6 • Combinational-Circuit Building Blocks

i
0

i
1

i
2

i
3

b
0

a
0

b
1

a
1

b
2

a
2

b
3

a
3

AeqB

AgtB

AltB

Figure 6.26 A four-bit comparator circuit.

assignment statements, which are called selected signal assignments, conditional signal
assignments, generate statements, if-then-else statements, and case statements.

6.6.2 Selected Signal Assignment

A selected signal assignment allows a signal to be assigned one of several values, based on
a selection criterion. Figure 6.27 shows how it can be used to describe a 2-to-1 multiplexer.
The entity, named mux2to1, has the inputs w0, w1, and s, and the output f . The selected
signal assignment begins with the keyword WITH, which specifies that s is to be used for
the selection criterion. The two WHEN clauses state that f is assigned the value of w0 when
s = 0; otherwise, f is assigned the value of w1. The WHEN clause that selects w1 uses the
word OTHERS, instead of the value 1. This is required because the VHDL syntax specifies
that a WHEN clause must be included for every possible value of the selection signal s.

May 19, 2004 11:40 vra60857_ch06 Sheet number 27 Page number 341 black

6.6 VHDL for Combinational Circuits 341

LIBRARY ieee ;
USE ieee.std logic 1164.all ;

ENTITY mux2to1 IS
PORT (w0, w1, s : IN STD LOGIC ;

f : OUT STD LOGIC) ;
END mux2to1 ;

ARCHITECTURE Behavior OF mux2to1 IS
BEGIN

WITH s SELECT
f <
 w0 WHEN ’0’,

w1 WHEN OTHERS ;
END Behavior ;

Figure 6.27 VHDL code for a 2-to-1 multiplexer.

Since it has the STD_LOGIC type, discussed in section 4.12, s can take the values 0, 1,
Z, −, and others. The keyword OTHERS provides a convenient way of accounting for all
logic values that are not explicitly listed in a WHEN clause.

Example 6.12A 4-to-1 multiplexer is described by the entity named mux4to1, shown in Figure 6.28. The
two select inputs, which are called s1 and s0 in Figure 6.2, are represented by the two-bit
STD_LOGIC_VECTOR signal s. The selected signal assignment sets f to the value of one
of the inputs w0, . . . , w3, depending on the valuation of s. Compiling the code results in
the circuit shown in Figure 6.2c. At the end of Figure 6.28, the mux4to1 entity is defined
as a component in the package named mux4to1_package. We showed in section 5.5.2 that
the component declaration allows the entity to be used as a subcircuit in other VHDL code.

Example 6.13Figure 6.4 showed how a 16-to-1 multiplexer is built using five 4-to-1 multiplexers. Figure
6.29 presents VHDL code for this circuit, using the mux4to1 component. The lines of code
are numbered so that we can easily refer to them. The mux4to1_package is included in the
code, because it provides the component declaration for mux4to1.

The data inputs to the mux16to1 entity are the 16-bit signal named w, and the select
inputs are the four-bit signal named s. In the VHDL code signal names are needed for the
outputs of the four 4-to-1 multiplexers on the left of Figure 6.4. Line 11 defines a four-bit
signal named m for this purpose, and lines 13 to 16 instantiate the four multiplexers. For in-
stance, line 13 corresponds to the multiplexer at the top left of Figure 6.4. Its first four ports,
which correspond to w0, . . . , w3 in Figure 6.28, are driven by the signals w(0), . . . , w(3).

May 19, 2004 11:40 vra60857_ch06 Sheet number 28 Page number 342 black

342 C H A P T E R 6 • Combinational-Circuit Building Blocks

LIBRARY ieee ;
USE ieee.std logic 1164.all ;

ENTITY mux4to1 IS
PORT (w0, w1, w2, w3 : IN STD LOGIC ;

s : IN STD LOGIC VECTOR(1 DOWNTO 0) ;
f : OUT STD LOGIC) ;

END mux4to1 ;

ARCHITECTURE Behavior OF mux4to1 IS
BEGIN

WITH s SELECT
f <
 w0 WHEN ”00”,

w1 WHEN ”01”,
w2 WHEN ”10”,
w3 WHEN OTHERS ;

END Behavior ;

LIBRARY ieee ;
USE ieee.std logic 1164.all ;
PACKAGE mux4to1 package IS

COMPONENT mux4to1
PORT (w0, w1, w2, w3 : IN STD LOGIC ;

s : IN STD LOGIC VECTOR(1 DOWNTO 0) ;
f : OUT STD LOGIC) ;

END COMPONENT ;
END mux4to1 package ;

Figure 6.28 VHDL code for a 4-to-1 multiplexer.

The syntax s(1 DOWNTO 0) is used to attach the signals s(1) and s(0) to the two-bit s port
of the mux4to1 component. The m(0) signal is connected to the multiplexer’s output port.

Line 17 instantiates the multiplexer on the right of Figure 6.4. The signals m0, . . . , m3

are connected to its data inputs, and bits s(3) and s(2), which are specified by the syntax
s(3 DOWNTO 2), are attached to the select inputs. The output port generates the mux16to1
output f . Compiling the code results in the multiplexer function

f = s3s2s1s0w0 + s3s2s1s0w1 + s3s2s1s0w2 + · · · + s3s2s1s0w14 + s3s2s1s0w15

Example 6.14 The selected signal assignments can also be used to describe other types of circuits. Figure
6.30 shows how a selected signal assignment can be used to describe the truth table for a
2-to-4 binary decoder. The entity is called dec2to4. The data inputs are the two-bit signal

May 19, 2004 11:40 vra60857_ch06 Sheet number 29 Page number 343 black

6.6 VHDL for Combinational Circuits 343

1 LIBRARY ieee ;
2 USE ieee.std logic 1164.all ;
3 LIBRARY work ;
4 USE work.mux4to1 package.all ;

5 ENTITY mux16to1 IS
6 PORT (w : IN STD LOGIC VECTOR(0 TO 15) ;
7 s : IN STD LOGIC VECTOR(3 DOWNTO 0) ;
8 f : OUT STD LOGIC) ;
9 END mux16to1 ;

10 ARCHITECTURE Structure OF mux16to1 IS
11 SIGNAL m : STD LOGIC VECTOR(0 TO 3) ;
12 BEGIN
13 Mux1: mux4to1 PORT MAP

(w(0), w(1), w(2), w(3), s(1 DOWNTO 0), m(0)) ;
14 Mux2: mux4to1 PORT MAP

(w(4), w(5), w(6), w(7), s(1 DOWNTO 0), m(1)) ;
15 Mux3: mux4to1 PORT MAP

(w(8), w(9), w(10), w(11), s(1 DOWNTO 0), m(2)) ;
16 Mux4: mux4to1 PORT MAP

(w(12), w(13), w(14), w(15), s(1 DOWNTO 0), m(3)) ;
17 Mux5: mux4to1 PORT MAP

(m(0), m(1), m(2), m(3), s(3 DOWNTO 2), f) ;
18 END Structure ;

Figure 6.29 Hierarchical code for a 16-to-1 multiplexer.

named w, and the enable input is En. The four outputs are represented by the four-bit sig-
nal y.

In the truth table for the decoder in Figure 6.16a, the inputs are listed in the order
En w1w0. To represent these three signals, the VHDL code defines the three-bit signal
named Enw. The statement Enw <= En & w uses the VHDL concatenate operator, which
was discussed in section 5.5.4, to combine the En and w signals into the Enw signal. Hence
Enw(2) = En, Enw(1) = w1, and Enw(0) = w0. The Enw signal is used as the selection
signal in the selected signal assignment statement. It describes the truth table in Figure
6.16a. In the first four WHEN clauses, En = 1, and the decoder outputs have the same
patterns as in the first four rows of the truth table. The last WHEN clause uses the OTH-
ERS keyword and sets the decoder outputs to 0000, because it represents the cases where
En = 0.

May 19, 2004 11:40 vra60857_ch06 Sheet number 30 Page number 344 black

344 C H A P T E R 6 • Combinational-Circuit Building Blocks

LIBRARY ieee ;
USE ieee.std logic 1164.all ;

ENTITY dec2to4 IS
PORT (w : IN STD LOGIC VECTOR(1 DOWNTO 0) ;

En : IN STD LOGIC ;
y : OUT STD LOGIC VECTOR(0 TO 3)) ;

END dec2to4 ;

ARCHITECTURE Behavior OF dec2to4 IS
SIGNAL Enw : STD LOGIC VECTOR(2 DOWNTO 0) ;

BEGIN
Enw <
 En & w ;
WITH Enw SELECT

y <
 ”1000” WHEN ”100”,
”0100” WHEN ”101”,
”0010” WHEN ”110”,
”0001” WHEN ”111”,
”0000” WHEN OTHERS ;

END Behavior ;

Figure 6.30 VHDL code for a 2-to-4 binary decoder.

