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C H A P T E R

7

AC POWER

he aim of this chapter is to introduce the student to simple AC power calcu-
lations and to the generation and distribution of electric power. The chapter
builds on the material developed in Chapter 4—namely, phasors and com-
plex impedance—and paves the way for the material on electric machines in

Chapters 16, 17, and 18.
The chapter starts with the definition of AC average and complex power and

illustrates the computation of the power absorbed by a complex load; special attention
is paid to the calculation of the power factor, and to power factor correction. The next
subject is a brief discussion of ideal transformers and of maximum power transfer.
This is followed by an introduction to three-phase power. The chapter ends with a
discussion of electric power generation and distribution.
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➲ Learning Objectives

1. Understand the meaning of instantaneous and average power, master AC power
notation, and compute average power for AC circuits. Compute the power factor of
a complex load. Section 7.1.

2. Learn complex power notation; compute apparent, real, and reactive power for com-
plex loads. Draw the power triangle, and compute the capacitor size required to
perform power factor correction on a load. Section 7.2.

3. Analyze the ideal transformer; compute primary and secondary currents and voltages
and turns ratios. Calculate reflected sources and impedances across ideal transform-
ers. Understand maximum power transfer. Section 7.3.

4. Learn three-phase AC power notation; compute load currents and voltages for bal-
anced wye and delta loads. Section 7.4.

5. Understand the basic principles of residential electrical wiring and of electrical safety.
Sections 7.5, 7.6.

7.1 POWER IN AC CIRCUITS

The objective of this section is to introduce AC power. As already mentioned in
Chapter 4, 50- or 60-Hz AC electric power constitutes the most common form of
electric power distribution; in this section, the phasor notation developed in Chapter
4 will be employed to analyze the power absorbed by both resistive and complex
loads.

Instantaneous and Average Power

From Chapter 4, you already know that when a linear electric circuit is excited by a
sinusoidal source, all voltages and currents in the circuit are also sinusoids of the same
frequency as that of the excitation source. Figure 7.1 depicts the general form of a
linear AC circuit. The most general expressions for the voltage and current delivered
to an arbitrary load are as follows:

v(t) = V cos(ωt − θV )

i(t) = I cos(ωt − θI )
(7.1)

where V and I are the peak amplitudes of the sinusoidal voltage and current, re-
spectively, and θV and θI are their phase angles. Two such waveforms are plotted in
Figure 7.2, with unit amplitude and with phase angles θV = π/6 and θI = π/3. The
phase shift between source and load is therefore θ = θV − θI . It will be easier, for the
purpose of this section, to assume that θV = 0, without any loss of generality, since
all phase angles will be referenced to the source voltage’s phase. In Section 5.2, where
complex power is introduced, you will see that this assumption is not necessary since
phasor notation is used. In this section, some of the trigonometry-based derivations
are simpler if the source voltage reference phase is assumed to be zero.

+~–

i(t)

V = Ve–juV

+~–

I = Ie–ju

AC circuit

AC circuit
in phasor form

Z = 
V
I

e ju

v(t) = V cos(ωt – uV)
i(t) = I cos(ωt – uI)

v(t)

Figure 7.1 Circuit for
illustration of AC power

Since the instantaneous power dissipated by a circuit element is given by the
product of the instantaneous voltage and current, it is possible to obtain a general
expression for the power dissipated by an AC circuit element:

p(t) = v(t)i(t) = VI cos(ωt) cos(ωt − θ) (7.2)
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Figure 7.2 Current and voltage waveforms for illustration of AC power

Equation 7.2 can be further simplified with the aid of trigonometric identities to yield

p(t) = VI

2
cos(θ) + VI

2
cos(2ωt − θ) (7.3)

where θ is the difference in phase between voltage and current. Equation 7.3 illustrates
how the instantaneous power dissipated by an AC circuit element is equal to the sum
of an average component 1

2VI cos(θ) and a sinusoidal component 1
2VI cos(2ωt − θ),

oscillating at a frequency double that of the original source frequency.
The instantaneous and average power are plotted in Figure 7.3 for the signals

of Figure 7.2. The average power corresponding to the voltage and current signals of
equation 7.1 can be obtained by integrating the instantaneous power over one cycle
of the sinusoidal signal. Let T = 2π/ω represent one cycle of the sinusoidal signals.
Then the average power Pav is given by the integral of the instantaneous power p(t)
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Figure 7.3 Instantaneous and average power
dissipation corresponding to the signals plotted in
Figure 7.2
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over one cycle

➲LO1

Pav = 1

T

∫ T

0
p(t) dt

= 1

T

∫ T

0

VI

2
cos(θ) dt + 1

T

∫ T

0

VI

2
cos(2ωt − θ) dt

(7.4)

Pav =VI

2
cos(θ) Average power (7.5)

since the second integral is equal to zero and cos(θ) is a constant.
As shown in Figure 7.1, the same analysis carried out in equations 7.1 to 7.3

can also be repeated using phasor analysis. In phasor notation, the current and voltage
of equation 7.1 are given by

V(jω) = V ej0 (7.6)

I(jω) = Ie−jθ (7.7)

Note further that the impedance of the circuit element shown in Figure 7.1 is defined
by the phasor voltage and current of equations 7.6 and 7.7 to be

Z = V

I
ej(θ) = |Z|ejθ (7.8)

The expression for the average power obtained in equation 7.4 can therefore also be
represented using phasor notation, as follows:

➲LO1 Pav = 1

2

V 2

|Z| cos θ = 1

2
I 2|Z| cos θ Average power (7.9)

AC Power Notation

It has already been noted that AC power systems operate at a fixed frequency; in
North America, this frequency is 60 cycles per second, or hertz (Hz), corresponding
to a radian frequency

ω = 2π · 60 = 377 rad/s AC power frequency (7.10)

In Europe and most other parts of the world, AC power is generated at a frequency
of 50 Hz (this is the reason why some appliances will not operate under one of the
two systems).

➲LO1
Therefore, for the remainder of this chapter the radian frequency ω is fixed at
377 rad/s, unless otherwise noted.
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With knowledge of the radian frequency of all voltages and currents, it will always
be possible to compute the exact magnitude and phase of any impedance in a circuit.

A second point concerning notation is related to the factor 1
2 in equation 7.9. It

is customary in AC power analysis to employ the rms value of the AC voltages and
currents in the circuit (see Section 4.2). Use of the rms value eliminates the factor
1
2 in power expressions and leads to considerable simplification. Thus, the following
expressions will be used in this chapter:

Vrms = V√
2

= Ṽ (7.11)

Irms = I√
2

= Ĩ (7.12)

Pav = 1

2

V 2

|Z| cos θ = Ṽ 2

|Z| cos θ

= 1

2
I 2|Z| cos θ = Ĩ 2|Z| cos θ = ṼĨ cos θ

(7.13)

Figure 7.4 illustrates the impedance triangle, which provides a convenient
graphical interpretation of impedance as a vector in the complex plane. From the
figure, it is simple to verify that

R = |Z| cos θ (7.14)

X = |Z| sin θ (7.15)

VS
+~–

R

jX

Z

R

X
θ

Figure 7.4 Impedance
triangle

Finally, the amplitudes of phasor voltages and currents will be denoted through-
out this chapter by means of the rms amplitude. We therefore introduce a slight mod-
ification in the phasor notation of Chapter 4 by defining the following rms phasor
quantities:

Ṽ = Vrmse
jθV = Ṽ ejθV = Ṽ∠θV (7.16)

and

Ĩ = Irmse
jθI = Ĩ ejθI = Ĩ∠θI (7.17)

In other words,

➲

LO1
Throughout the remainder of this chapter, the symbols Ṽ and Ĩ will denote the
rms value of a voltage or a current, and the symbols Ṽ and Ĩ will denote rms
phasor voltages and currents.

Also recall the use of the symbol ∠ to represent the complex exponential. Thus,
the sinusoidal waveform corresponding to the phasor current Ĩ = Ĩ∠θI corresponds
to the time-domain waveform

i(t) = √
2Ĩ cos(ωt + θI ) (7.18)

and the sinusoidal form of the phasor voltage V = Ṽ∠θV is

v(t) = √
2Ṽ cos(ωt + θV ) (7.19)
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EXAMPLE 7.1 Computing Average and Instantaneous AC Power➲LO1
Problem

Compute the average and instantaneous power dissipated by the load of Figure 7.5.

v(t) = 14.14 sin (ωt)
(ω = 377 rad/s)

i(t)

R

L

+
_~

Figure 7.5

Solution

Known Quantities: Source voltage and frequency, load resistance and inductance values.

Find: Pav and p(t) for the RL load.

Schematics, Diagrams, Circuits, and Given Data: v(t) = 14.14 sin(377t) V; R = 4 �;
L = 8 mH.

Assumptions: Use rms values for all phasor quantities in the problem.

Analysis: First, we define the phasors and impedances at the frequency of interest in the
problem, ω = 377 rad/s:

Ṽ = 10∠
(
−π

2

)
Z = R + jωL = 4 + j3 = 5∠0.644

Ĩ = Ṽ
Z

= 10∠(−π/2)

5∠0.644
= 2∠(−2.215)

The average power can be computed from the phasor quantities:

Pav = ṼĨ cos(θ) = 10 × 2 × cos(0.644) = 16 W

The instantaneous power is given by the expression

p(t) = v(t) × i(t) = √
2 × 10 sin(377t) × √

2 × 2 cos(377t − 2.215) W

The instantaneous voltage and current waveforms and the instantaneous and average power
are plotted in Figure 7.6.

Comments: Please pay attention to the use of rms values in this example: It is very important
to remember that we have defined phasors to have rms amplitude in the power calculation.
This is a standard procedure in electrical engineering practice.

Note that the instantaneous power can be negative for brief periods of time, even though
the average power is positive.

CHECK YOUR UNDERSTANDING

Show that the equalities in equation 7.9 hold when phasor notation is used.
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EXAMPLE 7.2 Computing Average AC Power

➲

LO1
Problem

Compute the average power dissipated by the load of Figure 7.7.

C+~–
RL

RS

+

–
ω = 377 rad/s

V
~

S V
~

L

I
~

Figure 7.7

Solution

Known Quantities: Source voltage, internal resistance and frequency, load resistance and
inductance values.

Find: Pav for the RC load.

Schematics, Diagrams, Circuits, and Given Data: Ṽs = 110∠0; RS = 2 �; RL = 16 �;
C = 100 µF.

Assumptions: Use rms values for all phasor quantities in the problem.

Analysis: First, we compute the load impedance at the frequency of interest in the problem,
ω = 377 rad/s:

ZL = R‖ 1

jωC
= RL

1 + jωCRL

= 16

1 + j0.6032
= 13.7∠(−0.543) �

Next, we compute the load voltage, using the voltage divider rule:

ṼL = ZL

RS + ZL

ṼS = 13.7∠(−0.543)

2 + 13.7∠(−0.543)
110∠0 = 97.6∠(−0.067) V
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Knowing the load voltage, we can compute the average power according to

Pav = |ṼL|2
|ZL| cos(θ) = 97.62

13.7
cos(−0.543) = 595 W

or, alternatively, we can compute the load current and calculate the average power according
to

ĨL = ṼL

ZL

= 7.1∠0.476 A

Pav = |ĨL|2|ZL| cos(θ) = 7.12 × 13.7 × cos(−0.543) = 595 W

Comments: Please observe that it is very important to determine load current and/or voltage
before proceeding to the computation of power; the internal source resistance in this problem
causes the source and load voltages to be different.

Focus on Computer-Aided Tools: A file containing the computer-generated solution to this
problem may be found in the CD-ROM that accompanies this book.

CHECK YOUR UNDERSTANDING

Consider the circuit shown in Figure 7.8. Find the load impedance of the circuit, and compute
the average power dissipated by the load.

Answer:Z=4.8e−j33.5◦
�;Pav=2,103.4W

155.6 cos (377t)+~–

4 Ω

1,000 µF

i(t)

Figure 7.8

EXAMPLE 7.3 Computing Average AC Power➲LO1
Problem

Compute the average power dissipated by the load of Figure 7.9.

+~–

R

jvL

v(t) +~–

R

L

C

An AC circuit

Its complex form

1
jvC

V
~

Figure 7.9

Solution

Known Quantities: Source voltage, internal resistance and frequency, load resistance, capac-
itance and inductance values.

Find: Pav for the complex load.

Schematics, Diagrams, Circuits, and Given Data: Ṽs = 110∠0 V; R = 10 �; L = 0.05 H;
C = 470 µF.

Assumptions: Use rms values for all phasor quantities in the problem.

Analysis: First, we compute the load impedance at the frequency of interest in the problem,
ω = 377 rad/s:
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ZL = (R + jωL)‖ 1

jωC
= (R + jωL)/jωC

R + jωL + 1/jωC

= R + jωL

−ω2LC + jωCR
= 1.16 − j7.18

= 7.27∠(−1.41) �

Note that the equivalent load impedance consists of a capacitive load at this frequency, as
shown in Figure 7.10. Knowing that the load voltage is equal to the source voltage, we can
compute the average power according to

Pav = |ṼL|2
|ZL| cos(θ) = 1102

7.27
cos(−1.41) = 266 W

+~–

1.16 Ω

– j7.18 Ω

V
~

Figure 7.10

Focus on Computer-Aided Tools: A file containing the computer-generated solution to this
problem may be found in the CD-ROM that accompanies this book.

CHECK YOUR UNDERSTANDING

Compute the power dissipated by the internal source resistance in Example 7.2.