6.6.3 Conditional Signal Assignment

Similar to the selected signal assignment, a conditional signal assignment allows a signal
to be set to one of several values. Figure 6.31 shows a modified version of the 2-to-1
multiplexer entity from Figure 6.27. It uses a conditional signal assignment to specify that
f is assigned the value of w0 when s = 0, or else f is assigned the value of w1. Compiling

LIBRARY ieee ;
USE ieee.std logic 1164.all ;

ENTITY mux2to1 IS
PORT (w0, w1, s : IN STD LOGIC ;

f : OUT STD LOGIC) ;
END mux2to1 ;

ARCHITECTURE Behavior OF mux2to1 IS
BEGIN

f <
 w0 WHEN s
 ’0’ ELSE w1 ;
END Behavior ;

Figure 6.31 Specification of a 2-to-1 multiplexer using a
conditional signal assignment.

May 19, 2004 11:40 vra60857_ch06 Sheet number 31 Page number 345 black

6.6 VHDL for Combinational Circuits 345

the code generates the same circuit as the code in Figure 6.27. In this small example the
conditional signal assignment has only one WHEN clause. Amore complex example, which
better illustrates the features of the conditional signal assignment, is given in Example 6.15.

Example 6.15Figure 6.24 gives the truth table for a 4-to-2 priority encoder. VHDL code that describes
this truth table is shown in Figure 6.32. The inputs to the encoder are represented by the
four-bit signal named w. The encoder has the outputs y, which is a two-bit signal, and z.

The conditional signal assignment specifies that y is assigned the value 11 when input
w(3) = 1. If this condition is true, then the other WHEN clauses that follow the ELSE
keyword do not affect the value of f . Hence the values of w(2), w(1), and w(0) do not
matter, which implements the desired priority scheme. The second WHEN clause states
that when w(2) = 1, then y is assigned the value 10. This can occur only if w(3) = 0.
Each successive WHEN clause can affect y only if none of the conditions associated with
the preceding WHEN clauses are true. Figure 6.32 includes a second conditional signal
assignment for the output z. It states that when all four inputs are 0, z is assigned the value
0; else z is assigned the value 1.

The priority level associated with each WHEN clause in the conditional signal assign-
ment is a key difference from the selected signal assignment, which has no such priority
scheme. It is possible to describe the priority encoder using a selected signal assignment,
but the code is more awkward. One possibility is shown by the architecture in Figure 6.33.
The first WHEN clause sets y to 00 when w0 is the only input that is 1. The next two clauses
state that y should be 01 when w3 = w2 = 0 and w1 = 1. The next four clauses specify that
y should be 10 if w3 = 0 and w2 = 1. Finally, the last WHEN clause states that y should be
1 for all other input valuations, which includes all valuations for which w3 is 1. Note that

LIBRARY ieee ;
USE ieee.std logic 1164.all ;

ENTITY priority IS
PORT (w : IN STD LOGIC VECTOR(3 DOWNTO 0) ;

y : OUT STD LOGIC VECTOR(1 DOWNTO 0) ;
z : OUT STD LOGIC) ;

END priority ;

ARCHITECTURE Behavior OF priority IS
BEGIN

y <
 ”11” WHEN w(3)
 ’1’ ELSE
”10” WHEN w(2)
 ’1’ ELSE
”01” WHEN w(1)
 ’1’ ELSE
”00” ;

z <
 ’0’ WHEN w
 ”0000” ELSE ’1’ ;
END Behavior ;

Figure 6.32 VHDL code for a priority encoder.

May 19, 2004 11:40 vra60857_ch06 Sheet number 32 Page number 346 black

346 C H A P T E R 6 • Combinational-Circuit Building Blocks

LIBRARY ieee ;
USE ieee.std logic 1164.all ;

ENTITY priority IS
PORT (w : IN STD LOGIC VECTOR(3 DOWNTO 0) ;

y : OUT STD LOGIC VECTOR(1 DOWNTO 0) ;
z : OUT STD LOGIC) ;

END priority ;

ARCHITECTURE Behavior OF priority IS
BEGIN

WITH w SELECT
y <
 ”00” WHEN ”0001”,

”01” WHEN ”0010”,
”01” WHEN ”0011”,
”10” WHEN ”0100”,
”10” WHEN ”0101”,
”10” WHEN ”0110”,
”10” WHEN ”0111”,
”11” WHEN OTHERS ;

WITH w SELECT
z <
 ’0’ WHEN ”0000”,

’1’ WHEN OTHERS ;
END Behavior ;

Figure 6.33 Less efficient code for a priority encoder.

the OTHERS clause includes the input valuation 0000. This pattern results in z = 0, and
the value of y does not matter in this case.

Example 6.16 We derived the circuit for a comparator in Figure 6.26. Figure 6.34 shows how this circuit
can be described with VHDL code. Each of the three conditional signal assignments deter-
mines the value of one of the comparator outputs. The package named std_logic_unsigned
is included in the code because it specifies that STD_LOGIC_VECTOR signals, namely,
A and B, can be used as unsigned binary numbers with VHDL relational operators. The
relational operators provide a convenient way of specifying the desired functionality.

The circuit generated from the code in Figure 6.34 is similar, but not identical, to the
circuit in Figure 6.26. The VHDL compiler instantiates a predefined module to implement
each of the comparison operations. In Quartus II the modules that are instantiated are from
the LPM library, which was introduced in section 5.5.

May 19, 2004 11:40 vra60857_ch06 Sheet number 33 Page number 347 black

6.6 VHDL for Combinational Circuits 347

LIBRARY ieee ;
USE ieee.std logic 1164.all ;
USE ieee.std logic unsigned.all ;

ENTITY compare IS
PORT (A, B : IN STD LOGIC VECTOR(3 DOWNTO 0) ;

AeqB, AgtB, AltB : OUT STD LOGIC) ;
END compare ;

ARCHITECTURE Behavior OF compare IS
BEGIN

AeqB <
 ’1’ WHEN A
 B ELSE ’0’ ;
AgtB <
 ’1’ WHEN A > B ELSE ’0’ ;
AltB <
 ’1’ WHEN A < B ELSE ’0’ ;

END Behavior ;

Figure 6.34 VHDL code for a four-bit comparator.

Instead of using the std_logic_unsigned library, another way to specify that the gener-
ated circuit should use unsigned numbers is to include the library named std_logic_arith.
In this case the signals A and B should be defined with the type UNSIGNED, rather than
STD_LOGIC_VECTOR. If we want the circuit to work with signed numbers, signals A and
B should be defined with the type SIGNED. This code is given in Figure 6.35.

LIBRARY ieee ;
USE ieee.std logic 1164.all ;
USE ieee.std logic arith.all ;

ENTITY compare IS
PORT (A, B : IN SIGNED(3 DOWNTO 0) ;

AeqB, AgtB, AltB : OUT STD LOGIC) ;
END compare ;

ARCHITECTURE Behavior OF compare IS
BEGIN

AeqB <
 ’1’ WHEN A
 B ELSE ’0’ ;
AgtB <
 ’1’ WHEN A > B ELSE ’0’ ;
AltB <
 ’1’ WHEN A < B ELSE ’0’ ;

END Behavior ;

Figure 6.35 The code from Figure 6.34 for signed numbers.

May 19, 2004 11:40 vra60857_ch06 Sheet number 34 Page number 348 black

348 C H A P T E R 6 • Combinational-Circuit Building Blocks

6.6.4 Generate Statements

Figure 6.29 gives VHDL code for a 16-to-1 multiplexer using five instances of a 4-to-1
multiplexer subcircuit. The regular structure of the code suggests that it could be written in
a more compact form using a loop. VHDL provides a feature called the FOR GENERATE
statement for describing regularly structured hierarchical code.

Figure 6.36 shows the code from Figure 6.29 rewritten using a FOR GENERATE
statement. The generate statement must have a label, so we have used the label G1 in
the code. The loop instantiates four copies of the mux4to1 component, using the loop
index i in the range from 0 to 3. The variable i is not explicitly declared in the code; it is
automatically defined as a local variable whose scope is limited to the FOR GENERATE
statement. The first loop iteration corresponds to the instantiation statement labeled Mux1
in Figure 6.29. The * operator represents multiplication; hence for the first loop iteration
the VHDL compiler translates the signal names w(4 ∗ i), w(4 ∗ i + 1), w(4 ∗ i + 2), and
w(4 ∗ i + 3) into signal names w(0), w(1), w(2), and w(3). The loop iterations for i = 1,
i = 2, and i = 3 correspond to the statements labeled Mux2, Mux3, and Mux4 in Figure
6.29. The statement labeled Mux5 in Figure 6.29 does not fit within the loop, so it is included
as a separate statement in Figure 6.36. The circuit generated from the code in Figure 6.36
is identical to the circuit produced by using the code in Figure 6.29.

LIBRARY ieee ;
USE ieee.std logic 1164.all ;
USE work.mux4to1 package.all ;

ENTITY mux16to1 IS
PORT (w : IN STD LOGIC VECTOR(0 TO 15) ;

s : IN STD LOGIC VECTOR(3 DOWNTO 0) ;
f : OUT STD LOGIC) ;

END mux16to1 ;

ARCHITECTURE Structure OF mux16to1 IS
SIGNAL m : STD LOGIC VECTOR(0 TO 3) ;

BEGIN
G1: FOR i IN 0 TO 3 GENERATE

Muxes: mux4to1 PORT MAP (
w(4*i), w(4*i+1), w(4*i+2), w(4*i+3), s(1 DOWNTO 0), m(i)) ;

END GENERATE ;
Mux5: mux4to1 PORT MAP (m(0), m(1), m(2), m(3), s(3 DOWNTO 2), f) ;

END Structure ;

Figure 6.36 Code for a 16-to-1 multiplexer using a generate statement.

May 19, 2004 11:40 vra60857_ch06 Sheet number 35 Page number 349 black

6.6 VHDL for Combinational Circuits 349

Example 6.17In addition to the FOR GENERATE statement, VHDL provides another type of generate
statement called IF GENERATE. Figure 6.37 illustrates the use of both types of generate
statements. The code shown is a hierarchical description of the 4-to-16 decoder given in
Figure 6.18, using five instances of the dec2to4 component defined in Figure 6.30. The
decoder inputs are the four-bit signal w, the enable is En, and the outputs are the 16-bit
signal y.

Following the component declaration for the dec2to4 subcircuit, the architecture defines
the signal m, which represents the outputs of the 2-to-4 decoder on the left of Figure
6.18. The five copies of the dec2to4 component are instantiated by the FOR GENERATE
statement. In each iteration of the loop, the statement labeled Dec_ri instantiates a dec2to4
component that corresponds to one of the 2-to-4 decoders on the right side of Figure 6.18.
The first loop iteration generates the dec2to4 component with data inputs w1 and w0, enable
input m0, and outputs y0, y1, y2, y3. The other loop iterations also use data inputs w1w0, but
use different bits of m and y.

The IF GENERATE statement, labeled G2, instantiates a dec2to4 component in the last
loop iteration, for which the condition i = 3 is true. This component represents the 2-to-4
decoder on the left of Figure 6.18. It has the two-bit data inputs w3 and w2, the enable En, and

LIBRARY ieee ;
USE ieee.std logic 1164.all ;

ENTITY dec4to16 IS
PORT (w : IN STD LOGIC VECTOR(3 DOWNTO 0) ;

En : IN STD LOGIC ;
y : OUT STD LOGIC VECTOR(0 TO 15)) ;

END dec4to16 ;

ARCHITECTURE Structure OF dec4to16 IS
COMPONENT dec2to4

PORT (w : IN STD LOGIC VECTOR(1 DOWNTO 0) ;
En : IN STD LOGIC ;
y : OUT STD LOGIC VECTOR(0 TO 3)) ;

END COMPONENT ;
SIGNAL m : STD LOGIC VECTOR(0 TO 3) ;

BEGIN
G1: FOR i IN 0 TO 3 GENERATE

Dec ri: dec2to4 PORT MAP (w(1 DOWNTO 0), m(i), y(4*i TO 4*i+3));
G2: IF i=3 GENERATE

Dec left: dec2to4 PORT MAP (w(i DOWNTO i-1), En, m) ;
END GENERATE ;

END GENERATE ;
END Structure ;

Figure 6.37 Hierarchical code for a 4-to-16 binary decoder.

May 19, 2004 11:40 vra60857_ch06 Sheet number 36 Page number 350 black

350 C H A P T E R 6 • Combinational-Circuit Building Blocks

the outputs m0, m1, m2, and m3. Note that instead of using the IF GENERATE statement,
we could have instantiated this component outside the FOR GENERATE statement. We
have written the code as shown simply to give an example of the IF GENERATE statement.

The generate statements in Figures 6.36 and 6.37 are used to instantiate components.
Another use of generate statements is to generate a set of logic equations. An example of
this use will be given in Figure 7.73.

6.6.5 Concurrent and Sequential Assignment Statements

We have introduced several types of assignment statements: simple assignment statements,
which involve logic or arithmetic expressions, selected assignment statements, and condi-
tional assignment statements. All of these statements share the property that the order in
which they appear in VHDL code does not affect the meaning of the code. Because of this
property, these statements are called the concurrent assignment statements.

VHDL also provides a second category of statements, called sequential assignment
statements, for which the ordering of the statements may affect the meaning of the code.
We will discuss two types of sequential assignment statements, called if-then-else statements
and case statements. VHDL requires that the sequential assignment statements be placed
inside another type of statement, called a process statement.

6.6.6 Process Statement

Figures 6.27 and 6.31 show two ways of describing a 2-to-1 multiplexer, using the selected
and conditional signal assignments. The same circuit can also be described using an if-then-
else statement, but this statement must be placed inside a process statement. Figure 6.38
shows such code. The process statement, or simply process, begins with the PROCESS
keyword, followed by a parenthesized list of signals, called the sensitivity list. For a
combinational circuit like the multiplexer, the sensitivity list includes all input signals that
are used inside the process. The process statement is translated by the VHDL compiler into
logic equations. In the figure the process consists of the single if-then-else statement that
describes the multiplexer function. Thus the sensitivity list comprises the data inputs, w0

and w1, and the select input s.
In general, there can be a number of statements inside a process. These statements are

considered as follows. Using VHDL jargon, we say that when there is a change in the value
of any signal in the process’s sensitivity list, then the process becomes active. Once active,
the statements inside the process are evaluated in sequential order. Any assignments made
to signals inside the process are not visible outside the process until all of the statements in
the process have been evaluated. If there are multiple assignments to the same signal, only
the last one has any visible effect. This is illustrated in Example 6.18.

May 19, 2004 11:40 vra60857_ch06 Sheet number 37 Page number 351 black

6.6 VHDL for Combinational Circuits 351

LIBRARY ieee ;
USE ieee.std logic 1164.all ;

ENTITY mux2to1 IS
PORT (w0, w1, s : IN STD LOGIC ;

f : OUT STD LOGIC) ;
END mux2to1 ;

ARCHITECTURE Behavior OF mux2to1 IS
BEGIN

PROCESS (w0, w1, s)
BEGIN

IF s
 ’0’ THEN
f <
 w0 ;

ELSE
f <
 w1 ;

END IF ;
END PROCESS ;

END Behavior ;

Figure 6.38 A 2-to-1 multiplexer specified using the if-then-else
statement.

Example 6.18The code in Figure 6.39 is equivalent to the code in Figure 6.38. The first statement in the
process assigns the value of w0 to f . This provides a default value for f but the assignment
does not actually take place until the end of the process. In VHDL jargon we say that
the assignment is scheduled to occur after all of the statements in the process have been
evaluated. If another assignment to f takes place while the process is active, the default
assignment will be overridden. The second statement in the process assigns the value of w1

to f if the value of s is equal to 1. If this condition is true, then the default assignment is
overridden. Thus if s = 0, then f = w0, and if s = 1, then f = w1, which defines the 2-to-1
multiplexer. Compiling this code results in the same circuit as for Figures 6.27, 6.31, and
6.38, namely, f = sw0 + sw1.

The process statement in Figure 6.39 illustrates that the ordering of the statements in
a process can affect the meaning of the code. Consider reversing the order of the two
statements so that the if-then-else statement is evaluated first. If s = 1, f is assigned
the value of w1. This assignment is scheduled and does not take place until the end of
the process. However, the statement f <= w0 is evaluated last. It overrides the first
assignment, and f is assigned the value of w0 regardless of the value of s. Hence instead
of describing a multiplexer, when the statements inside the process are reversed, the code
represents the trivial circuit f = w0.

May 19, 2004 11:40 vra60857_ch06 Sheet number 38 Page number 352 black

352 C H A P T E R 6 • Combinational-Circuit Building Blocks

LIBRARY ieee ;
USE ieee.std logic 1164.all ;

ENTITY mux2to1 IS
PORT (w0, w1, s : IN STD LOGIC ;

f : OUT STD LOGIC) ;
END mux2to1 ;

ARCHITECTURE Behavior OF mux2to1 IS
BEGIN

PROCESS (w0, w1, s)
BEGIN

f <
 w0 ;
IF s
 ’1’ THEN

f <
 w1 ;
END IF ;

END PROCESS ;
END Behavior ;

Figure 6.39 Alternative code for the 2-to-1 multiplexer using an
if-then-else statement.

Example 6.19 Figure 6.40 gives an example that contains both a concurrent assignment statement and a
process statement. It describes a priority encoder and is equivalent to the code in Figure
6.32. The process describes the desired priority scheme using an if-then-else statement. It
specifies that if the input w3 is 1, then the output is set to y = 11. This assignment does not
depend on the values of inputs w2, w1, or w0; hence their values do not matter. The other
clauses in the if-then-else statement are evaluated only if w3 = 0. The first ELSIF clause
states that if w2 is 1, then y = 10. If w2 = 0, then the next ELSIF clause results in y = 01
if w1 = 1. If w3 = w2 = w1 = 0, then the ELSE clause results in y = 00. This assignment
is done whether or not w0 is 1; Figure 6.24 indicates that y can be set to any pattern when
w = 0000 because z will be set to 0 in this case.