Use the expression Pav = Ĩ 2|Z| cos(θ) to compute the average power dissipated by the load
of Example 7.2.

Answers:101.46W;SeeExample7.2

Power Factor

The phase angle of the load impedance plays a very important role in the absorption
of power by a load impedance. As illustrated in equation 7.13 and in the preceding
examples, the average power dissipated by an AC load is dependent on the cosine of
the angle of the impedance. To recognize the importance of this factor in AC power
computations, the term cos(θ) is referred to as the power factor (pf). Note that the
power factor is equal to 0 for a purely inductive or capacitive load and equal to 1 for
a purely resistive load; in every other case,

0 < pf < 1 (7.20)

Two equivalent expressions for the power factor are given in the following:

pf = cos(θ) = Pav

ṼĨ
Power factor (7.21)

where Ṽ and Ĩ are the rms values of the load voltage and current, respectively.

7.2 COMPLEX POWER

The expression for the instantaneous power given in equation 7.3 may be expanded
to provide further insight into AC power. Using trigonometric identities, we obtain
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the following expressions:

p(t) = Ṽ 2

|Z| [cos θ + cos θ cos(2ωt) + sin θ sin(2ωt)]

= Ĩ 2|Z|[cos θ + cos θ cos(2ωt) + sin θ sin(2ωt)]
= Ĩ 2|Z| cos θ(1 + cos 2ωt) + Ĩ 2|Z| sin θ sin(2ωt)

(7.22)

Recalling the geometric interpretation of the impedance Z of Figure 7.4, you may
recognize that

|Z| cos θ = R

and (7.23)

|Z| sin θ = X

are the resistive and reactive components of the load impedance, respectively. On the
basis of this fact, it becomes possible to write the instantaneous power as

p(t) = Ĩ 2R(1 + cos 2ωt) + Ĩ 2X sin(2ωt)

= Ĩ 2R + Ĩ 2R cos(2ωt) + Ĩ 2X sin(2ωt)
(7.24)

The physical interpretation of this expression for the instantaneous power should be
intuitively appealing at this point. As equation 7.24 suggests, the instantaneous power
dissipated by a complex load consists of the following three components:

➲LO2

1. An average component, which is constant; this is called the average
power and is denoted by the symbol Pav:

Pav = Ĩ 2R (7.25)

where R = ReZ.
2. A time-varying (sinusoidal) component with zero average value that is

contributed by the power fluctuations in the resistive component of the
load and is denoted by pR(t):

pR(t) = Ĩ 2R cos 2ωt

= Pav cos 2ωt
(7.26)

3. A time-varying (sinusoidal) component with zero average value, due to
the power fluctuation in the reactive component of the load and denoted
by pX(t):

pX(t) = Ĩ 2X sin 2ωt

= Q sin 2ωt
(7.27)

where X = Im Z and Q is called the reactive power. Note that since
reactive elements can only store energy and not dissipate it, there is no
net average power absorbed by X.
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Since Pav corresponds to the power absorbed by the load resistance, it is also called
the real power, measured in units of watts (W). On the other hand, Q takes the name
of reactive power, since it is associated with the load reactance. Table 7.1 shows the
general methods of calculating P and Q.

The units of Q are volt-amperes reactive, or VAR. Note that Q represents an
exchange of energy between the source and the reactive part of the load; thus, no net
power is gained or lost in the process, since the average reactive power is zero. In
general, it is desirable to minimize the reactive power in a load. Example 7.6 will
explain the reason for this statement.

Table 7.1 Real
and reactive power

Real Reactive
power Pav power Q

ṼĨ cos(θ) ṼĨ sin(θ)

Ĩ 2R Ĩ 2X

The computation of AC power is greatly simplified by defining a fictitious but
very useful quantity called the complex power S

➲

LO2S = ṼĨ∗ Complex power (7.28)

where the asterisk denotes the complex conjugate (see Appendix A). You may easily
verify that this definition leads to the convenient expression

S = ṼĨ cos θ + jṼĨ sin θ = Ĩ 2R + jĨ 2X = Ĩ 2Z

or (7.29)

S = Pav + jQ

The complex power S may be interpreted graphically as a vector in the complex plane,
as shown in Figure 7.11. S

Pav

Qθ

√Pav
2 + Q2 = V .I  |S | = 

Pav = VI cos θ

Q =VI sin θ

~ ~

~~

~~

Figure 7.11 The complex
power triangle

➲L
O

2

The magnitude of S, denoted by |S|, is measured in units of volt-amperes (VA)
and is called the apparent power, because this is the quantity one would compute
by measuring the rms load voltage and currents without regard for the phase angle
of the load. Note that the right triangle of Figure 7.11 is similar to the right triangle
of Figure 7.4, since θ is the load impedance angle. The complex power may also be
expressed by the product of the square of the rms current through the load and the
complex load impedance:

S = Ĩ 2Z

or (7.30)

Ĩ 2R + jĨ 2X = Ĩ 2Z

or, equivalently, by the ratio of the square of the rms voltage across the load to the
complex conjugate of the load impedance:

S = Ṽ 2

Z∗ (7.31)

The power triangle and complex power greatly simplify load power calcula-
tions, as illustrated in the following examples.
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F O C U S O N M E T H O D O L O G Y

COMPLEX POWER CALCULATION FOR A SINGLE LOAD

1. Compute the load voltage and current in rms phasor form, using the AC
circuit analysis methods presented in Chapter 4 and converting peak
amplitude to rms values.

Ṽ = Ṽ∠θV

Ĩ = Ĩ∠θI

2. Compute the complex power S = ṼĨ∗ and set Re S = Pav, Im S = Q.

3. Draw the power triangle, as shown in Figure 7.11.

4. If Q is negative, the load is capacitive; if positive, the load is reactive.

5. Compute the apparent power |S| in volt-amperes.

➲LO2

EXAMPLE 7.4 Complex Power Calculations➲LO2
Problem

Use the definition of complex power to calculate real and reactive power for the load of
Figure 7.12.

VS
+~–

IS

ZL

Figure 7.12

Solution

Known Quantities: Source, load voltage, and current.

Find: S = Pav + jQ for the complex load.

Schematics, Diagrams, Circuits, and Given Data: v(t) = 100 cos(ωt + 0.262) V;
i(t) = 2 cos(ωt − 0.262) A.

Assumptions: Use rms values for all phasor quantities in the problem.

Analysis: First, we convert the voltage and current to phasor quantities:

Ṽ = 100√
2

∠0.262 V Ĩ = 2√
2
∠(−0.262) A

Next, we compute real and reactive power, using the definitions of equation 7.13:

Pav = |Ṽ‖Ĩ| cos(θ) = 200

2
cos(0.524) = 86.6 W

Q = |Ṽ‖Ĩ| sin(θ) = 200

2
sin(0.524) = 50 VAR

Now we apply the definition of complex power (equation 7.28) to repeat the same calculation:

S = ṼĨ∗ = 100√
2

∠0.262 × 2√
2
∠ −(−0.262) = 100∠0.524

= 86.6 + j50 W
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Therefore

Pav = 86.6 W Q = 50 VAR

Comments: Note how the definition of complex power yields both quantities at one time.

CHECK YOUR UNDERSTANDING

Use complex power notation to compute the real and reactive power for the load of Example 7.2.

Answer:Pav=593W;Q=−358VAR

EXAMPLE 7.5 Real and Reactive Power Calculations

➲

LO2
Problem

Use the definition of complex power to calculate real and reactive power for the load of
Figure 7.13.

+~–

RL

RS

C

+

–
Source

Load

V
~

S V
~

L
IL
~

Figure 7.13

Solution

Known Quantities: Source voltage and resistance; load impedance.

Find: S = Pav + jQ for the complex load.

Schematics, Diagrams, Circuits, and Given Data: ṼS = 110∠0 V; RS = 2 �; RL = 5 �;
C = 2,000 µF.

Assumptions: Use rms values for all phasor quantities in the problem.

Analysis: Define the load impedance

ZL = RL + 1

jωC
= 5 − j1.326 = 5.173∠(−0.259) �

Next, compute the load voltage and current:

ṼL = ZL

RS + ZL

ṼS = 5 − j1.326

7 − j1.326
× 110 = 79.66∠(−0.072) V

ĨL = ṼL

ZL

= 79.66∠(−0.072)

5.173∠(−0.259)
= 15.44∠0.187 A

Finally, we compute the complex power, as defined in equation 7.28:

S = ṼLĨ∗
L = 79.9∠(−0.072) × 15.44∠(−0.187) = 1,233∠(−0.259)

= 1,192 − j316 W

Therefore

Pav = 1,192 W Q = −316 VAR
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Comments: Is the reactive power capacitive or inductive?

Focus on Computer-Aided Tools: A file containing the computer-generated solution to this
problem may be found in the CD-ROM that accompanies this book.

CHECK YOUR UNDERSTANDING

Use complex power notation to compute the real and reactive power for the load of Figure 7.8.

Answer:Pav=2.1kW;Q=1.39kVAR

Although the reactive power does not contribute to any average power dissi-
pation in the load, it may have an adverse effect on power consumption, because it
increases the overall rms current flowing in the circuit. Recall from Example 7.2 that
the presence of any source resistance (typically, the resistance of the line wires in AC
power circuits) will cause a loss of power; the power loss due to this line resistance
is unrecoverable and constitutes a net loss for the electric company, since the user
never receives this power. Example 7.6 illustrates quantitatively the effect of such
line losses in an AC circuit.

EXAMPLE 7.6 Real Power Transfer for Complex Loads➲LO2
Problem

Use the definition of complex power to calculate the real and reactive power for the load of
Figure 7.14. Repeat the calculation when the inductor is removed from the load, and compare
the real power transfer between source and load for the two cases.

+~–

RL

RS

jXL

~
IS

Z

+

–

V
~

S V
~

Figure 7.14

Solution

Known Quantities: Source voltage and resistance; load impedance.

Find:

1. Sa = Pava + jQa for the complex load.

2. Sb = Pavb + jQb for the real load.

3. Compare Pav/PS for the two cases.

Schematics, Diagrams, Circuits, and Given Data: ṼS = 110∠0 V; RS = 4 �; RL = 10 �;
jXL = j6 �.

Assumptions: Use rms values for all phasor quantities in the problem.



June 13, 2002 12:43 riz63473_ch07 Sheet number 15 Page number 341 magenta black

Part I Circuits 341

Analysis:

1. The inductor is part of the load. Define the load impedance.

ZL = RL‖jωL = 10 × j6

10 + j6
= 5.145∠1.03 �

Next, compute the load voltage and current:

ṼL = ZL

RS + ZL

ṼS = 5.145∠1.03

4 + 5.145∠1.03
× 110 = 70.9∠0.444 V

ĨL = ṼL

ZL

70.9∠0.444

5.145∠1.03
= 13.8∠(−0.586) A

Finally, we compute the complex power, as defined in equation 7.28:

Sa = ṼLĨ∗
L = 70.9∠0.444 × 13.8∠0.586 = 978∠1.03

= 503 + j839 W

Therefore

Pava = 503 W Qa = +839 VAR

V
~

S
+~–

RL

RS

~
IS

Z

+

–

V
~

Figure 7.15

2. The inductor is removed from the load (Figure 7.15). Define the load impedance:

ZL = RL = 10

Next, compute the load voltage and current:

ṼL = ZL

RS + ZL

ṼS = 10

4 + 10
× 110 = 78.6∠0 V

ĨL = ṼL

ZL

= 78.6∠0

10
= 7.86∠0 A

Finally, we compute the complex power, as defined in equation 7.28:

Sb = ṼLĨ∗
L = 78.6∠0 × 7.86∠0 = 617∠0 = 617 W

Therefore

Pavb = 617 W Qb = 0 VAR

3. Compute the percent power transfer in each case. To compute the power transfer we must
first compute the power delivered by the source in each case, SS = ṼS Ĩ∗

S . For Case 1:

ĨS = ṼS

Ztotal
= ṼS

RS + ZL

= 110

4 + 5.145∠1.03
= 13.8∠(−0.586) A

SSa = ṼS Ĩ∗
S = 110 × 13.8∠ −(−0.586) = 1,264 + j838 VA = PSa + jQSa

and the percent real power transfer is:

100 × Pa

PSa

= 503

1,264
= 39.8%

For Case 2:

ĨS = ṼS

Ztotal
= Ṽ

RS + RL

= 110

4 + 10
= 7.86∠0 A

SSb = ṼS Ĩ∗
S = 110 × 7.86 = 864 + j0 W = PSb + jQSb
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and the percent real power transfer is:

100 × Pb

PSb

= 617

864
= 71.4%

Comments: You can see that if it were possible to eliminate the reactive part of the impedance,
the percentage of real power transferred from the source to the load would be significantly
increased! A procedure that accomplishes this goal, called power factor correction, is discussed
next.

Focus on Computer-Aided Tools: A file containing the computer-generated solution to this
problem may be found in the CD-ROM that accompanies this book.

CHECK YOUR UNDERSTANDING

Compute the change in percent of power transfer for the case where the inductance of the load
is one-half of the original value.

Answer:17.1percent

Power Factor, Revisited

The power factor, defined earlier as the cosine of the angle of the load impedance,
plays a very important role in AC power. A power factor close to unity signifies an
efficient transfer of energy from the AC source to the load, while a small power factor
corresponds to inefficient use of energy, as illustrated in Example 7.6. It should be
apparent that if a load requires a fixed amount of real power P, the source will be
providing the smallest amount of current when the power factor is the greatest, that
is, when cos θ = 1. If the power factor is less than unity, some additional current will
be drawn from the source, lowering the efficiency of power transfer from the source
to the load. However, it will be shown shortly that it is possible to correct the power
factor of a load by adding an appropriate reactive component to the load itself.