The priority encoder’s output z must be set to 1 whenever at least one of the data
inputs is 1. This output is defined by the conditional assignment statement at the end of
Figure 6.40. The VHDL syntax does not allow a conditional assignment statement (or
a selected assignment statement) to appear inside a process. An alternative would be to
specify the value of z by using an if-then-else statement inside the process. The reason that
we have written the code as given in the figure is to illustrate that concurrent assignment
statements can be used in conjunction with process statements. The process statement
serves the purpose of separating the sequential statements from the concurrent statements.
Note that the ordering of the process statement and the conditional assignment statement
does not matter. VHDL stipulates that while the statements inside a process are sequential
statements, the process statement itself is a concurrent statement.

May 19, 2004 11:40 vra60857_ch06 Sheet number 39 Page number 353 black

6.6 VHDL for Combinational Circuits 353

LIBRARY ieee ;
USE ieee.std logic 1164.all ;

ENTITY priority IS
PORT (w : IN STD LOGIC VECTOR(3 DOWNTO 0) ;

y : OUT STD LOGIC VECTOR(1 DOWNTO 0) ;
z : OUT STD LOGIC) ;

END priority ;

ARCHITECTURE Behavior OF priority IS
BEGIN

PROCESS (w)
BEGIN

IF w(3)
 ’1’ THEN
y <
 ”11” ;

ELSIF w(2)
’1’ THEN
y <
 ”10” ;

ELSIF w(1)
’1’ THEN
y <
 ”01” ;

ELSE
y <
 ”00” ;

END IF ;
END PROCESS ;
z <
 ’0’ WHEN w
 ”0000” ELSE ’1’ ;

END Behavior ;

Figure 6.40 A priority encoder specified using the if-then-else statement.

Example 6.20Figure 6.41 shows an alternative style of code for the priority encoder, using if-then-else
statements. The first statement in the process provides the default value of 00 for y1y0.
The second statement overrides this if w1 is 1, and sets y1y0 to 01. Similarly, the third and
fourth statements override the previous ones if w2 or w3 are 1, and set y1y0 to 10 and 11,
respectively. These four statements are equivalent to the single if-then-else statement in
Figure 6.40 that describes the priority scheme. The value of z is specified using a default
assignment statement, followed by an if-then-else statement that overrides the default if
w = 0000. Although the examples in Figures 6.40 and 6.41 are equivalent, the meaning of
the code in Figure 6.40 is probably easier to understand.

Example 6.21Figure 6.34 specifies a four-bit comparator that produces the three outputs AeqB, AgtB, and
AltB. Figure 6.42 shows how such specification can be written using if-then-else statements.
For simplicity, one-bit numbers are used for the inputs A and B, and only the code for the

May 19, 2004 11:40 vra60857_ch06 Sheet number 40 Page number 354 black

354 C H A P T E R 6 • Combinational-Circuit Building Blocks

LIBRARY ieee ;
USE ieee.std logic 1164.all ;

ENTITY priority IS
PORT (w : IN STD LOGIC VECTOR(3 DOWNTO 0) ;

y : OUT STD LOGIC VECTOR(1 DOWNTO 0) ;
z : OUT STD LOGIC) ;

END priority ;

ARCHITECTURE Behavior OF priority IS
BEGIN

PROCESS (w)
BEGIN

y <
 ”00” ;
IF w(1)
 ’1’ THEN y <
 ”01” ; END IF ;
IF w(2)
 ’1’ THEN y <
 ”10” ; END IF ;
IF w(3)
 ’1’ THEN y <
 ”11” ; END IF ;

z <
 ’1’ ;
IF w
 ”0000” THEN z <
 ’0’ ; END IF ;

END PROCESS ;
END Behavior ;

Figure 6.41 Alternative code for the priority encoder.

LIBRARY ieee ;
USE ieee.std logic 1164.all ;

ENTITY compare1 IS
PORT (A, B : IN STD LOGIC ;

AeqB : OUT STD LOGIC) ;
END compare1 ;

ARCHITECTURE Behavior OF compare1 IS
BEGIN

PROCESS (A, B)
BEGIN

AeqB <
 ’0’ ;
IF A
 B THEN

AeqB <
 ’1’ ;
END IF ;

END PROCESS ;
END Behavior ;

Figure 6.42 Code for a one-bit equality comparator.

May 19, 2004 11:40 vra60857_ch06 Sheet number 41 Page number 355 black

6.6 VHDL for Combinational Circuits 355

LIBRARY ieee ;
USE ieee.std logic 1164.all ;

ENTITY implied IS
PORT (A, B : IN STD LOGIC ;

AeqB : OUT STD LOGIC) ;
END implied ;

ARCHITECTURE Behavior OF implied IS
BEGIN

PROCESS (A, B)
BEGIN

IF A
 B THEN
AeqB <
 ’1’ ;

END IF ;
END PROCESS ;

END Behavior ;

Figure 6.43 An example of code that results in implied memory.

AeqB output is shown. The process assigns the default value of 0 to AeqB and then the
if-then-else statement changes AeqB to 1 if A and B are equal. It is instructive to consider
the effect on the semantics of the code if the default assignment statement is removed, as
illustrated in Figure 6.43.

With only the if-then-else statement, the code does not specify what value AeqB should
have if the condition A = B is not true. The VHDL semantics stipulate that in cases where
the code does not specify the value of a signal, the signal should retain its current value.
For the code in Figure 6.43, once A and B are equal, resulting in AeqB = 1, then AeqB will
remain set to 1 indefinitely, even if A and B are no longer equal. In the VHDL jargon, the
AeqB output is said to have implied memory because the circuit synthesized from the code
will “remember,” or store the value AeqB = 1. Figure 6.44 shows the circuit synthesized
from the code. The XOR gate produces a 1 when A and B are equal, and the OR gate ensures
that AeqB remains set to 1 indefinitely.

The implied memory that results from the code in Figure 6.43 is not useful, because
it generates a comparator circuit that does not function correctly. However, we will show

A

B AeqB

Figure 6.44 The circuit generated from the code in Figure 6.43.

May 19, 2004 11:40 vra60857_ch06 Sheet number 42 Page number 356 black

356 C H A P T E R 6 • Combinational-Circuit Building Blocks

in Chapter 7 that the semantics of implied memory are useful for other types of circuits,
which have the capability to store logic signal values in memory elements.

6.6.7 Case Statement

A case statement is similar to a selected signal assignment in that the case statement has a
selection signal and includes WHEN clauses for various valuations of this selection signal.
Figure 6.45 shows how the case statement can be used as yet another way of describing
the 2-to-1 multiplexer circuit. The case statement begins with the CASE keyword, which
specifies that s is to be used as the selection signal. The first WHEN clause specifies,
following the => symbol, the statements that should be evaluated when s = 0. In this
example the only statement evaluated when s = 0 is f <= w0. The case statement must
include a WHEN clause for all possible valuations of the selection signal. Hence the second
WHEN clause, which contains f <= w1, uses the OTHERS keyword.

Example 6.22 Figure 6.30 gives the code for a 2-to-4 decoder. A different way of describing this circuit,
using sequential assignment statements, is shown in Figure 6.46. The process first uses an
if-then-else statement to check the value of the decoder enable signal En. If En = 1, the

LIBRARY ieee ;
USE ieee.std logic 1164.all ;

ENTITY mux2to1 IS
PORT (w0, w1, s : IN STD LOGIC ;

f : OUT STD LOGIC) ;
END mux2to1 ;

ARCHITECTURE Behavior OF mux2to1 IS
BEGIN

PROCESS (w0, w1, s)
BEGIN

CASE s IS
WHEN ’0’
>

f <
 w0 ;
WHEN OTHERS
>

f <
 w1 ;
END CASE ;

END PROCESS ;
END Behavior ;

Figure 6.45 A case statement that represents a 2-to-1 multiplexer.

May 19, 2004 11:40 vra60857_ch06 Sheet number 43 Page number 357 black

6.6 VHDL for Combinational Circuits 357

LIBRARY ieee ;
USE ieee.std logic 1164.all ;

ENTITY dec2to4 IS
PORT (w : IN STD LOGIC VECTOR(1 DOWNTO 0) ;

En : IN STD LOGIC ;
y : OUT STD LOGIC VECTOR(0 TO 3)) ;

END dec2to4 ;

ARCHITECTURE Behavior OF dec2to4 IS
BEGIN

PROCESS (w, En)
BEGIN

IF En
 ’1’ THEN
CASE w IS

WHEN ”00”
>

y <
 ”1000” ;
WHEN ”01”
>

y <
 ”0100” ;
WHEN ”10”
>

y <
 ”0010” ;
WHEN OTHERS
>

y <
 ”0001” ;
END CASE ;

ELSE
y <
 ”0000” ;

END IF ;
END PROCESS ;

END Behavior ;

Figure 6.46 A process statement that describes a 2-to-4 binary decoder.

case statement sets the output y to the appropriate value based on the input w. The case
statement represents the first four rows of the truth table in Figure 6.16a. If En = 0, the
ELSE clause sets y to 0000, as specified in the bottom row of the truth table.

Example 6.23Another example of a case statement is given in Figure 6.47. The entity is named seg7, and
it represents the BCD-to-7-segment decoder in Figure 6.25. The BCD input is represented
by the four-bit signal named bcd, and the seven outputs are the seven-bit signal named leds.
The case statement is formatted so that it resembles the truth table in Figure 6.25c. Note
that there is a comment to the right of the case statement, which labels the seven outputs

May 19, 2004 11:40 vra60857_ch06 Sheet number 44 Page number 358 black

358 C H A P T E R 6 • Combinational-Circuit Building Blocks

LIBRARY ieee ;
USE ieee.std logic 1164.all ;

ENTITY seg7 IS
PORT (bcd : IN STD LOGIC VECTOR(3 DOWNTO 0) ;

leds : OUT STD LOGIC VECTOR(1 TO 7)) ;
END seg7 ;

ARCHITECTURE Behavior OF seg7 IS
BEGIN

PROCESS (bcd)
BEGIN

CASE bcd IS - - abcdef g
WHEN ”0000”
>

>

>

>

>

>

>

>

>

>

>

leds <
 ”1111110” ;
WHEN ”0001” leds <
 ”0110000” ;
WHEN ”0010” leds <
 ”1101101” ;
WHEN ”0011” leds <
 ”1111001” ;
WHEN ”0100” leds <
 ”0110011” ;
WHEN ”0101” leds <
 ”1011011” ;
WHEN ”0110” leds <
 ”1011111” ;
WHEN ”0111” leds <
 ”1110000” ;
WHEN ”1000” leds <
 ”1111111” ;
WHEN ”1001” leds <
 ”1110011” ;
WHEN OTHERS leds <
 ”- - - - - - - ” ;

END CASE ;
END PROCESS ;

END Behavior ;

Figure 6.47 Code that represents a BCD-to-7-segment decoder.

with the letters from a to g. These labels indicate to the reader the correlation between the
seven-bit leds signal in the VHDL code and the seven segments in Figure 6.25b. The final
WHEN clause in the case statement sets all seven bits of leds to −. Recall that − is used
in VHDL to denote a don’t-care condition. This clause represents the don’t-care conditions
discussed for Figure 6.25, which are the cases where the bcd input does not represent a
valid BCD digit.

Example 6.24 An arithmetic logic unit (ALU) is a logic circuit that performs various Boolean and arithmetic
operations on n-bit operands. In section 3.5 we discussed a family of standard chips called
the 7400-series chips. We said that some of these chips contain basic logic gates, and others
provide commonly used logic circuits. One example of an ALU is the standard chip called
the 74381. Table 6.1 specifies the functionality of this chip. It has 2 four-bit data inputs,
named A and B; a three-bit select input s; and a four-bit output F . As the table shows,

May 19, 2004 11:40 vra60857_ch06 Sheet number 45 Page number 359 black

6.6 VHDL for Combinational Circuits 359

Table 6.1 The functionality
of the 74381
ALU.

Inputs Outputs
Operation s2 s1 s0 F

Clear 0 0 0 0 0 0 0

B−A 0 0 1 B − A

A−B 0 1 0 A − B

ADD 0 1 1 A + B

XOR 1 0 0 A XOR B

OR 1 0 1 A OR B

AND 1 1 0 A AND B

Preset 1 1 1 1 1 1 1

F is defined by various arithmetic or Boolean operations on the inputs A and B. In this
table + means arithmetic addition, and − means arithmetic subtraction. To avoid confusion,
the table uses the words XOR, OR, and AND for the Boolean operations. Each Boolean
operation is done in a bit-wise fashion. For example, F = A AND B produces the four-bit
result f0 = a0b0, f1 = a1b1, f2 = a2b2, and f3 = a3b3.

Figure 6.48 shows how the functionality of the 74381 ALU can be described using
VHDL code. The std_logic_unsigned package, introduced in section 5.5.4, is included
so that the STD_LOGIC_VECTOR signals A and B can be used in unsigned arithmetic
operations. The case statement shown corresponds directly to Table 6.1. To check the
functionality of the code, we synthesized a circuit for implementation in a CPLD. An
example of a timing simulation is illustrated in Figure 6.49. For each valuation of s, the
circuit generates the appropriate Boolean or arithmetic operation.

6.6.8 VHDL Operators

In this section we discuss the VHDL operators that are useful for synthesizing logic circuits.
Table 6.2 lists these operators in groups that reflect the type of operation performed.

To illustrate the results produced by the various operators, we will use three-bit vectors
A(2 DOWNTO 0), B(2 DOWNTO 0), and C(2 DOWNTO 0).

Logical Operators
The logical operators can be used with bit and boolean types of operands. The operands

can be either single-bit scalars or multibit vectors. For example, the statement

C <= NOT A;

May 19, 2004 11:40 vra60857_ch06 Sheet number 46 Page number 360 black

360 C H A P T E R 6 • Combinational-Circuit Building Blocks

LIBRARY ieee ;
USE ieee.std logic 1164.all ;
USE ieee.std logic unsigned.all ;

ENTITY alu IS
PORT (s : IN STD LOGIC VECTOR(2 DOWNTO 0) ;

A, B : IN STD LOGIC VECTOR(3 DOWNTO 0) ;
F : OUT STD LOGIC VECTOR(3 DOWNTO 0)) ;

END alu ;

ARCHITECTURE Behavior OF alu IS
BEGIN

PROCESS (s, A, B)
BEGIN

CASE s IS
WHEN ”000”
>

F <
 ”0000” ;
WHEN ”001”
>

F <
 B − A ;
WHEN ”010”
>

F <
 A − B ;
WHEN ”011”
>

F <
 A + B ;
WHEN ”100”
>

F <
 A XOR B ;
WHEN ”101”
>

F <
 A OR B ;
WHEN ”110”
>

F <
 A AND B ;
WHEN OTHERS
>

F <
 ”1111” ;
END CASE ;

END PROCESS ;
END Behavior ;

Figure 6.48 Code that represents the functionality of the 74381 ALU chip.

produces the result c2 = a2, c1 = a1, and c0 = a0, where ai and ci are the bits of the vectors
A and C.

The statement

C <= A AND B;

generates c2 = a2 · b2, c1 = a1 · b1, and c0 = a0 · b0. The other operators lead to similar
evaluations.

May 19, 2004 11:40 vra60857_ch06 Sheet number 47 Page number 361 black

6.6 VHDL for Combinational Circuits 361

Figure 6.49 Timing simulation for the code in Figure 6.48.

Table 6.2 VHDL operators (used for synthesis).

Operator category Operator symbol Operation performed

Logical AND AND
OR OR

NAND Not AND
NOR Not OR
XOR XOR

XNOR Not XOR
NOT NOT

Relational = Equality
/= Inequality
> Greater than
< Less than

>= Greater than or equal to
<= Less than or equal to

Arithmetic + Addition
− Subtraction
∗ Multiplication
/ Division

Concatenation & Concatenation

Shift and Rotate SLL Shift left logical
SRL Shift right logical
SLA Shift left arithmetic
SRA Shift right arithmetic
ROL Rotate left
ROR Rotate right

Relational Operators
The relational operators are used to compare expressions. The result of the comparison

is TRUE or FALSE. The expressions that are compared must be of the same type. For
example, if A = 011 and B = 010 then A > B evaluates to TRUE, and B /= ”010”
evaluates to FALSE.

May 19, 2004 11:40 vra60857_ch06 Sheet number 48 Page number 362 black

362 C H A P T E R 6 • Combinational-Circuit Building Blocks

Arithmetic Operators
We have already encountered the arithmetic operators in Chapter 5. They perform

standard arithmetic operations. Thus

C <= A + B;

puts the three-bit sum of A plus B into C, while

C <= A − B;

puts the difference of A and B into C. The operation

C <= −A;

places the 2’s complement of A into C.
The addition, subtraction, and multiplication operations are supported by most CAD

synthesis tools. However, the division operation is often not supported. When the VHDL
compiler encounters an arithmetic operator, it usually synthesizes it by using an appropriate
module from a library.

Concatenate Operator
This operator concatenates two or more vectors to create a larger vector. For example,

D <= A & B;

defines the six-bit vector D = a2a1a0b2b1b0. Similarly, the concatenation

E <= ”111” & A & ”00”;

produces the eight-bit vector E = 111a2a1a000.

Shift and Rotate Operators
A vector operand can be shifted to the right or left by a number of bits specified as a

constant. When bits are shifted, the vacant bit positions are filled with 0s. For example,

B <= A SLL 1;

results in b2 = a1, b1 = a0, and b0 = 0. Similarly,

B <= A SRL 2;

yields b2 = b1 = 0 and b0 = a2.
The arithmetic shift left, SLA, has the same effect as SLL. But, the arithmetic shift

right, SRA, performs the sign extension by replicating the sign bit into the positions left
vacant after shifting. Hence

B <= A SRA 1;

gives b2 = a2, b1 = a2, and b0 = a1.
An operand can also be rotated, in which case the bits shifted out from one end are

placed into the vacated positions at the other end. For example,

B <= A ROR 2;

produces b2 = a1, b1 = a0, and b0 = a2.