Since the reactive power Q is related to the reactive part of the load, its sign
depends on whether the load reactance is inductive or capacitive. This leads to the
following important statement:

➲LO2

If the load has an inductive reactance, then θ is positive and the current lags (or
follows) the voltage. Thus, when θ andQ are positive, the corresponding power
factor is termed lagging. Conversely, a capacitive load will have a negative Q

and hence a negative θ . This corresponds to a leading power factor, meaning
that the load current leads the load voltage.

Table 7.2 illustrates the concept and summarizes all the important points so far. In the
table, the phasor voltage Ṽ has a zero phase angle, and the current phasor is referenced
to the phase of Ṽ.
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Table 7.2 Important facts related to complex power

Im

θ
Re

Im

Re θ

Im

Re

θ = 0

Ohm's law

Complex
impedance

Phase angle

Complex
plane
sketch

The current is in phase
with the voltage.Explanation

Power factor

Resistive load

V
~

L = ZL
~
IL

ZL = RL

u = 0

Unity

Capacitive load

ZL = RL – jXL

Inductive load

ZL = RL + jXL

u < 0 u > 0 

The current “leads”
the voltage.

The current “lags”
the voltage.

Leading, < 1 Lagging, < 1

V
~

L = ZL
~
IL V

~
L = ZL

~
IL

Reactive power 0 Negative Positive

θ
θ

θ
V
~

V
~

V
~

I
~

I
~

I
~

The following examples illustrate the computation of complex power for a
simple circuit.

➲

LO2

EXAMPLE 7.7 Complex Power and Power Triangle

➲

LO2
Problem

Find the reactive and real power for the load of Figure 7.16. Draw the associated power triangle.

+~–

jXLR

jXC

Complex load

V
~

S

Figure 7.16

Solution

Known Quantities: Source voltage; load impedance.

Find: S = Pav + jQ for the complex load.
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Schematics, Diagrams, Circuits, and Given Data: ṼS = 60∠0 V; R = 3 �; jXL = j9 �;
jXC = −j5 �.

Assumptions: Use rms values for all phasor quantities in the problem.

Analysis: First, we compute the load current:

ĨL = ṼL

ZL

= 60∠0

3 + j9 − j5
= 60∠0

5∠0.9273
= 12∠(−0.9273) A

Next, we compute the complex power, as defined in equation 7.28:

S = ṼLĨ∗
L = 60∠0 × 12∠0.9273 = 720∠0.9273 = 432 + j576 VA

Therefore

Pav = 432 W Q = 576 VAR

If we observe that the total reactive power must be the sum of the reactive powers in each of
the elements, we can write Q = QC +QL and compute each of the two quantities as follows:

QC = |ĨL|2 × XC = (144)(−5) = −720 VAR

QL = |ĨL|2 × XL = (144)(9) = 1,296 VAR

and

Q = QL + QC = 576 VAR

Im

QL

S Q

θ

ReP
QC

Note: S = PR + jQC + jQL

Figure 7.17

Comments: The power triangle corresponding to this circuit is drawn in Figure 7.17. The
vector diagram shows how the complex power S results from the vector addition of the three
components P , QC , and QL.

CHECK YOUR UNDERSTANDING

Compute the power factor for the load of Example 7.7 with and without the inductor in the
circuit.

Answer:pf=0.6,lagging(withLincircuit);pf=0.5145,leading(withoutL)

The distinction between leading and lagging power factors made in Table 7.2
is important, because it corresponds to opposite signs of the reactive power: Q is
positive if the load is inductive (θ > 0) and the power factor is lagging; Q is negative
if the load is capacitive and the power factor is leading (θ < 0). It is therefore possible
to improve the power factor of a load according to a procedure called power factor
correction, that is, by placing a suitable reactance in parallel with the load so that the
reactive power component generated by the additional reactance is of opposite sign to
the original load reactive power. Most often the need is to improve the power factor of
an inductive load, because many common industrial loads consist of electric motors,
which are predominantly inductive loads. This improvement may be accomplished
by placing a capacitance in parallel with the load. Example 7.8 illustrates a typical
power factor correction for an industrial load.
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F O C U S O N M E T H O D O L O G Y

COMPLEX POWER CALCULATION FOR POWER FACTOR
CORRECTION

1. Compute the load voltage and current in rms phasor form, using the AC
circuit analysis methods presented in Chapter 4 and converting peak
amplitude to rms values.

2. Compute the complex power S = ṼĨ∗ and set Re S = Pav, Im S = Q.

3. Draw the power triangle, for example, as shown in Figure 7.17.

4. Compute the power factor of the load pf = cos(θ).

5. If the reactive power of the original load is positive (inductive load), then
the power factor can be brought to unity by connecting a parallel capacitor
across the load, such that QC = −1/ωC = −Q, where Q is the reactance
of the inductive load.

➲

LO2

EXAMPLE 7.8 Power Factor Correction

➲

LO2
Problem

Calculate the complex power for the circuit of Figure 7.18, and correct the power factor to
unity by connecting a parallel reactance to the load.

+~–

R

jXL

+

–

V
~

S V
~

L

~
IS

Figure 7.18

Solution

Known Quantities: Source voltage; load impedance.

Find:

1. S = Pav + jQ for the complex load.

2. Value of parallel reactance required for power factor correction resulting in pf = 1.

Schematics, Diagrams, Circuits, and Given Data: ṼS = 117∠0 V; RL = 50 �;
jXL = j86.7 �.

Assumptions: Use rms values for all phasor quantities in the problem.

Analysis:

1. First, we compute the load impedance:

ZL = R + jXL = 50 + j86.7 = 100∠1.047 �

Next, we compute the load current

ĨL = ṼL

ZL

= 117∠0

50 + j86.6
= 117∠0

100∠1.047
= 1.17∠(−1.047) A

and the complex power, as defined in equation 7.28:

S = ṼLĨ∗
L = 117∠0 × 1.17∠1.047 = 137∠1.047 = 68.4 + j118.5 W
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Therefore

Pav = 68.4 W Q = 118.5 VAR

The power triangle corresponding to this circuit is drawn in Figure 7.19. The vector
diagram shows how the complex power S results from the vector addition of the two
components P and QL. To eliminate the reactive power due to the inductance, we will
need to add an equal and opposite reactive power component −QL, as described below.

Im

S 
= 

13
7 

V
A

Q = 119 VAR

60°

ReP = 68.4 W

Figure 7.19

2. To compute the reactance needed for the power factor correction, we observe that we need
to contribute a negative reactive power equal to −118.5 VAR. This requires a negative
reactance and therefore a capacitor with QC = −118.5 VAR. The reactance of such a
capacitor is given by

XC = |ṼL|2
QC

= − (117)2

118.5
= −115 �

and since

C = − 1

ωXC

we have

C = − 1

ωXC

= − 1

377(−115)
= 23.1 µF

Comments: The power factor correction is illustrated in Figure 7.20. You can see that it
is possible to eliminate the reactive part of the impedance, thus significantly increasing the
percentage of real power transferred from the source to the load. Power factor correction is a
very common procedure in electric power systems.

+~–

50 Ω

j86.7 Ω

+

–

Im

S = 
68.4 VA

QL = 119 VAR

ReP = 
68.4 W

QC = –119 VAR

Parallel
capacitor

for power factor
correction

CV
~

LV
~

S

~
IS

Figure 7.20 Power factor correction

Focus on Computer-Aided Tools: A file containing the computer-generated solution to this
problem may be found in the CD-ROM that accompanies this book.

CHECK YOUR UNDERSTANDING

Compute the magnitude of the current drawn by the source after the power factor correction in
Example 7.8.

Answer:0.584A
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EXAMPLE 7.9 Can a Series Capacitor Be Used for Power Factor
Correction?

➲

LO2

Problem

The circuit of Figure 7.21 proposes the use of a series capacitor to perform power factor correc-
tion. Show why this is not a feasible alternative to the parallel capacitor approach demonstrated
in Example 7.8.

+~–
jXL 

R

jXC

V
~

S

~
IS

Figure 7.21

Solution

Known Quantities: Source voltage; load impedance.

Find: Load (source) current.

Schematics, Diagrams, Circuits, and Given Data: ṼS = 117∠0 V; RL = 50 �;
jXL = j86.7 �; jXC = −j86.7 �.

Assumptions: Use rms values for all phasor quantities in the problem.

Analysis: To determine the feasibility of the approach, we compute the load current and
voltage, to observe any differences between the circuit of Figure 7.21 and that of Figure 7.20.
First, we compute the load impedance:

ZL = R + jXL − jXC = 50 + j86.7 − j86.7 = 50 �

Next, we compute the load (source) current:

ĨL = ĨS = ṼL

ZL

= 117∠0

50
= 2.34 A

Comments: Note that a twofold increase in the series current results from the addition of the
series capacitor. This would result in a doubling of the power required by the generator, with
respect to the solution found in Example 7.8. Further, in practice, the parallel connection is
much easier to accomplish, since a parallel element can be added externally, without the need
for breaking the circuit.

CHECK YOUR UNDERSTANDING

Determine the power factor of the load for each of the following two cases, and whether it is
leading or lagging.

a. v(t) = 540 cos(ωt + 15◦) V, i(t) = 2 cos(ωt + 47◦) A

b. v(t) = 155 cos(ωt − 15◦) V, i(t) = 2 cos(ωt − 22◦) A

Answer:a.0.848,leading;b.0.9925,lagging

The measurement and correction of the power factor for the load are an ex-
tremely important aspect of any engineering application in industry that requires the
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use of substantial quantities of electric power. In particular, industrial plants, con-
struction sites, heavy machinery, and other heavy users of electric power must be
aware of the power factor that their loads present to the electric utility company. As
was already observed, a low power factor results in greater current draw from the
electric utility and greater line losses. Thus, computations related to the power fac-
tor of complex loads are of great utility to any practicing engineer. To provide you
with deeper insight into calculations related to power factor, a few more advanced
examples are given in the remainder of the section.

EXAMPLE 7.10 Power Factor Correction➲LO2
Problem

A capacitor is used to correct the power factor of the load of Figure 7.22. Determine the reactive
power when the capacitor is not in the circuit, and compute the required value of capacitance
for perfect pf correction.

+~–
100 kW
pf = 0.7

V
~

S

~
IC

~
IL

Figure 7.22

Solution

Known Quantities: Source voltage; load power and power factor.

Find:

1. Q when the capacitor is not in the circuit.

2. Value of capacitor required for power factor correction resulting in pf = 1.

Schematics, Diagrams, Circuits, and Given Data: ṼS = 480∠0; P = 105 W;
pf = 0.7 lagging.

Assumptions: Use rms values for all phasor quantities in the problem.

Analysis:

1. With reference to the power triangle of Figure 7.11, we can compute the reactive power
of the load from knowledge of the real power and of the power factor, as shown below:

|S| = P

cos(θ)
= P

pf
= 105

0.7
= 1.429 × 105 VA

Since the power factor is lagging, we know that the reactive power is positive (see Table
7.2), and we can calculate Q as shown below:

Q = |S| sin(θ) θ = arccos(pf ) = 0.795

Q = 1.429 × 105 × sin(0.795) = 102 kVAR

2. To compute the reactance needed for the power factor correction, we observe that we need
to contribute a negative reactive power equal to −102 kVAR. This requires a negative
reactance and therefore a capacitor with QC = −102 kVAR. The reactance of such a
capacitor is given by

XC = |ṼL|2
QC

= (480)2

−102 × 105
= −2.258



June 13, 2002 12:43 riz63473_ch07 Sheet number 23 Page number 349 magenta black

Part I Circuits 349

and since

C = − 1

ωXC

we have

C = − 1

ωXC

= − 1

377 × (−2.258)
= 1,175 µF

Comments: Note that it is not necessary to know the load impedance to perform power factor
correction; it is sufficient to know the apparent power and the power factor.

Focus on Computer-Aided Tools: A file containing the computer-generated solution to this
problem may be found in the CD-ROM that accompanies this book.

CHECK YOUR UNDERSTANDING

Determine if a load is capacitive or inductive, given the following facts:

a. pf = 0.87, leading

b. pf = 0.42, leading

c. v(t) = 42 cos(ωt) V, i(t) = 4.2 sin(ωt) A

d. v(t) = 10.4 cos(ωt − 12◦) V, i(t) = 0.4 cos(ωt − 22◦) A

Answer:a.Capacitive;b.capacitive;c.inductive;d.neither(resistive)

EXAMPLE 7.11 Power Factor Correction

➲

LO2
Problem

A second load is added to the circuit of Figure 7.22, as shown in Figure 7.23. Determine the
required value of capacitance for perfect pf correction after the second load is added. Draw
the phasor diagram showing the relationship between the two load currents and the capacitor
current.

+~–

IC

100 kW
pf = 0.7

50 kW
pf = 0.95

~
I1

~
I2

V
~

S

~
IS

~
IL

Figure 7.23

Solution

Known Quantities: Source voltage; load power and power factor.
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Find:

1. Power factor correction capacitor.

2. Phasor diagram.

Schematics, Diagrams, Circuits, and Given Data: ṼS = 480∠0 V; P1 = 105 W; pf1 = 0.7
lagging; P2 = 5 × 104 W; pf2 = 0.95 leading.