May 19, 2004 11:40 vra60857_ch06 Sheet number 49 Page number 363 black

6.7 Concluding Remarks 363

Operator Precedence
Operators in different categories have different precedence. Operators in the same

category have the same precedence, and are evaluated from left to right in a given expression.
It is a good practice to use parentheses to indicate the desired order of operations in the
expression. To illustrate this point, consider the statement

S <= A + B + C + D;

which defines the addition of four vector operands. The VHDL compiler will synthesize
a circuit as if the expression was written in the form ((A + B) + C) + D, which gives a
cascade of three adders so that the final sum will be available after a propagation delay
through three adders. By writing the statement as

S <= (A + B) + (C + D);

the synthesized circuit will still have three adders, but since the sums A + B and C + D are
generated in parallel, the final sum will be available after a propagation delay through only
two adders.

Table 6.2 groups the operators informally according to their functionality. It shows only
those operators that are used to synthesize logic circuits. The VHDL Standard specifies
additional operators, which are useful for simulation and documentation purposes. All
operators are grouped into different classes, with a defined precedence ordering between
classes. We discuss this issue in Appendix A, section A.3.

6.7 Concluding Remarks

This chapter has introduced a number of circuit building blocks. Examples using these
blocks to construct larger circuits will be presented in Chapters 7 and 10. To describe the
building block circuits efficiently, several VHDL constructs have been introduced. In many
cases a given circuit can be described in various ways, using different constructs. A circuit
that can be described using a selected signal assignment can also be described using a case
statement. Circuits that fit well with conditional signal assignments are also well-suited to
if-then-else statements. In general, there are no clear rules that dictate when one type of
assignment statement should be preferred over another. With experience the user develops
a sense for which types of statements work well in a particular design situation. Personal
preference also influences how the code is written.

VHDL is not a programming language, and VHDL code should not be written as if it
were a computer program. The concurrent and sequential assignment statements discussed
in this chapter can be used to create large, complex circuits. A good way to design such
circuits is to construct them using well-defined modules, in the manner that we illustrated
for the multiplexers, decoders, encoders, and so on. Additional examples using the VHDL
statements introduced in this chapter are given in Chapters 7 and 8. In Chapter 10 we
provide a number of examples of using VHDL code to describe larger digital systems. For
more information on VHDL, the reader can consult more specialized books [5–10].

In the next chapter we introduce logic circuits that include the ability to store logic
signal values in memory elements.

May 19, 2004 11:40 vra60857_ch06 Sheet number 50 Page number 364 black

364 C H A P T E R 6 • Combinational-Circuit Building Blocks

6.8 Examples of Solved Problems

This section presents some typical problems that the reader may encounter, and shows how
such problems can be solved.

Example 6.25 Problem: Implement the function f (w1, w2, w3) = ∑
m(0, 1, 3, 4, 6, 7) by using a 3-to-8

binary decoder and an OR gate.

Solution: The decoder generates a separate output for each minterm of the required function.
These outputs are then combined in the OR gate, giving the circuit in Figure 6.50.

Example 6.26 Problem: Derive a circuit that implements an 8-to-3 binary encoder.

Solution: The truth table for the encoder is shown in Figure 6.51. Only those rows for
which a single input variable is equal to 1 are shown; the other rows can be treated as don’t
care cases. From the truth table it is seen that the desired circuit is defined by the equations

y2 = w4 + w5 + w6 + w7

y1 = w2 + w3 + w6 + w7

y0 = w1 + w3 + w5 + w7

Example 6.27 Problem: Implement the function

f (w1, w2, w3, w4) = w1w2w4w5 + w1w2 + w1w3 + w1w4 + w3w4w5

by using a 4-to-1 multiplexer and as few other gates as possible. Assume that only the
uncomplemented inputs w1, w2, w3, and w4 are available.

w
0

En

y
0

w
1

y
1

y
2

y
3

y
7

y
6

y
5

y
4

w
2

f

1

w
1

w
2

w
3

Figure 6.50 Circuit for Example 6.25.

May 19, 2004 11:40 vra60857_ch06 Sheet number 51 Page number 365 black

6.8 Examples of Solved Problems 365

0
0
0
0

0
1
1

w
0

y
2

0

y
1

0
1
0
1

0
0
0

1

w
1

1
0
0

0

w
2

0
1
0

0

w
3

0
0
1

0

w
4

0
0
0

0

w
5

0
0
0

0

w
6

0
0
0

0

w
7

0
0
0

0

y
0

1
1
1
1

0
1
1

0 0
1
0
1

0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

1
1
0
0

0
0
1
0

0
0
0
1

0

Figure 6.51 Truth table for an 8-to-3 binary encoder.

Solution: Since variables w1 and w4 appear in more product terms in the expression for
f than the other three variables, let us perform Shannon’s expansion with respect to these
two variables. The expansion gives

f = w1w4fw1w4 + w1w4fw1w4 + w1w4fw1w4 + w1w4fw1w4

= w1w4(w2w5) + w1w4(w3w5) + w1w4(w2 + w3) + w1w2(1)

We can use a NOR gate to implement w2w5 = w2 + w5. We also need an AND gate and
an OR gate. The complete circuit is presented in Figure 6.52.

f

w
2
w
5

w
3
w
5

w
2

w
3

+

w
1

w
4

w
2

w
5

w
3

1

Figure 6.52 Circuit for Example 6.27.

May 19, 2004 11:40 vra60857_ch06 Sheet number 52 Page number 366 black

366 C H A P T E R 6 • Combinational-Circuit Building Blocks

0
0
0
0

0
1
1

b
0

g
2

0

g
1

0
1
1
0

b
1

b
2

g
0

1
1
1
1

1
0
0

1 0
1
1
0

0
0
0
0

0
1
1

0 0
1
0
1

1
1
1
1

0
1
1

0 0
1
0
1

Figure 6.53 Binary to Gray code coversion.

Example 6.28 Problem: In Chapter 4 we pointed out that the rows and columns of a Karnaugh map
are labeled using Gray code. This is a code in which consecutive valuations differ in one
variable only. Figure 6.53 depicts the conversion between three-bit binary and Gray codes.
Design a circuit that can convert a binary code into a Gray according the figure.

Solution: From the figure it follows that

g2 = b2

g1 = b1b2 + b1b2

= b1 ⊕ b2

g0 = b0b1 + b0b1

= b0 ⊕ b1

Example 6.29 Problem: In section 6.1.2 we showed that any logic function can be decomposed using
Shannon’s expansion theorem. For a four-variable function, f (w1, . . . , w4), the expansion
with respect to w1 is

f (w1, . . . , w4) = w1fw1 + w1fw1

A circuit that implements this expression is given in Figure 6.54a.
(a) If the decomposition yields fw1 = 0, then the multiplexer in the figure can be replaced
by a single logic gate. Show this circuit.
(b) Repeat part (a) for the case where fw1 = 1.

Solution: The desired circuits are shown in parts (b) and (c) of Figure 6.54.

Example 6.30 Problem: In several commercial FPGAs the logic blocks are 4-LUTs. What is the minimum
number of 4-LUTs needed to construct a 4-to-1 multiplexer with select inputs s1 and s0 and
data inputs w3, w2, w1, and w0?

May 19, 2004 11:40 vra60857_ch06 Sheet number 53 Page number 367 black

6.8 Examples of Solved Problems 367

f

w
1

w
2

w
3

w
4

f w
1

fw
1

0

1

(a) Shannon’s expansion of the function f.

fw
1

w
1

w
2

w
3

w
4

f

(b) Solution for part a

w
1

w
2

w
3

w
4

f
f w

1

(c) Solution for part b

Figure 6.54 Circuits for Example 6.29.

Solution: A straightforward attempt is to use directly the expression that defines the 4-to-1
multiplexer

f = s1s0w0 + s1s0w1 + s1s0w2 + s1s0w3

Let g = s1s0w0 + s1s0w1 and h = s1s0w2 + s1s0w3, so that f = g + h. This decomposition
leads to the circuit in Figure 6.55a, which requires three LUTs.