Assumptions: Use rms values for all phasor quantities in the problem.

Analysis:

1. We first compute the two load currents, using the relationships given in equations 7.28
and 7.29:

P = |ṼS ||Ĩ∗
1| cos(θ1)

|Ĩ∗
1| = P1

|ṼS | cos(θ1)

Ĩ1 = P1

|ṼS |pf 1

∠ arccos(pf 1) = 105

480 × 0.7
∠ arccos(0.7)

= 298∠0.795 A

and similarly

Ĩ2 = P2

|ṼS |pf 2

∠ −arccos(pf 2) = 5 × 104

480 × 0.95
∠ −arccos(0.95)

= 110∠(−0.318) A

where we have selected the positive value of arccos (pf1) because pf1 is lagging, and the
negative value of arccos (pf2) because pf2 is leading. Now we compute the apparent power
at each load:

|S1| = P1

pf 1

= P1

cos(θ1)
= 105

0.7
= 1.429 × 105 VA

|S2| = P2

pf 2

= P2

cos(θ2)
= 5 × 104

0.95
= 5.263 × 104 VA

and from these values we can calculate Q as shown:

Q1 = |S1| sin(θ1) θ1 = arccos(pf 1) = 0.795

Q1 = 1.429 × 105 × sin(0.795) = 102 kVAR

Q2 = |S2| sin(θ2) θ2 = − arccos(pf 2) = −0.318

Q2 = 5.263 × 104 × sin(−0.318) = −16.43 kVAR

where, once again, θ1 is positive because pf1 is lagging and θ2 is negative because pf2 is
leading (see Table 7.2).

The total reactive power is therefore Q = Q1 + Q2 = 85.6 kVAR.
To compute the reactance needed for the power factor correction, we observe that

we need to contribute a negative reactive power equal to −85.6 kVAR. This requires a
negative reactance and therefore a capacitor with QC = −85.6 kVAR. The reactance of
such a capacitor is given by

XC = |ṼS |2
QC

= (480)2

−85.6 × 105
= −2.694
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and since

C = − 1

ωXC

we have

C = 1

ωXC

= − 1

377(−2.692)
= 984.6 µF

2. To draw the phasor diagram, we need only to compute the capacitor current, since we
have already computed the other two:

ZC = jXC = −j2.692 �

ĨC = ṼS

ZC

= 178.2∠π

2
A

The total current is ĨS = Ĩ1 + Ĩ2 + ĨC = 312.5∠0◦ A. The phasor diagram corresponding
to these three currents is shown in Figure 7.24.

Im

Re

~
IL

~
IC

~
I2

~
I1

~
IS

Figure 7.24

Focus on Computer-Aided Tools: A file containing the computer-generated solution to this
problem may be found in the CD-ROM that accompanies this book.

CHECK YOUR UNDERSTANDING

Compute the power factor for an inductive load with L = 100 mH and R = 0.4 �.

Answer:pf=0.0105,lagging

➲

LO2 FOCUS ON
MEASUREMENTS

The Wattmeter

The instrument used to measure power is called a wattmeter. The
external part of a wattmeter consists of four connections and a metering
mechanism that displays the amount of real power dissipated by a circuit. The external
and internal appearance of a wattmeter is depicted in Figure 7.25. Inside the wattmeter are
two coils: a current-sensing coil and a voltage-sensing coil. In this example, we assume
for simplicity that the impedance of the current-sensing coil ZI is zero and that the
impedance of the voltage-sensing coil ZV is infinite. In practice, this will not necessarily
be true; some correction mechanism will be required to account for the impedance of the
sensing coils.

A wattmeter should be connected as shown in Figure 7.26, to provide both cur-
rent and voltage measurements. We see that the current-sensing coil is placed in series
with the load and that the voltage-sensing coil is placed in parallel with the load. In this

(Continued)
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manner, the wattmeter is seeing the current through and the voltage across the load.
Remember that the power dissipated by a circuit element is related to these two quantities.
The wattmeter, then, is constructed to provide a readout of the real power absorbed by
the load: P = Re (S) = Re (VI∗).

LI

LV

+ –

–

+

–

+

Current

Voltage

+ –

–

+

External connections Wattmeter coils (inside)

~
I

V
~

Figure 7.25

ZS LI

LV

+ –

–

+

~ Load
V
~

~
I

V
~

S

Figure 7.26

Problem:

1. For the circuit shown in Figure 7.27, show the connections of the wattmeter, and
find the power dissipated by the load.

2. Show the connections that will determine the power dissipated by R2. What should
the meter read?

R1 L

+~–

LoadSource

R2

vS(t) = 156  cos  (377t)
R1 = 10 Ω
R2 = 5 Ω
L = 20 mH

V
~

S

Figure 7.27
(Continued )
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(Concluded )

Solution:

1. To measure the power dissipated by the load, we must know the current through
and the voltage across the entire load circuit. This means that the wattmeter must be
connected as shown in Figure 7.28. The wattmeter should read

P = Re(ṼS Ĩ∗) = Re

[(
156√

2
∠0

)(
(156/

√
2)∠0

R1 + R2 + jωL

)∗]

= Re

[
110∠0◦

(
110∠0

15 + j7.54

)∗]

= Re

[
110∠0◦

(
110∠0

16.79∠0.466

)∗]
= Re

1102

16.79∠(−0.466)

= Re (720.67∠0.466)

= 643.88 W

R1 L

R2

I

LI

LV

+ –

–

+

VS
+~– V

Figure 7.28

2. To measure the power dissipated by R2 alone, we must measure the current through
R2 and the voltage across R2 alone. The connection is shown in Figure 7.29. The
meter will read

P = Ĩ 2R2 =
[

110

(152 + 7.542)1/2

]2

× 5 = 1102

152 + 7.542
× 5

= 215 W

R2

LI+ –

–

+

+~–

R1 L

LV V
~

~
I

V
~

S

Figure 7.29
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➲

LO2FOCUS ON
MEASUREMENTS

Power Factor

Problem:
A capacitor is being used to correct the power factor to unity. The circuit is shown in
Figure 7.30. The capacitor value is varied, and measurements of the total current are
taken. Explain how it is possible to zero in on the capacitance value necessary to bring
the power factor to unity just by monitoring the current ĨS .

+~– RL load

A

C

~
IS

V
~

S

~
IL

Figure 7.30

Solution:
The current through the load is

ĨL = ṼS∠0◦

R + jωL
= ṼS

R2 + ω2L2
(R − jωL)

= ṼSR

R2 + ω2L2
− j

ṼSωL

R2 + ω2L2

The current through the capacitor is

ĨC = ṼS∠0◦

1/jωC
= jṼSωC

The source current to be measured is

ĨS = ĨL + ĨC = ṼSR

R2 + ω2L2
+ j

(
ṼSωC − ṼSωL

R2 + ω2L2

)

The magnitude of the source current is

ĨS =
√√√√( ṼSR

R2 + ω2L2

)2

+
(
ṼSωC − ṼSωL

R2 + ω2L2

)2

We know that when the load is a pure resistance, then the current and voltage
are in phase, the power factor is 1, and all the power delivered by the source is dis-
sipated by the load as real power. This corresponds to equating the imaginary part of the
expression for the source current to zero or, equivalently, to the following expression:

ṼSωL

R2 + ω2L2
= ṼSωC

in the expression for ĨS . Thus, the magnitude of the source current is actu-
ally a minimum when the power factor is unity! It is therefore possible to
“tune” a load to a unity pf by observing the readout of the ammeter while
changing the value of the capacitor and selecting the capacitor value that
corresponds to the lowest source current value.
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7.3 TRANSFORMERS

AC circuits are very commonly connected to each other by means of transform-
ers. A transformer is a device that couples two AC circuits magnetically rather than
through any direct conductive connection and permits a “transformation” of the volt-
age and current between one circuit and the other (e.g., by matching a high-voltage,
low-current AC output to a circuit requiring a low-voltage, high-current source).
Transformers play a major role in electric power engineering and are a necessary part
of the electric power distribution network. The objective of this section is to introduce
the ideal transformer and the concepts of impedance reflection and impedance match-
ing. The physical operations of practical transformers, and more advanced models, is
discussed in Chapter 16.

The Ideal Transformer

The ideal transformer consists of two coils that are coupled to each other by some
magnetic medium. There is no electrical connection between the coils. The coil on
the input side is termed the primary, and that on the output side the secondary. The
primary coil is wound so that it has n1 turns, while the secondary has n2 turns. We
define the turns ratio N as

N = n2

n1
(7.32)

Figure 7.31 illustrates the convention by which voltages and currents are usually
assigned at a transformer. The dots in Figure 7.31 are related to the polarity of the
coil voltage: coil terminals marked with a dot have the same polarity.

n1:n2
or

1:N

Primary Secondary

+ +

_ _
V
~

1 V
~

2

~
I1

~
I2

Figure 7.31 Ideal
transformer

Since an ideal inductor acts as a short circuit in the presence of DC, transformers
do not perform any useful function when the primary voltage is DC. However, when
a time-varying current flows in the primary winding, a corresponding time-varying
voltage is generated in the secondary because of the magnetic coupling between the
two coils. This behavior is due to Faraday’s law, as explained in Chapter 16. The
relationship between primary and secondary current in an ideal transformer is very
simply stated as follows:

➲

LO3
Ṽ2 = NṼ1

Ĩ2 = Ĩ1

N

Ideal transformer (7.33)

➲

LO3
An ideal transformer multiplies a sinusoidal input voltage by a factor of N and
divides a sinusoidal input current by a factor of N .

If N is greater than 1, the output voltage is greater than the input voltage and the
transformer is called a step-up transformer. If N is less than 1, then the transformer
is called a step-down transformer, since Ṽ2 is now smaller than Ṽ1. An ideal trans-
former can be used in either direction (i.e., either of its coils may be viewed as the
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input side, or primary). Finally, a transformer withN = 1 is called an isolation trans-
former and may perform a very useful function if one needs to electrically isolate
two circuits from each other; note that any DC at the primary will not appear at the
secondary coil. An important property of ideal transformers is the conservation of
power; one can easily verify that an ideal transformer conserves power, since

S1 = Ĩ∗
1Ṽ1 = N Ĩ∗

2
Ṽ2

N
= Ĩ∗

2Ṽ2 = S2 (7.34)

That is, the power on the primary side equals that on the secondary.
In many practical circuits, the secondary is tapped at two different points, giving

rise to two separate output circuits, as shown in Figure 7.32. The most common
configuration is the center-tapped transformer, which splits the secondary voltage
into two equal voltages. The most common occurrence of this type of transformer is
found at the entry of a power line into a household, where a high-voltage primary (see
Figure 7.58) is transformed to 240 V and split into two 120-V lines. Thus, Ṽ2 and Ṽ3

in Figure 7.32 are both 120-V lines, and a 240-V line (Ṽ2 + Ṽ3) is also available.

n1

n2

n3

+

_

_

+

_

+

n2

n1

n3

n1

V
~

1

V
~

1

V
~

1

V
~

2

V
~

3

V
~

2 =

V
~

3 =

~
I1

Figure 7.32 Center-tapped
transformer

EXAMPLE 7.12 Ideal Transformer Turns Ratio➲LO3
Problem

We require a transformer to deliver 500 mA at 24 V from a 120-V rms line source. How many
turns are required in the secondary? What is the primary current?

Solution

Known Quantities: Primary and secondary voltages; secondary current; number of turns in
the primary coil.

Find: n2 and Ĩ1.

Schematics, Diagrams, Circuits, and Given Data: Ṽ1 = 120 V; Ṽ2 = 24 V; Ĩ2 = 500 mA;
n1 = 3,000 turns.

Assumptions: Use rms values for all phasor quantities in the problem.

Analysis: Using equation 7.33, we compute the number of turns in the secondary coil as
follows:

Ṽ1

n1
= Ṽ2

n2
n2 = n1

Ṽ2

Ṽ1

= 3,000 × 24

120
= 600 turns

Knowing the number of turns, we can now compute the primary current, also from equation
7.33:

n1Ĩ1 = n2Ĩ2 Ĩ1 = n2

n1
Ĩ2 = 600

3,000
× 500 = 100 mA

Comments: Note that since the transformer does not affect the phase of the voltages and
currents, we could solve the problem by using simply the rms amplitudes.
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CHECK YOUR UNDERSTANDING

Compute the number of primary turns required if n2 = 600 but the transformer is required to
deliver 1 A. What is the primary current now?

Answer:n1=3,000;Ĩ1=200mA

EXAMPLE 7.13 Center-Tapped Transformer

➲

LO3
Problem

Acenter-tapped power transformer has a primary voltage of 4,800 V and two 120-V secondaries
(see Figure 7.32). Three loads (all resistive, i.e., with unity power factor) are connected to
the transformer. The first load, R1, is connected across the 240-V line (the two outside taps
in Figure 7.32). The second and third loads, R2 and R3, are connected across each of the
120-V lines. Compute the current in the primary if the power absorbed by the three loads
is known.

Solution

Known Quantities: Primary and secondary voltages; load power ratings.

Find: Ĩprimary.

Schematics, Diagrams, Circuits, and Given Data: Ṽ1 = 4,800 V; Ṽ2 = 120 V; Ṽ3 = 120 V;
P1 = 5,000 W; P2 = 1,000 W; P3 = 1,500 W.

Assumptions: Use rms values for all phasor quantities in the problem.

Analysis: Since we have no information about the number of windings or about the secondary
current, we cannot solve this problem by using equation 7.33. An alternative approach is to
apply conservation of power (equation 7.34). Since the loads all have unity power factor, the
voltages and currents will all be in phase, and we can use the rms amplitudes in our calculations:∣∣Sprimary

∣∣ = ∣∣Ssecondary

∣∣
or

Ṽprimary × Ĩprimary = Psecondary = P1 + P2 + P3

Thus,

4,800 × Ĩprimary = 5,000 + 1,000 + 1,500 = 7,500 W

Ĩprimary = 7,500 W

4,800 A
= 1.5625 A



June 13, 2002 12:43 riz63473_ch07 Sheet number 32 Page number 358 magenta black

358 Chapter 7 AC Power

CHECK YOUR UNDERSTANDING

If the transformer of Example 7.13 has 300 turns in the primary coil, how many turns will the
secondary require?

Answer:n2=12,000

Impedance Reflection and Power Transfer

As stated in the preceding paragraphs, transformers are commonly used to couple one
AC circuit to another. A very common and rather general situation is that depicted in
Figure 7.33, where anAC source, represented by its Thévenin equivalent, is connected
to an equivalent load impedance by means of a transformer.1:N

+

_

+

_

N
I2 = = N 

+
_~

ZS
ZL

V
~

2 = V
~

1

V
~

1 V
~

2

V
~

S

~
I1

~
I2 =

~
I1

~
I2

Figure 7.33 Operation
of an ideal transformer

It should be apparent that expressing the circuit in phasor form does not alter
the basic properties of the ideal transformer, as illustrated in the following equations:

Ṽ1 = Ṽ2

N
Ĩ1 = N Ĩ2

Ṽ2 = NṼ1 Ĩ2 = Ĩ1

N

(7.35)

These expressions are very useful in determining the equivalent impedance seen by
the source and by the load, on opposite sides of the transformer. At the primary
connection, the equivalent impedance seen by the source must equal the ratio of Ṽ1

to Ĩ1

Z′ = Ṽ1

Ĩ1

(7.36)

which can be written as

Z′ = Ṽ2/N

N Ĩ2

= 1

N2

Ṽ2

Ĩ2

(7.37)

But the ratio Ṽ2/Ĩ2 is, by definition, the load impedance ZL. Thus,

Z′ = 1

N2
ZL (7.38)

That is, the AC source “sees” the load impedance reduced by a factor of 1/N2.
The load impedance also sees an equivalent source. The open-circuit voltage is

given by

ṼOC = NṼ1 = NṼS (7.39)

since there is no voltage drop across the source impedance in the circuit of Figure
7.33. The short-circuit current is given by

ĨSC = ṼS

ZS

1

N
(7.40)

and the load sees a Thévenin impedance equal to

Z′′ = ṼOC

ĨSC

= NṼS

(ṼS/ZS)(1/N)
= N2ZS (7.41)
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Z ′ =
ZL

N2

Reflected source
impedance circuit

N2ZS = Z ′′
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~
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Figure 7.34 Impedance reflection across a transformer

Thus the load sees the source impedance multiplied by a factor of N2. Figure 7.34
illustrates this impedance reflection across a transformer. It is very important to note
that an ideal transformer changes the magnitude of the load impedance seen by the
source by a factor of 1/N2. This property naturally leads to the discussion of power
transfer, which we consider next.

Recall that in DC circuits, given a fixed equivalent source, maximum power is
transferred to a resistive load when the latter is equal to the internal resistance of the
source; achieving an analogous maximum power transfer condition in an AC circuit
is referred to as impedance matching. Consider the general form of an AC circuit,
shown in Figure 7.35, and assume that the source impedance ZS is given by

ZS = RS + jXS (7.42)

➲

LO3

ZS

ZL

+

_

VS ∠ u 

+
_~

V
~

S = 

V
~

LV
~

S ~
I1

Figure 7.35 The maximum
power transfer problem in AC
circuits

The problem of interest is often that of selecting the load resistance and reactance
that will maximize the real (average) power absorbed by the load. Note that the
requirement is to maximize the real power absorbed by the load. Thus, the problem
can be restated by expressing the real load power in terms of the impedance of the
source and load. The real power absorbed by the load is

PL = ṼLĨL cos θ = Re (ṼLĨ∗
L) (7.43)

where

ṼL = ZL

ZS + ZL

ṼS (7.44)

and

Ĩ∗
L =

(
ṼS

ZS + ZL

)∗
= Ṽ∗

S

(ZS + ZL)∗
(7.45)

Thus, the complex load power is given by

SL = ṼLĨ∗
L = ZLṼS

ZS + ZL

× Ṽ∗
S

(ZS + ZL)∗
= Ṽ2

S

|ZS + ZL|2 ZL (7.46)
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and the average (real) power by

PL = Re (ṼLĨ∗
L) = Re

(
Ṽ2

S

|ZS + ZL|2
)

Re (ZL)

= Ṽ 2
S

(RS + RL)2 + (XS + XL)2
Re (ZL)

= Ṽ 2
S RL

(RS + RL)2 + (XS + XL)2

(7.47)

The expression for PL is maximized by selecting appropriate values of RL and XL;
it can be shown that the average power is greatest when RL = RS and XL = −XS ,
that is, when the load impedance is equal to the complex conjugate of the source
impedance, as shown in the following equation:

ZL = Z∗
S Maximum power transfer

that is,

RL = RS XL = −XS

(7.48)

➲
LO3

When the load impedance is equal to the complex conjugate of the source
impedance, the load and source impedances are matched and maximum power
is transferred to the load.

ZS

ZL

1: N

ZS

ZL

N2
+
_~

+
_~

Source Transformer Load

Equivalent circuit referred
to transformer primary

V
~

S

V
~

S

Figure 7.36 Maximum
power transfer in an AC circuit
with a transformer

In many cases, it may not be possible to select a matched load impedance,
because of physical limitations in the selection of appropriate components. In these
situations, it is possible to use the impedance reflection properties of a transformer to
maximize the transfer of AC power to the load. The circuit of Figure 7.36 illustrates
how the reflected load impedance, as seen by the source, is equal to ZL/N

2, so that
maximum power transfer occurs when

ZL

N2
= Z∗

S

RL = N2RS

XL = −N2XS

(7.49)

EXAMPLE 7.14 Use of Transformers to Increase Power Line
Efficiency➲LO3

Problem

Figure 7.37 illustrates the use of transformers in electric power transmission lines. The practice
of transforming the voltage before and after transmission of electric power over long distances
is very common. This example illustrates the gain in efficiency that can be achieved through
the use of transformers. The example makes use of ideal transformers and assumes simple
resistive circuit models for the generator, transmission line, and load. These simplifications
permit a clearer understanding of the efficiency gains afforded by transformers.
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Transmission
line

(a)

Generator Load

Generator Load

Rload

Rload

RlineRsource

Vsource

−
+

Transmission
line

Step-up
transformer

Step-down
transformer

(b)

RlineRsource

Vsource

−
+

Reflected
transmission

line
Reflected

loadGeneratorGenerator

R′′loadR′lineRsource

Vsource

−
+R′load

Transmission
line
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load
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(c)

Rline

Rline

Rsource

Vsource

−
+

Reflected
transmission

line
Reflected
generator

R loadR′line

−
+Rload

Load Load
Reflected
generator

Transmission
line

Step-down
transformer

(d)

R′source

V ′source

R′′source

V ′′source

−
+

Figure 7.37 Electric power transmission: (a) direct power transmission; (b) power transmission
with transformers; (c) equivalent circuit seen by generator; (d) equivalent circuit seen by load.

Solution

Known Quantities: Values of circuit elements.

Find: Calculate the power transfer efficiency for the two circuits of Figure 7.37.

Schematics, Diagrams, Circuits, and Given Data: Step-up transformer turns ratio is N ,
step-down transformer turns ratio is M = 1/N.

Assumptions: None.
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Analysis: For the circuit of Figure 7.37(a), we can calculate the power transmission efficiency
as follows, since the load and source currents are equal:

η = Pload

Psource
= Ṽload Ĩload

ṼsourceĨload

= Ṽload

Ṽsource

= Rload

Rsource + Rline + Rload

For the circuit of Figure 7.37(b), we must take into account the effect of the transformers. Using
equation 7.38 and starting from the load side, we can “reflect” the load impedance to the left
of the step-down transformer to obtain

R′
load = 1

M2
Rload = N2Rload

Now, the source sees the equivalent impedance R′
load +Rline across the first transformer. If we

reflect this impedance to the left of the step-up transformer, the equivalent impedance seen by
the source is

R′′
load = 1

N2
(R′

load + Rline) = Rload + 1

N2
Rline

These two steps are depicted in Figure 7.37(c).You can see that the effect of the two transformers
is to reduce the line resistance seen by the source by a factor of 1/N2. The source current is

Ĩsource = Ṽsource

Rsource + R
′′
load

= Ṽsource

Rsource + (1/N2)Rline + Rload

and the source power is therefore given by the expression

Psource = Ṽ 2
source

Rsource + (1/N2)Rline + Rload

Now we can repeat the same process, starting from the left and reflecting the source circuit to
the right of the step-up transformer:

Ṽ ′
source = NṼsource and R′

source = N2Rsource

Now the circuit to the left of the step-down transformer comprises the series combination of
Ṽ ′

source, R
′
source, and Rline. If we reflect this to the right of the step-down transformer, we obtain a

series circuit with Ṽ ′′
source = MṼ ′

source = Ṽsource, R
′
source = M2R′

source = Rsource, R
′
line = M2Rline,

andRload in series. These steps are depicted in Figure 7.37(d). Thus the load voltage and current
are

Ĩload = Ṽsource

Rsource + (1/N2)Rline + Rload

and

Ṽload = Ṽsource
Rload

Rsource + (1/N2)Rline + Rload

and we can calculate the load power as

Pload = ĨloadṼload = ṼsourceRload

[Rsource + (1/N2)Rline + Rload]2

Finally, the power efficiency can be computed as the ratio of the load to source power:

η = Pload

Psource
= ṼsourceRload

[Rsource + (1/N2)Rline + Rload]2

Rsource + (1/N2)Rline + Rload

Ṽ 2
source

= Rload

Rsource + (1/N2)Rline + Rload
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Comparing the expression with the one obtained for the circuit of Figure 7.37(a), we can see
that the power transmission efficiency can be significantly improved by reducing the effect of
the line resistance by a factor of 1/N2.

CHECK YOUR UNDERSTANDING

Assume that the generator produces a source voltage of 480 Vrms, and that N = 300. Further
assume that the source impedance is 2 �, the line impedance is also 2 � and that the load
impedance is 8 �. Calculate the efficiency improvement for the circuit of Figure 7.37(b) over
the circuit of Figure 7.37(a).

Answer:80%vs.67%.

EXAMPLE 7.15 Maximum Power Transfer Through a
Transformer

➲

LO3

Problem

Find the transformer turns ratio and load reactance that results in maximum power transfer in
the circuit of Figure 7.38.

RS

LS RL

1 : N

XLV
~

S

Figure 7.38

Solution

Known Quantities: Source voltage, frequency, and impedance; load resistance.

Find: Transformer turns ratio and load reactance.

Schematics, Diagrams, Circuits, and Given Data: ṼS = 240∠0 V; RS = 10 �;
LS = 0.1 H; RL = 400 �; ω = 377 rad/s.

Assumptions: Use rms values for all phasor quantities in the problem.

Analysis: For maximum power transfer, we require that RL = N2RS (equation 7.48). Thus,

N 2 = RL

RS

= 400

10
= 40 N = √

40 = 6.325

Further, to cancel the reactive power, we require that XL = −N 2XS , that is,

XS = ω × 0.1 = 37.7

and

XL = −40 × 37.7 = −1,508

Thus, the load reactance should be a capacitor with value

C = − 1

XLω
= − 1

(−1,508)(377)
= 1.76 µF
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CHECK YOUR UNDERSTANDING

The transformer shown in Figure 7.39 is ideal. Find the turns ratio N that will ensure maximum
power transfer to the load. Assume that ZS = 1,800 � and ZL = 8 �.

The transformer shown in Figure 7.39 is ideal. Find the source impedance ZS that will ensure
maximum power transfer to the load. Assume that N = 5.4 and ZL = 2 + j10 �.

Answers:N=0.0667;ZS=0.0686−j0.3429�

+
_~

ZS

1: N

vS (t) vout(t)

+

_

ZL

R′

Figure 7.39

7.4 THREE-PHASE POWER

The material presented so far in this chapter has dealt exclusively with single-phase
AC power, that is, with single sinusoidal sources. In fact, most of the AC power used
today is generated and distributed as three-phase power, by means of an arrangement
in which three sinusoidal voltages are generated out of phase with one another. The
primary reason is efficiency: The weight of the conductors and other components
in a three-phase system is much lower than that in a single-phase system delivering
the same amount of power. Further, while the power produced by a single-phase
system has a pulsating nature (recall the results of Section 7.1), a three-phase system
can deliver a steady, constant supply of power. For example, later in this section it
will be shown that a three-phase generator producing three balanced voltages—that
is, voltages of equal amplitude and frequency displaced in phase by 120◦—has the
property of delivering constant instantaneous power.