When designing logic circuits, one can sometimes come up with a clever idea which
leads to a superior implementation. Figure 6.55b shows how it is possible to implement
the multiplexer with just two LUTs, based on the following observation. The truth table in
Figure 6.2b indicates that when s1 = 0 the output must be either w0 or w1, as determined
by the value of s0. This can be generated by the first LUT. The second LUT must make the
choice between w2 and w3 when s1 = 1. But, the choice can be made only by knowing the
value of s0. Since it is impossible to have five inputs in the LUT, more information has to

May 19, 2004 11:40 vra60857_ch06 Sheet number 54 Page number 368 black

368 C H A P T E R 6 • Combinational-Circuit Building Blocks

w
0

w
1

s
0

s
1

w
2

w
3

f

k

(b) Using two LUTs

(a) Using three LUTs

s
0

s
1

w
0

w
1

w
2

w
3

f
0

0

g

h

LUT

LUT

LUT

LUT

LUT

Figure 6.55 Circuits for Example 6.30.

be passed from the first to the second LUT. Observe that when s1 = 1 the output f will be
equal to either w2 or w3, in which case it is not necessary to know the values of w0 and w1.
Hence, in this case we can pass on the value of s0 through the first LUT, rather than w0 or
w1. This can be done by making the function of this LUT

k = s1s0w0 + s1s0w1 + s1s0

Then, the second LUT performs the function

f = s1k + s1kw3 + s1kw4

Example 6.31 Problem: In digital systems it is often necessary to have circuits that can shift the bits of
a vector by one or more bit positions to the left or right. Design a circuit that can shift a

May 19, 2004 11:40 vra60857_ch06 Sheet number 55 Page number 369 black

6.8 Examples of Solved Problems 369

w
3

w
2

w
1

w
00

Shift

y
3

y
2

y
1

y
0 k

1 0 1 0 1 0 1 0 1 0

0

Figure 6.56 A shifter circuit.

four-bit vector W = w3w2w1w0 one bit position to the right when a control signal Shift is
equal to 1. Let the outputs of the circuit be a four-bit vector Y = y3y2y1y0 and a signal k,
such that if Shift = 1 then y3 = 0, y2 = w3, y1 = w2, y0 = w1, and k = w0. If Shift = 0
then Y = W and k = 0.

Solution: The required circuit can be implemented with five 2-to-1 multiplexers as shown
in Figure 6.56. The Shift signal is used as the select input to each multiplexer.

Example 6.32Problem: The shifter circuit in Example 6.31 shifts the bits of an input vector by one bit
position to the right. It fills the vacated bit on the left side with 0. A more versatile shifter
circuit may be able to shift by more bit positions at a time. If the bits that are shifted out are
placed into the vacated positions on the left, then the circuit effectively rotates the bits of
the input vector by a specified number of bit positions. Such a circuit is often called a barrel
shifter. Design a four-bit barrel shifter that rotates the bits by 0, 1, 2, or 3 bit positions as
determined by the valuation of two control signals s1 and s0.

Solution: The required action is given in Figure 6.57a. The barrel shifter can be imple-
mented with four 4-to-1 multiplexers as shown in Figure 6.57b. The control signals s1 and
s0 are used as the select inputs to the multiplexers.

Example 6.33Problem: Write VHDL code that represents the circuit in Figure 6.19. Use the dec2to4
entity in Figure 6.30 as a subcircuit in your code.

Solution: The code is shown in Figure 6.58. Note that the dec2to4 entity can be included
in the same file as we have done in the figure, but it can also be in a separate file in the
project directory.

May 19, 2004 11:40 vra60857_ch06 Sheet number 56 Page number 370 black

370 C H A P T E R 6 • Combinational-Circuit Building Blocks

w
3

w
2

w
1

w
0

y
3

y
2

y
1

y
0

s
1

s
0

0
0
1
1

1
0
1

y
3

s
1

0

s
0

y
2

y
1

y
0

w
3

w
2

w
1

w
0

w
0

w
3

w
2

w
1

w
1

w
0

w
3

w
2

w
2

w
1

w
0

w
3

(a) Truth table

(b) Circuit

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Figure 6.57 A barrel shifter circuit.

Example 6.34 Problem: Write VHDL code that represents the shifter circuit in Figure 6.56.

Solution: There are two possible approaches: structural and behavioral. A structural
description is given in Figure 6.59. The IF construct is used to define the desired shifting of
individual bits. A typical VHDL compiler will implement this code with 2-to-1 multiplexers
as depicted in Figure 6.56.

A behavioral specification is given in Figure 6.60. It makes use of the shift operator
SRL. Since the shift and rotate operators are supported in the ieee.numeric_std.all library,
this library must be included in the code. Note that the vectors w and y are defined to be of
UNSIGNED type.

Example 6.35 Problem: Write VHDL code that defines the barrel shifter in Figure 6.57.

Solution: The easiest way to specify the barrel shifter is by using the VHDL rotate operator.
The complete code is presented in Figure 6.61.

May 19, 2004 11:40 vra60857_ch06 Sheet number 57 Page number 371 black

6.8 Examples of Solved Problems 371

LIBRARY ieee ;
USE ieee.std logic 1164.all ;

ENTITY mux4to1 IS
PORT (s : IN STD LOGIC VECTOR(1 DOWNTO 0) ;

w : IN STD LOGIC VECTOR(3 DOWNTO 0) ;
f : OUT STD LOGIC) ;

END mux4to1 ;

ARCHITECTURE Structure OF mux4to1 IS
COMPONENT dec2to4

PORT (w : IN STD LOGIC VECTOR(1 DOWNTO 0) ;
En : IN STD LOGIC ;
y : OUT STD LOGIC VECTOR(0 TO 3));

END COMPONENT;
SIGNAL High : STD LOGIC ;
SIGNAL y : STD LOGIC VECTOR(3 DOWNTO 0) ;

BEGIN
decoder: dec2to4 PORT MAP (s, ’1’, y) ;
f <
 (w(0) AND y(0)) OR (w(1) AND y(1)) OR

(w(2) AND y(2)) OR w(3) AND y(3)) ;
END Structure ;

LIBRARY ieee ;
USE ieee.std logic 1164.all ;

ENTITY dec2to4 IS
PORT (w : IN STD LOGIC VECTOR(1 DOWNTO 0) ;

En : IN STD LOGIC ;
y : OUT STD LOGIC VECTOR(0 TO 3)) ;

END dec2to4 ;

ARCHITECTURE Behavior OF dec2to4 IS
SIGNAL Enw : STD LOGIC VECTOR(2 DOWNTO 0) ;

BEGIN
Enw <
 En & w ;
WITH Enw SELECT

y <
 ”1000” WHEN ”100”,
”0100” WHEN ”101”,
”0010” WHEN ”110”,
”0001” WHEN ”111”,
”0000” WHEN OTHERS ;

END Behavior ;

Figure 6.58 VHDL code for Example 6.38.

May 19, 2004 11:40 vra60857_ch06 Sheet number 58 Page number 372 black

372 C H A P T E R 6 • Combinational-Circuit Building Blocks

LIBRARY ieee ;
USE ieee.std logic 1164.all ;

ENTITY shifter IS
PORT (w : IN STD LOGIC VECTOR(3 DOWNTO 0) ;

IN STD LOGIC
y : OUT STD LOGIC VECTOR(3 DOWNTO 0) ;

;Shift :

k : OUT STD LOGIC) ;
END shifter ;

ARCHITECTURE Behavior OF shifter IS
BEGIN

PROCESS (Shift, w)
BEGIN

IF Shift
 ’1’ THEN
y(3) <
 ’0’ ;
y(2 DOWNTO 0) <
 w(3 DOWNTO 1) ;
k <
 w(0) ;

ELSE
y <
 w ;
k <
 ’0’ ;

END IF ;
END PROCESS ;

END Behavior ;

Figure 6.59 Structural VHDL code that specifies the shifter circuit in
Figure 6.56.

Problems

Answers to problems marked by an asterisk are given at the back of the book.

6.1 Show how the function f (w1, w2, w3) = ∑
m(0, 2, 3, 4, 5, 7) can be implemented using a

3-to-8 binary decoder and an OR gate.

6.2 Show how the function f (w1, w2, w3) = ∑
m(1, 2, 3, 5, 6) can be implemented using a

3-to-8 binary decoder and an OR gate.

*6.3 Consider the function f = w1w3 + w2w3 + w1w2. Use the truth table to derive a circuit for
f that uses a 2-to-1 multiplexer.

6.4 Repeat problem 6.3 for the function f = w2w3 + w1w2.

*6.5 For the function f (w1, w2, w3) = ∑
m(0, 2, 3, 6), use Shannon’s expansion to derive an

implementation using a 2-to-1 multiplexer and any other necessary gates.

6.6 Repeat problem 6.5 for the function f (w1, w2, w3) = ∑
m(0, 4, 6, 7).

May 19, 2004 11:40 vra60857_ch06 Sheet number 59 Page number 373 black

Problems 373

LIBRARY ieee ;
USE ieee.std logic 1164.all ;
USE ieee.numeric std.all ;

ENTITY shifter IS
PORT (w : IN UNSIGNED(3 DOWNTO 0) ;

Shift : IN STD LOGIC ;
y : OUT UNSIGNED(3 DOWNTO 0) ;
k : OUT STD LOGIC) ;

END shifter ;

ARCHITECTURE Behavior OF shifter IS
BEGIN

PROCESS (Shift, w)
BEGIN

IF Shift = ”1” THEN
y <� w SRL 1 ;
k <� w(0) ;

ELSE
y <� w ;
k <� ”0” ;

END IF ;
END PROCESS ;

END Behavior ;

Figure 6.60 Behavioral VHDL code that specifies the shifter circuit in
Figure 6.56.