Another important advantage of three-phase power is that, as will be explained
in Chapter 17, three-phase motors have a nonzero starting torque, unlike their single-
phase counterpart. The change to three-phase AC power systems from the early DC
system proposed by Edison was therefore due to a number of reasons: the efficiency
resulting from transforming voltages up and down to minimize transmission losses
over long distances; the ability to deliver constant power (an ability not shared by
single- and two-phase AC systems); a more efficient use of conductors; and the ability
to provide starting torque for industrial motors.

To begin the discussion of three-phase power, consider a three-phase source
connected in the wye (or Y) configuration, as shown in Figure 7.40. Each of the
three voltages is 120◦ out of phase with the others, so that, using phasor notation, we
may write
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Figure 7.40 Balanced three-phase AC circuit

➲

LO4

Ṽan = Ṽan∠0◦

Ṽbn = Ṽbn∠−(120◦)

Ṽcn = Ṽcn∠(−240◦) = Ṽcn∠120◦
Phase voltages (7.50)

where the quantities Ṽan, Ṽbn, and Ṽcn are rms values and are equal to each other. To
simplify the notation, it will be assumed from here on that

Ṽan = Ṽbn = Ṽcn = Ṽ (7.51)

Chapter 17 will discuss how three-phase AC electric generators may be constructed
to provide such balanced voltages. In the circuit of Figure 7.40, the resistive loads are
also wye-connected and balanced (i.e., equal). The three AC sources are all connected
together at a node called the neutral node, denoted by n. The voltages Ṽan, Ṽbn, and
Ṽcn are called the phase voltages and form a balanced set in the sense that

Ṽan + Ṽbn + Ṽcn = 0 (7.52)

This last statement is easily verified by sketching the phasor diagram. The sequence
of phasor voltages shown in Figure 7.41 is usually referred to as the positive (or abc)
sequence.

Im

Re
V
~

an

V
~

bn

V
~

cn

Figure 7.41 Positive, or
abc, sequence for balanced
three-phase voltages

Consider now the “lines” connecting each source to the load, and observe that it
is possible to also define line voltages (also called line-to-line voltages) by considering
the voltages between lines aa′ and bb′, lines aa′ and cc′, and lines bb′ and cc′. Since
the line voltage, say, between aa′ and bb′ is given by

Ṽab = Ṽan + Ṽnb = Ṽan − Ṽbn (7.53)

the line voltages may be computed relative to the phase voltages as follows:

➲

LO4

Ṽab = Ṽ∠0◦ − Ṽ∠(−120◦) = √
3Ṽ∠30◦

Ṽbc = Ṽ∠(−120◦) − Ṽ∠120◦ = √
3Ṽ∠(−90◦)

Ṽca = Ṽ∠120◦ − Ṽ∠0◦ = √
3Ṽ∠150◦

Line
voltages

(7.54)
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It can be seen, then, that the magnitude of the line voltages is equal to
√

3 times the
magnitude of the phase voltages. It is instructive, at least once, to point out that the
circuit of Figure 7.40 can be redrawn to have the appearance of the circuit of Figure
7.42, where it is clear that the three circuits are in parallel.
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+_
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Figure 7.42 Balanced
three-phase AC circuit (redrawn)

One of the important features of a balanced three-phase system is that it does
not require a fourth wire (the neutral connection), since the current Ĩn is identically
zero (for balanced load Za = Zb = Zc = Z). This can be shown by applying KCL
at the neutral node n:

Ĩn = Ĩa + Ĩb + Ĩc

= 1

Z
(Ṽan + Ṽbn + Ṽcn)

= 0

(7.55)

Another, more important characteristic of a balanced three-phase power system
may be illustrated by simplifying the circuits of Figures 7.40 and 7.42 by replacing
the balanced load impedances with three equal resistances R. With this simplified
configuration, one can show that the total power delivered to the balanced load by
the three-phase generator is constant. This is an extremely important result, for a very
practical reason: Delivering power in a smooth fashion (as opposed to the pulsating
nature of single-phase power) reduces the wear and stress on the generating equip-
ment. Although we have not yet discussed the nature of the machines used to generate
power, a useful analogy here is that of a single-cylinder engine versus a perfectly bal-
anced V-8 engine. To show that the total power delivered by the three sources to a
balanced resistive load is constant, consider the instantaneous power delivered by
each source:

pa(t) = Ṽ 2

R
(1 + cos 2ωt)

pb(t) = Ṽ 2

R
[1 + cos(2ωt − 120◦)]

pc(t) = Ṽ 2

R
[1 + cos(2ωt + 120◦)]

(7.56)

The total instantaneous load power is then given by the sum of the three contributions:

p(t) = pa(t) + pb(t) + pc(t)

= 3Ṽ 2

R
+ Ṽ 2

R
[cos 2ωt + cos(2ωt − 120◦)

+ cos(2ωt + 120◦)]

= 3Ṽ 2

R
= constant!

(7.57)

You may wish to verify that the sum of the trigonometric terms inside the brackets is
identically zero.

It is also possible to connect the three AC sources in a three-phase system in a
delta (or �) connection, although in practice this configuration is rarely used. Figure
7.43 depicts a set of three delta-connected generators.

a
+

_
b

c

A delta-connected
three-phase generator
with line voltages
Vab, Vbc, Vca

+

_

~

~+
_

+ _

_

+

~+_

V
~

ab

V
~

bc

V
~

ca

Figure 7.43 Delta-
connected generators



June 13, 2002 12:43 riz63473_ch07 Sheet number 41 Page number 367 magenta black

Part I Circuits 367

EXAMPLE 7.16 Per-Phase Solution of Balanced Wye-Wye
Circuit

➲

LO4

Problem

Compute the power delivered to the load by the three-phase generator in the circuit shown in
Figure 7.44.

~

~

~

a Rline

b

c

a′

b′

c′

n′Rline

Rline

Rneutral

Zy

Zy

Zy

+_

+_

+_

n

V
~

an

V
~

bn

V
~

cb

Figure 7.44

Solution

Known Quantities: Source voltage, line resistance, load impedance.

Find: Power delivered to the load PL.

Schematics, Diagrams, Circuits, and Given Data: Ṽan = 480∠0 V;
Ṽbn = 480∠(−2π/3) V; Ṽcn = 480∠(2π/3) V; Zy = 2 + j4 = 4.47∠1.107 �;
Rline = 2 �; Rneutral = 10 �.

Assumptions: Use rms values for all phasor quantities in the problem.

Analysis: Since the circuit is balanced, we can use per-phase analysis, and the current through
the neutral line is zero, that is, Ṽn−n′ = 0. The resulting per-phase circuit is shown in Figure
7.45. Using phase a for the calculations, we look for the quantity

Pa = |Ĩ|2RL

where

|Ĩ| =
∣∣∣∣∣ Ṽa

Zy + Rline

∣∣∣∣∣ =
∣∣∣∣ 480∠0

2 + j4 + 2

∣∣∣∣ =
∣∣∣∣ 480∠0

5.66∠(π/4)

∣∣∣∣ = 84.85 A

and Pa = (84.85)2 × 2 = 14.4 kW. Since the circuit is balanced, the results for phases b and
c are identical, and we have

PL = 3Pa = 43.2 kW
+
_~

a a′Rline

n n′

ZyV
~

S

Figure 7.45 One phase of
the three-phase circuit

Comments: Note that since the circuit is balanced, there is zero voltage across neutrals. This
fact is shown explicitly in Figure 7.45, where n and n′ are connected to each other directly.
Per-phase analysis for balanced circuits turns three-phase power calculations into a very simple
exercise.

CHECK YOUR UNDERSTANDING

Find the power lost in the line resistance in the circuit of Example 7.16.
Compute the power delivered to the balanced load of Example 7.16 if the lines have zero
resistance and ZL = 1 + j3 �.

Show that the voltage across each branch of the wye load is equal to the corresponding phase
voltage (e.g., the voltage across Za is Ṽa).
Prove that the sum of the instantaneous powers absorbed by the three branches in a balanced
wye-connected load is constant and equal to 3ṼĨ cos θ.

Answers:Pline=43.2kW;SL=69.12W+j207.4VA
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Balanced Wye Loads

In the previous section we performed some power computations for a purely resistive
balanced wye load. We now generalize those results for an arbitrary balanced complex
load. Consider again the circuit of Figure 7.40, where now the balanced load consists
of the three complex impedances

Za = Zb = Zc = Zy = |Zy |∠θ (7.58)

From the diagram of Figure 7.40, it can be verified that each impedance sees the
corresponding phase voltage across itself; thus, since currents Ĩa , Ĩb, and Ĩc have the
same rms value Ĩ , the phase angles of the currents will differ by ±120◦. It is therefore
possible to compute the power for each phase by considering the phase voltage (equal
to the load voltage) for each impedance, and the associated line current. Let us denote
the complex power for each phase by S

S = ṼĨ∗ (7.59)

so that

S = P + jQ

= ṼĨ cos θ + jṼĨ sin θ
(7.60)

where Ṽ and Ĩ denote, once again, the rms values of each phase voltage and line
current, respectively. Consequently, the total real power delivered to the balanced
wye load is 3P , and the total reactive power is 3Q. Thus, the total complex power
ST is given by

ST = PT + jQT = 3P + j3Q

=
√
(3P)2 + (3Q)2∠θ

(7.61)

and the apparent power is

|ST | = 3
√
(VI)2 cos2 θ + (VI)2 sin2 θ

= 3VI

and the total real and reactive power may be expressed in terms of the apparent
power:

PT = |ST | cos θ

QT = |ST | sin θ
(7.62)

Balanced Delta Loads

In addition to a wye connection, it is possible to connect a balanced load in the delta
configuration. A wye-connected generator and a delta-connected load are shown in
Figure 7.46.

Note immediately that now the corresponding line voltage (not phase voltage)
appears across each impedance. For example, the voltage across Zc′a′ is Ṽca . Thus,
the three load currents are given by
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Figure 7.46 Balanced wye generators with balanced delta load

Ĩab = Ṽab

Z)

=
√

3V∠(π/6)

|Z)|∠θ

Ĩbc = Ṽbc

Z)

=
√

3V∠(−π/2)

|Z)|∠θ

Ĩca = Ṽca

Z)

=
√

3V∠(5π/6)

|Z)|∠θ

(7.63)

To understand the relationship between delta-connected and wye-connected
loads, it is reasonable to ask the question, For what value of Z) would a delta-
connected load draw the same amount of current as a wye-connected load with
impedance Zy for a given source voltage? This is equivalent to asking what value of
Z) would make the line currents the same in both circuits (compare Figure 7.42 with
Figure 7.46).

The line current drawn, say, in phase a by a wye-connected load is

(Ĩan)y = Ṽan

Z
= Ṽ

|Zy |∠(−θ) (7.64)

while that drawn by the delta-connected load is

(Ĩa)) = Ĩab − Ĩca

= Ṽab

Z)

− Ṽca

Z)

= 1

Z)

(Ṽan − Ṽbn − Ṽcn + Ṽan)

= 1

Z)

(2Ṽan − Ṽbn − Ṽcn)

= 3Ṽan

Z)

= 3Ṽ
|Z)|∠(−θ)

(7.65)
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One can readily verify that the two currents (Ĩa)) and (Ĩa)y will be equal if the
magnitude of the delta-connected impedance is 3 times larger than Zy :

Z) = 3Zy (7.66)

This result also implies that a delta load will necessarily draw 3 times as much current
(and therefore absorb 3 times as much power) as a wye load with the same branch
impedance.

EXAMPLE 7.17 Parallel Wye-Delta Load Circuit➲LO4
Problem

Compute the power delivered to the wye-delta load by the three-phase generator in the circuit
shown in Figure 7.47.

a Rline a′

Z∆

Zy

b

c

Rline

Rline

Rneutral

~+_

~+_

b′

c′
Z∆ Z∆

n′
Zy

Zy

~+_

n

V
~

a

V
~

b

V
~

c

Figure 7.47 AC circuit with delta and wye loads

Solution

Known Quantities: Source voltage, line resistance, load impedance.

Find: Power delivered to the load PL.

Schematics, Diagrams, Circuits, and Given Data: Ṽan = 480∠0 V;
Ṽbn = 480∠(−2π/3) V; Ṽcn = 480∠(2π/3) V; Zy = 2 + j4 = 4.47∠1.107 �;
Z) = 5 − j2 = 5.4∠(−0.381) �; Rline = 2 �; Rneutral = 10 �.

Assumptions: Use rms values for all phasor quantities in the problem.

Analysis: We first convert the balanced delta load to an equivalent wye load, according to
equation 7.66. Figure 7.48 illustrates the effect of this conversion.

Z)−y = Z)

3
= 1.667 − j0.667 = 1.8∠(−0.381) �.

Since the circuit is balanced, we can use per-phase analysis, and the current through the neutral
line is zero, that is, Ṽn−n′ = 0. The resulting per-phase circuit is shown in Figure 7.49. Using
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a′

b′

c′

n′

Z∆ Z∆

Z∆

Zy

Zy

Zy

n′

a′

b′

c′

Z∆/3

Zy

Zy

Zy

Z∆/3

Z∆/3

Figure 7.48 Conversion of delta load to equivalent wye load

phase a for the calculations, we look for the quantity

Pa = |Ĩ|2RL

where

ZL = Zy‖Z)−y = Zy × Z)−y

Zy + Z)−y

= 1.62 − j0.018 = 1.62∠(−0.011) �

and the load current is given by

|Ĩ| =
∣∣∣∣∣ Ṽa

ZL + Rline

∣∣∣∣∣ =
∣∣∣∣ 480∠0

1.62 + j0.018 + 2

∣∣∣∣ = 132.6 A

and Pa = (132.6)2 × Re (ZL) = 28.5 kW. Since the circuit is balanced, the results for phases
b and c are identical, and we have

PL = 3Pa = 85.5 kW

n′

a′

Z∆ /3Zy

n

a

+
_~

Rline

V
~

a

Figure 7.49 Per-phase
circuit

Comments: Note that per-phase analysis for balanced circuits turns three-phase power cal-
culations into a very simple exercise.