6.7 Consider the function f = w2+w1w3+w1w3. Show how repeated application of Shannon’s
expansion can be used to derive the minterms of f .

6.8 Repeat problem 6.7 for f = w2 + w1w3.

6.9 Prove Shannon’s expansion theorem presented in section 6.1.2.

*6.10 Section 6.1.2 shows Shannon’s expansion in sum-of-products form. Using the principle of
duality, derive the equivalent expression in product-of-sums form.

6.11 Consider the function f = w1w2 +w2w3 +w1w2w3. Give a circuit that implements f using
the minimal number of two-input LUTs. Show the truth table implemented inside each
LUT.

*6.12 For the function in problem 6.11, the cost of the minimal sum-of-products expression is 14,
which includes four gates and 10 inputs to the gates. Use Shannon’s expansion to derive a
multilevel circuit that has a lower cost and give the cost of your circuit.

6.13 Consider the function f (w1, w2, w3, w4) = ∑
m(0, 1, 3, 6, 8, 9, 14, 15). Derive an imple-

mentation using the minimum possible number of three-input LUTs.

May 19, 2004 11:40 vra60857_ch06 Sheet number 60 Page number 374 black

374 C H A P T E R 6 • Combinational-Circuit Building Blocks

LIBRARY ieee ;
USE ieee.std logic 1164.all ;
USE ieee.numeric std.all ;

ENTITY barrel IS
PORT (w : IN UNSIGNED(3 DOWNTO 0) ;

s : IN UNSIGNED(1 DOWNTO 0)) ;
y : OUT UNSIGNED(3 DOWNTO 0)) ;

END barrel ;

ARCHITECTURE Behavior OF barrel IS
BEGIN

PROCESS (s, w)
BEGIN

CASE s IS
WHEN ”00”
>

y <
 w ;
WHEN ”01”
>

y <
 w ROR 1 ;
WHEN ”10”
>

y <
 w ROR 2 ;
WHEN OTHERS
>

y <
 w ROR 3 ;
END CASE ;

END PROCESS ;
END Behavior ;

Figure 6.61 VHDL code that specifies the barrel shifter circuit in
Figure 6.57.

*6.14 Give two examples of logic functions with five inputs, w1, . . . , w5, that can be realized
using 2 four-input LUTs.

6.15 For the function, f , in Example 6.27 perform Shannon’s expansion with respect to variables
w1 and w2, rather than w1 and w4. How does the resulting circuit compare with the circuit
in Figure 6.52?

6.16 Actel Corporation manufactures an FPGA family called Act 1, which has the multiplexer-
based logic block illustrated in Figure P6.1. Show how the function f = w2w3 + w1w3 +
w2w3 can be implemented using only one Act 1 logic block.

6.17 Show how the function f = w1w3 +w1w3 +w2w3 +w1w2 can be realized using Act 1 logic
blocks. Note that there are no NOT gates in the chip; hence complements of signals have
to be generated using the multiplexers in the logic block.

May 19, 2004 11:40 vra60857_ch06 Sheet number 61 Page number 375 black

Problems 375

i
3

i
4

i
5

i
8

f

i
2

i
6

i
1

i
7

Figure P6.1 The Actel Act 1 logic block.

*6.18 Consider the VHDL code in Figure P6.2. What type of circuit does the code represent?
Comment on whether or not the style of code used is a good choice for the circuit that it
represents.

6.19 Write VHDL code that represents the function in problem 6.1, using one selected signal
assignment.

6.20 Write VHDL code that represents the function in problem 6.2, using one selected signal
assignment.

6.21 Using a selected signal assignment, write VHDL code for a 4-to-2 binary encoder.

6.22 Using a conditional signal assignment, write VHDL code for an 8-to-3 binary encoder.

6.23 Derive the circuit for an 8-to-3 priority encoder.

6.24 Using a conditional signal assignment, write VHDL code for an 8-to-3 priority encoder.

6.25 Repeat problem 6.24, using an if-then-else statement.

6.26 Create a VHDL entity named if2to4 that represents a 2-to-4 binary decoder using an if-
then-else statement. Create a second entity named h3to8 that represents the 3-to-8 binary
decoder in Figure 6.17, using two instances of the if2to4 entity.

6.27 Create a VHDL entity named h6to64 that represents a 6-to-64 binary decoder. Use the
treelike structure in Figure 6.18, in which the 6-to-64 decoder is built using five instances
of the h3to8 decoder created in problem 6.26.

6.28 Write VHDL code for a BCD-to-7-segment code converter, using a selected signal assign-
ment.

*6.29 Derive minimal sum-of-products expressions for the outputs a, b, and c of the 7-segment
display in Figure 6.25.

May 19, 2004 11:40 vra60857_ch06 Sheet number 62 Page number 376 black

376 C H A P T E R 6 • Combinational-Circuit Building Blocks

LIBRARY ieee ;
USE ieee.std logic 1164.all ;

ENTITY problem IS
PORT (w : IN STD LOGIC VECTOR(1 DOWNTO 0) ;

En : IN STD LOGIC ;
y0, y1, y2, y3 : OUT STD LOGIC) ;

END problem ;

ARCHITECTURE Behavior OF problem IS
BEGIN

PROCESS (w, En)
BEGIN

y0 <
 ’0’ ; y1 <
 ’0’ ; y2 <
 ’0’ ; y3 <
 ’0’ ;
IF En
 ’1’ THEN

IF w
 ”00” THEN y0 <
 ’1’ ;
ELSIF w
 ”01” THEN y1 <
 ’1’ ;
ELSIF w
 ”10” THEN y2 <
 ’1’ ;
ELSE y3 <
 ’1’ ;
END IF ;

END IF ;
END PROCESS ;

END Behavior ;

Figure P6.2 Code for problem 6.18.

6.30 Derive minimal sum-of-products expressions for the outputs d , e, f , and g of the 7-segment
display in Figure 6.25.

6.31 Design a shifter circuit, similar to the one in Figure 6.56, which can shift a four-bit input
vector, W = w3w2w1w0, one bit-position to the right when the control signal Right is equal
to 1, and one bit-position to the left when the control signal Left is equal to 1. When Right
= Left = 0, the output of the circuit should be the same as the input vector. Assume that
the condition Right = Left = 1 will never occur.

6.32 Figure 6.21 shows a block diagram of a ROM. A circuit that implements a small ROM, with
four rows and four columns, is depicted in Figure P6.3. Each X in the figure represents a
switch that determines whether the ROM produces a 1 or 0 when that location is read.
(a) Show how a switch (X) can be realized using a single NMOS transistor.
(b) Draw the complete 4×4 ROM circuit, using your switches from part (a). The ROM
should be programmed to store the bits 0101 in row 0 (the top row), 1010 in row 1, 1100 in
row 2, and 0011 in row 3 (the bottom row).
(c) Show how each (X) can be implemented as a programmable switch (as opposed to
providing either a 1 or 0 permanently), using an EEPROM cell as shown in Figure 3.64.
Briefly describe how the storage cell is used.

May 19, 2004 11:40 vra60857_ch06 Sheet number 63 Page number 377 black

References 377

d
3

d
2

d
1

d
0

VDD

2-
to

-4
 d

ec
od

er

a
0

a
1

Figure P6.3 A 4 × 4 ROM circuit.

6.33 Show the complete circuit for a ROM using the storage cells designed in Part (a) of problem
6.33 that realizes the logic functions

d3 = a0 ⊕ a1

d2 = a0 ⊕ a1

d1 = a0a1

d0 = a0 + a1

References

1. C. E. Shannon, “Symbolic Analysis of Relay and Switching Circuits,” Transactions
AIEE 57 (1938), pp. 713–723.

2. Actel Corporation, “MX FPGA Data Sheet,” http://www.actel.com.

3. QuickLogic Corporation, “pASIC 3 FPGA Data Sheet,” http://www.quicklogic.com.

May 19, 2004 11:40 vra60857_ch06 Sheet number 64 Page number 378 black

378 C H A P T E R 6 • Combinational-Circuit Building Blocks

4. R. Landers, S. Mahant-Shetti, and C. Lemonds, “A Multiplexer-Based Architecture
for High-Density, Low Power Gate Arrays,” IEEE Journal of Solid-State Circuits 30,
no. 4 (April 1995).

5. Z. Navabi, VHDL—Analysis and Modeling of Digital Systems, 2nd ed.
(McGraw-Hill: New York, 1998).

6. J. Bhasker, A VHDL Primer, 3rd ed. (Prentice-Hall: Englewood Cliffs, NJ, 1998).

7. D. L. Perry, VHDL, 3rd ed. (McGraw-Hill: New York, 1998).

8. K. Skahill, VHDL for Programmable Logic (Addison-Wesley: Menlo Park, CA,
1996).

9. A. Dewey, Analysis and Design of Digital Systems with VHDL (PWS Publishing Co.:
Boston, 1997).

10. D. J. Smith, HDL Chip Design (Doone Publications: Madison, AL, 1996).