Focus on Computer-Aided Tools: A computer-generated solution of this example may be
found in the accompanying CD-ROM.

CHECK YOUR UNDERSTANDING

Derive an expression for the rms line current of a delta load in terms of the rms line current
of a wye load with the same branch impedances (that is, ZY = Z)) and same source voltage.
Assume ZS = 0.
The equivalent wye load of Example 7.17 is connected in a delta configuration. Compute the
line currents.

Answers:I)=3IY;Ĩa=189∠0◦A;Ĩb=189∠(−120◦)A;Ĩc=189∠120◦A
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7.5 RESIDENTIAL WIRING; GROUNDING
AND SAFETY

Common residential electric power service consists of a three-wire AC system sup-
plied by the local power company. The three wires originate from a utility pole and
consist of a neutral wire, which is connected to earth ground, and two “hot” wires.
Each of the hot lines supplies 120 V rms to the residential circuits; the two lines are
180◦ out of phase, for reasons that will become apparent during the course of this
discussion. The phasor line voltages, shown in Figure 7.50, are usually referred to
by means of a subscript convention derived from the color of the insulation on the
different wires: W for white (neutral), B for black (hot), and R for red (hot). This
convention is adhered to uniformly.

➲L
O

5

The voltages across the hot lines are given by

ṼB − ṼR = ṼBR = ṼB − (−ṼB) = 2ṼB = 240∠0◦ (7.67)

Thus, the voltage between the hot wires is actually 240 V rms. Appliances such as
electric stoves, air conditioners, and heaters are powered by the 240-V rms arrange-
ment. On the other hand, lighting and all the electric outlets in the house used for
small appliances are powered by a single 120-V rms line.

The use of 240-V rms service for appliances that require a substantial amount
of power to operate is dictated by power transfer considerations. Consider the two
circuits shown in Figure 7.51. In delivering the necessary power to a load, a lower
line loss will be incurred with the 240-V rms wiring, since the power loss in the
lines (the I 2R loss, as it is commonly referred to) is directly related to the current
required by the load. In an effort to minimize line losses, the size of the wires is
increased for the lower-voltage case. This typically reduces the wire resistance by a
factor of 2. In the top circuit, assuming RS/2 = 0.01 �, the current required by the

Hot

Neutral

+

_

Hot

_

+

V
~

W = 0 ∠ 0°          (Neutral)
V
~

B = 120 ∠ 0°       (Hot)
V
~

R = 120 ∠180°    (Hot)
or V

~
R = –V

~
B

~

~V
~

B

V
~

R

Figure 7.50 Line voltage
convention for residential
circuits
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+
_~
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~
IL

~
I ′L

Figure 7.51 Line losses in
120- and 240-VAC circuits
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10-kW load is approximately 83.3 A, while in the bottom circuit, with RS = 0.02 �,
it is approximately one-half as much (41.7 A). (You should be able to verify that
the approximate I 2R losses are 69.4 W in the top circuit and 34.7 W in the bottom
circuit.) Limiting the I 2R losses is important from the viewpoint of efficiency, besides
reducing the amount of heat generated in the wiring for safety considerations. Figure
7.52 shows some typical wiring configurations for a home. Note that several circuits
are wired and fused separately.

Earth ground

WBR
Main

breaker

20 A W

B
G

W

B
G

B
G
W

B

R
W or G

W

G

Washing machine,
Dryer (120-V circuit)

Electric stove
(240-V circuit)

Bedroom
(120-V circuit)

Kitchen
(120-V circuit)

Outdoor
lighting

GFCI

15 A

20 A

20 A

15 A

20 A

…

…
… …

R

Figure 7.52 A typical residential wiring arrangement

➲

LO5

➲

LO5CHECK YOUR UNDERSTANDING

Use the circuit of Figure 7.51 to show that the I 2R losses will be higher for a 120-V service
appliance than a 240-V service appliance if both have the same power usage rating.

Answer:The120-Vcircuithasdoublethelossesofthe240-Vcircuitforthesamepower
rating.

Neutral
(white
wire)

Hot
(black
wire)

Ground (green or bare wire)

Figure 7.53 A three-wire
outlet

➲L
O

5Today, most homes have three wire connections to their outlets. The outlets ap-
pear as sketched in Figure 7.53. Then why are both the ground and neutral connections
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needed in an outlet? The answer to this question is safety: The ground connection is
used to connect the chassis of the appliance to earth ground. Without this provision,
the appliance chassis could be at any potential with respect to ground, possibly even
at the hot wire’s potential if a segment of the hot wire were to lose some insulation and
come in contact with the inside of the chassis! Poorly grounded appliances can thus
be a significant hazard. Figure 7.54 illustrates schematically how, even though the
chassis is intended to be insulated from the electric circuit, an unintended connection
(represented by the dashed line) may occur, for example, because of corrosion or a
loose mechanical connection. A path to ground might be provided by the body of a
person touching the chassis with a hand. In the figure, such an undesired ground loop
current is indicated by IG. In this case, the ground current IG would flow directly
through the body to ground and could be harmful.

In some cases the danger posed by such undesired ground loops can be great,
leading to death by electric shock. Figure 7.55 describes the effects of electric currents
on an average male when the point of contact is dry skin. Particularly hazardous con-
ditions are liable to occur whenever the natural resistance to current flow provided by
the skin breaks down, as would happen in the presence of water. Thus, the danger pre-
sented to humans by unsafe electric circuits is very much dependent on the particular
conditions—whenever water or moisture is present, the natural electrical resistance of
dry skin, or of dry shoe soles, decreases dramatically, and even relatively low voltages
can lead to fatal currents. Proper grounding procedures, such as are required by the
National Electrical Code, help prevent fatalities due to electric shock. The ground
fault circuit interrupter, labeled GFCI in Figure 7.52, is a special safety circuit used

Load

Chassis

Earth ground

IG

G

W

B

120 V

+

_

Load

Chassis

G

W

B

120 V

+

_
Unknown
potential

+

–

Figure 7.54 Unintended connection
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Figure 7.55 Physiological
effects of electric currents

Figure 7.56 Outdoor pool

primarily with outdoor circuits and in bathrooms, where the risk of death by electric
shock is greatest. Its application is best described by an example.

Consider the case of an outdoor pool surrounded by a metal fence, which uses
an existing light pole for a post, as shown in Figure 7.56. The light pole and the metal
fence can be considered as forming a chassis. If the fence were not properly grounded
all the way around the pool and if the light fixture were poorly insulated from the
pole, a path to ground could easily be created by an unaware swimmer reaching, say,
for the metal gate. A GFCI provides protection from potentially lethal ground loops,
such as this one, by sensing both the hot-wire (B) and the neutral (W) currents. If the
difference between the hot-wire current IB and the neutral current IW is more than
a few milliamperes, then the GFCI disconnects the circuit nearly instantaneously.
Any significant difference between the hot and neutral (return-path) currents means
that a second path to ground has been created (by the unfortunate swimmer, in this
example) and a potentially dangerous condition has arisen. Figure 7.57 illustrates the
idea. GFCIs are typically resettable circuit breakers, so that one does not need to
replace a fuse every time the GFCI circuit is enabled.

B

120 V

+

_ W

G

GFCI

Figure 7.57 Use of a GFCI in a potentially hazardous setting
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7.6 GENERATION AND DISTRIBUTION
OF AC POWER

We now conclude the discussion of power systems with a brief description of the
various elements of a power system. Electric power originates from a variety of
sources; in Chapter 17, electric generators will be introduced as a means of producing
electric power from a variety of energy conversion processes. In general, electric
power may be obtained from hydroelectric, thermoelectric, geothermal, wind, solar,
and nuclear sources. The choice of a given source is typically dictated by the power
requirement for the given application, and by economic and environmental factors. In
this section, the structure of an AC power network, from the power-generating station
to the residential circuits discussed in Section 7.5, is briefly outlined.

Atypical generator will produce electric power at 18 kV, as shown in the diagram
of Figure 7.58. To minimize losses along the conductors, the output of the generators
is processed through a step-up transformer to achieve line voltages of hundreds of
kilovolts (345 kV, in Figure 7.58). Without this transformation, the majority of the
power generated would be lost in the transmission lines that carry the electric current
from the power station.

➲LO5

The local electric company operates a power-generating plant that is capable of
supplying several hundred megavolt-amperes (MVA) on a three-phase basis. For this
reason, the power company uses a three-phase step-up transformer at the generation
plant to increase the line voltage to around 345 kV. One can immediately see that
at the rated power of the generator (in megavolt-amperes) there will be a significant
reduction of current beyond the step-up transformer.

3φ step-down
transformer

3φ step-down
transformer

3φ step-down
transformer to
industrial or
commercial

customer

3φ step-down
transformer
(substation)

18 kV

Generator

Generating plant

345 kV

46 kV

140 kV

4,800 V

Center-tap
transformer

120/240 V
Three-wire service

4,800 V

Figure 7.58 Structure of an AC power distribution network
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Beyond the generation plant, an electric power network distributes energy to
several substations. This network is usually referred to as the power grid. At the
substations, the voltage is stepped down to a lower level (10 to 150 kV, typically).
Some very large loads (e.g., an industrial plant) may be served directly from the power
grid, although most loads are supplied by individual substations in the power grid. At
the local substations (one of which you may have seen in your own neighborhood),
the voltage is stepped down further by a three-phase step-down transformer to 4,800
V. These substations distribute the energy to residential and industrial customers. To
further reduce the line voltage to levels that are safe for residential use, step-down
transformers are mounted on utility poles. These drop the voltage to the 120/240-V
three-wire single-phase residential service discussed in Section 7.5. Industrial and
commercial customers receive 460- and/or 208-V three-phase service.

Conclusion

Chapter 7 introduces the essential elements that permit the analysis of AC power systems. AC
power is essential to all industrial activities, and to the conveniences we are accustomed to in
residential life. Virtually all engineers will be exposed to AC power systems in their careers,
and the material presented in this chapter provides all the necessary tools to understand the
analysis of AC power circuits. Upon completing this chapter, you should have mastered the
following learning objectives:

1. Understand the meaning of instantaneous and average power, master AC power notation,
and compute average power for AC circuits. Compute the power factor of a complex
load. The power dissipated by a load in an AC circuits consists of the sum of an average
and a fluctuating component. In practice, the average power is the quantity of interest.

2. Learn complex power notation; compute apparent, real, and reactive power for complex
loads. Draw the power triangle, and compute the capacitor size required to perform
power factor correction on a load. AC power can best be analyzed with the aid of
complex notation. Complex power S is the defined as the product of the phasor load
voltage and the complex conjugate of the load current. The real part of S is the real
power actually consumed by a load (that for which the user is charged); the imaginary
part of S is called the reactive power and corresponds to energy stored in the circuit—it
cannot be directly used for practical purposes. Reactive power is quantified by a quantity
called the power factor, and it can be minimized through a procedure called power factor
correction.

3. Analyze the ideal transformer; compute primary and secondary currents and voltages
and turns ratios. Calculate reflected sources and impedances across ideal transformers.
Understand maximum power transfer. Transformers find many applications in electrical
engineering. One of the most common is in power transmission and distribution, where
the electric power generated at electric power plants is stepped “up” and “down” before
and after transmission, to improve the overall efficiency of electric power distribution.

4. Learn three-phase AC power notation; compute load currents and voltages for balanced
wye and delta loads. AC power is generated and distributed in three-phase form.
Residential services are typically single-phase (making use of only one branch of the
three-phase lines), while industrial applications are often served directly by three-phase
power.

5. Understand the basic principles of residential electrical wiring, of electrical safety, and
of the generation and distribution of AC power.
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HOMEWORK PROBLEMS

Section 7.1: Power in AC Circuits

7.1 The heating element in a soldering iron has a
resistance of 30 �. Find the average power dissipated
in the soldering iron if it is connected to a voltage
source of 117 V rms.

7.2 A coffeemaker has a rated power of 1000 W at 240 V.
Find the resistance of the heating element.

7.3 A current source i(t) is connected to a 50-� resistor.
Find the average power delivered to the resistor, given
that i(t) is

a. 5 cos 50t A

b. 5 cos(50t − 45◦) A

c. 5 cos 50t − 2 cos(50t − 0.873) A

d. 5 cos 50t − 2 A

7.4 Find the rms value of each of the following periodic
currents:

a. cos 450t + 2 cos 450t

b. cos 5t + sin 5t

c. cos 450t + 2

d. cos 5t + cos(5t + π/3)

e. cos 200t + cos 400t

7.5 A current of 4 A flows when a neon light
advertisement is supplied by a 110-V rms power
system. The current lags the voltage by 60◦. Find the
power dissipated by the circuit and the power factor.

7.6 A residential electric power monitoring system rated
for 120-V rms, 60-Hz source registers power
consumption of 1.2 kW, with a power factor of 0.8.
Find

a. The rms current.

b. The phase angle.

c. The system impedance.

d. The system resistance.

7.7 A drilling machine is driven by a single-phase
induction machine connected to a 110-V rms supply.
Assume that the machining operation requires 1 kW,
that the tool machine has 90 percent efficiency, and
that the supply current is 14 A rms with a power factor
of 0.8. Find the AC machine efficiency.

7.8 Given the waveform of a voltage source shown in
Figure P7.8, find:

a. The steady DC voltage that would cause the same
heating effect across a resistance.

b. The average current supplied to a 10-� resistor
connected across the voltage source.

c. The average power supplied to a 1-� resistor
connected across the voltage source.

t, s0

–3

vS (t), V

1

1 2 3 4 5 6

Figure P7.8

Section 7.2: Complex Power

7.9 For the following numerical values, determine the
average power P, the reactive power Q, and the
complex power S of the circuit shown in Figure P7.9.
Note: phasor quantities are rms.

a. vS(t) = 450 cos (377t) V

iL(t) = 50 cos(377t − 0.349) A

b. ṼS = 140∠0 V

ĨL = 5.85∠(−π/6) A

c. ṼS = 50∠0 V

ĨL = 19.2∠0.8 A

d. ṼS = 740∠(−π/4) V

ĨL = 10.8∠(−1.5) A

+
_~

iL(t)

vS (t) ZL

Figure P7.9

7.10 For the circuit of Figure P7.9, determine the power
factor for the load and state whether it is leading or
lagging for the following conditions:

a. vS(t) = 780 cos(ωt + 1.2) V

iL(t) = 90 cos(ωt + π/2) A
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b. vS(t) = 39 cos(ωt + π/6) V

iL(t) = 12 cos(ωt − 0.185) A

c. vS(t) = 104 cos(ωt) V

iL(t) = 48.7 sin(ωt + 2.74) A

d. ZL = (12 + j8) �

7.11 For the circuit of Figure P7.9, determine whether
the load is capacitive or inductive for the circuit shown
if

a. pf = 0.48 (leading)

b. pf = 0.17 (leading)

c. vS(t) = 18 cos(ωt)

iL(t) = 1.8 sin(ωt)

d. vS(t) = 8.3 cos(ωt − π/6)

iL(t) = 0.6 cos(ωt − π/6)

7.12 Find the real and reactive power supplied by the
source in the circuit shown in Figure P7.12. Repeat if
the frequency is increased by a factor of 3.

vS(t) = 10 cos 3t V

2 H

+~– 4 Ω

F1
18

Figure P7.12

7.13 In the circuit shown in Figure P7.13, the sources
are ṼS1 = 36∠(−π/3) V and ṼS2 = 24∠0.644 V. Find

a. The real and imaginary current supplied by each
source.

b. The total real power supplied.

+~–

–j12 Ω

+~–j6 Ω

8 Ω 6 Ω

V
~

S1 V
~

S2

Figure P7.13

7.14 The load ZL in the circuit of Figure P7.14 consists
of a 25-� resistor in series with a 0.1-µF capacitor.
Assuming f = 60 Hz, find

a. The source power factor.

b. The current ĨS .

c. The apparent power delivered to the load.

d. The apparent power supplied by the source.

e. The power factor of the load.

+
_~

~
IS

Line

R = 1 Ω

V
~

S = 230∠0° ZL Load

Figure P7.14

7.15 The load ZL in the circuit of Figure P7.14 consists
of a 25-� resistor in series with a 0.1-H inductor.
Assuming f = 60 Hz, calculate the following.

a. The apparent power supplied by the source.

b. The apparent power delivered to the load.

c. The power factor of the load.

7.16 The load ZL in the circuit of Figure P7.14 consists
of a 25-� resistor in series with a 0.1-mF capacitor and
a 70.35-mH inductor. Assuming f = 60 Hz, calculate
the following.

a. The apparent power delivered to the load.

b. The real power supplied by the source.

c. The power factor of the load.

7.17 Calculate the apparent power, real power, and
reactive power for the circuit shown in Figure P7.17.
Draw the power triangle.

+
_~

R = 20 Ω

C = 100 �F

~
IS

V
~

S = 50 V

Figure P7.17

7.18 Repeat Problem 7.17 for the two cases f = 50 Hz
and f = 0 Hz (DC).

7.19 A single-phase motor is connected as shown in
Figure P7.19 to a 50-Hz network. The capacitor value
is chosen to obtain unity power factor. If V = 220 V,
I = 20 A, and I1 = 25 A, find the capacitor value.
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I

I1

V

L

R

I2

C

Figure P7.19

7.20 Suppose that the electricity in your home has gone
out and the power company will not be able to have
you hooked up again for several days. The freezer in
the basement contains several hundred dollars’ worth
of food that you cannot afford to let spoil. You have
also been experiencing very hot, humid weather and
would like to keep one room air-conditioned with a

window air conditioner, as well as run the refrigerator
in your kitchen. When the appliances are on, they draw
the following currents (all values are rms):

Air conditioner: 9.6 A @ 120 V

pf = 0.90 (lagging)

Freezer: 4.2 A @ 120 V

pf = 0.87 (lagging)

Refrigerator: 3.5 A @ 120 V

pf = 0.80 (lagging)

In the worst-case scenario, how much power must an
emergency generator supply?

7.21 The French TGV high-speed train absorbs 11 MW
at 300 km/h (186 mi/h). The power supply module is
shown in Figure P7.21. The module consists of two
25-kV single-phase power stations connected at the
same overhead line, one at each end of the module. For
the return circuits, the rail is used. However, the train
is designed to operate at a low speed also with 1.5-kV
DC in railway stations or under the old electrification
lines. The natural (average) power factor in the AC
operation is 0.8 (not depending on the voltage).
Assuming that the overhead line equivalent specific
resistance is 0.2 �/km and that the rail resistance could
be neglected, find

a. The equivalent circuit.

b. The locomotive’s current in the condition of a 10
percent voltage drop.

c. The reactive power.

d. The supplied real power, overhead line losses, and
maximum distance between two power stations

supplied in the condition of a 10 percent voltage
drop when the train is located at the half-distance
between the stations.

e. Overhead line losses in the condition of a 10
percent voltage drop when the train is located at
the half-distance between the stations, assuming
pf = 1. (The French TGV is designed with a
state-of-the-art power compensation system.)

f. The maximum distance between the two power
stations supplied in the condition of a 10 percent
voltage drop when the train is located at the
half-distance between the stations, assuming the
DC (1.5-kV) operation at one-quarter power.

−
+

−
+

I1

Rail

I2

Overhead line
I1 I2

V
~

S1 = 25 kV∠0 V
~

S2 = 25 kV∠0

Figure P7.21

7.22 An industrial assembly hall is continuously lighted
by one hundred 40-W mercury vapor lamps supplied
by a 120-V and 60-Hz source with a power factor of
0.65. Due to the low power factor, a 25 percent penalty
is applied at billing. If the average price of 1 kWh is
$0.01 and the capacitor’s average price is $50 per
millifarad, compute after how many days of operation
the penalty billing covers the price of the power factor
correction capacitor. (To avoid penalty, the power
factor must be greater than 0.85.)

7.23 With reference to Problem 7.22, consider that the
current in the cable network is decreasing when power
factor correction is applied. Find

a. The capacitor value for the unity power factor.

b. The maximum number of additional lamps that can
be installed without changing the cable network if a
local compensation capacitor is used.

7.24 If the voltage and current given below are supplied
by a source to a circuit or load, determine

a. The power supplied by the source which is
dissipated as heat or work in the circuit (load).

b. The power stored in reactive components in the
circuit (load).

c. The power factor angle and the power factor.

Ṽs = 7∠0.873 V Ĩs = 13 ∠(−0.349) A
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7.25 Determine C so that the plant power factor of
Figure P7.25 is corrected to 1; that is, Ĩs is minimized
and in phase with Ṽo.

vs(t) = 450 cos(ωt) V ω = 377 rad/s

Z = 7 + j1 �

ZG = 3 + j0.11 m�

ZG

Power
plant

Plant

~
Is

C Z V~o

V
~

s
+
_

Figure P7.25

7.26 Determine C so that the plant power factor of
Figure P7.25 is corrected to 1 (or the power factor
angle to zero) so that Ĩs is minimized and in phase with
Ṽo.

vs(t) = 450 cos(ωt) V ω = 377 rad/s

Z = 7∠0.175 �

7.27 Without the capacitor connected into the circuit of
Figure P7.25,

Ṽo = 450∠0 V Ĩs = 17∠(−0.175) A

f = 60 Hz C = 17.40 µF

The value of C is that which will correct the power
factor angle to zero, that is, reduce Ĩs to a minimum
value in phase with Ṽo. Determine the reduction of
current which resulted from connecting the capacitor
into the circuit.

7.28 Without a power factor capacitor connected into a
circuit:

vo(t) = 170 cosωt V

is(t) = 130 cos(ωt − 0.192) A

f = 60 Hz C = 387 µF

The value of C given is that which will correct the
power factor angle to zero, that is, reduce Ĩs to a
minimum value in phase with Ṽo. Determine how
much the current supplied to the plant is reduced by
connecting the capacitor.

7.29 Determine the time-averaged total power, the real
power dissipated, and the reactive power stored in each

of the impedances in the circuit shown in Figure P7.29
if

Ṽs1 = 170∠0 V

Ṽs2 = 170 V∠π

2
V

ω = 377 rad/s

Z1 = 0.7∠π

6
�

Z2 = 1.5∠0.105 �

Z3 = 0.3 + j0.4 �

Z3

Z1

Z2

Vs1

Vs2

+
_

+
_

Figure P7.29

7.30 If the voltage and current supplied to a circuit or
load by a source are

Ṽs = 170∠(−0.157◦) V Ĩs = 13∠0.28◦ A

determine

a. The power supplied by the source which is
dissipated as heat or work in the circuit (load).

b. The power stored in reactive components in the
circuit (load).

c. The power factor angle and power factor.

Section 7.3: Transformers

7.31 A center-tapped transformer has the schematic
representation shown in Figure P7.31. The
primary-side voltage is stepped down to two
secondary-side voltages. Assume that each secondary
supplies a 5-kW resistive load and that the primary is
connected to 120 V rms. Find

a. The primary power.

b. The primary current.

V
~

prim

n :1

+

_

V
~

sec1

V
~

sec2

V
~

sec

+

+

+

_

_
_

Figure P7.31
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7.32 A center-tapped transformer has the schematic
representation shown in Figure P7.31. The
primary-side voltage is stepped down to a
secondary-side voltage Ṽsec by a ratio of n : 1. On the
secondary side, Ṽsec1 = Ṽsec2 = 1

2 Ṽsec.

a. If Ṽprim = 220∠0◦ V and n = 11, find Ṽsec, Ṽsec1,
and Ṽsec2.

b. What must n be if Ṽprim = 110∠0◦ V and we desire
|Ṽsec2| to be 5 V rms?

7.33 For the circuit shown in Figure P7.33, assume that
vg = 120 V rms. Find

a. The total resistance seen by the voltage source.

b. The primary current.

c. The primary power.

+
_∼

1 Ω

16 Ωvg v2

_

+1:4

Figure P7.33

7.34 With reference to Problem 7.33 and Figure P7.33
find

a. The secondary current.

b. The installation efficiency Pload/Psource.

c. The value of the load resistance which can absorb
the maximum power from the given source.

7.35 An ideal transformer is rated to deliver 460 kVA at
380 V to a customer, as shown in Figure P7.35.

a. How much current can the transformer supply to
the customer?

b. If the customer’s load is purely resistive (i.e., if
pf = 1), what is the maximum power that the
customer can receive?

c. If the customer’s power factor is 0.8 (lagging),
what is the maximum usable power the customer
can receive?

d. What is the maximum power if the pf is 0.7
(lagging)?

e. If the customer requires 300 kW to operate, what is
the minimum power factor with the given size
transformer?

Ideal transformer Customer

Z
Customer’s 

load

Figure P7.35

7.36 For the ideal transformer shown in Figure P7.36,
consider that vS(t) = 294 cos(377t) V. Find

a. Primary current.

b. vo(t).

c. Secondary power.

d. The installation efficiency Pload/Psource.

+
_∼

100 Ω

25 ΩvS(t) vo(t)

_

+

2.5  : 1

Figure P7.36

7.37 If the transformer shown in Figure P7.37 is ideal,
find the turns ratio N = 1/n that will provide
maximum power transfer to the load.

+
_∼

n : 1RS

RLvS(t) vo(t)

_

+

RS  = 1,800 Ω RL  = 8 Ω

Figure P7.37

7.38 Assume the 8-� resistor is the load in the circuit
shown in Figure P7.38. Assume vg = 110 V rms and a
variable turns ratio of 1 : n. Find

a. The maximum power dissipated by the load.

b. The maximum power absorbed from the source.

c. The power transfer efficiency.



June 13, 2002 12:43 riz63473_ch07 Sheet number 57 Page number 383 magenta black

Part I Circuits 383

+
_∼

3 Ω

8 Ωvg

1  : n

4 Ω

Figure P7.38

7.39 If we knew that the transformer shown in Figure
P7.39 were to deliver 50 A at 110 V rms with a certain
resistive load, what would the power transfer
efficiency between source and load be?

2 : 1

+
_∼

~
IS

V
~

s

VW
1 Ω j0.1

j20

~
IL

~
IW

50 A

110 V

_

+

Figure P7.39

7.40 A method for determining the equivalent circuit of
a transformer consists of two tests: the open-circuit test
and the short-circuit test. The open-circuit test, shown
in Figure P7.40(a), is usually done by applying rated
voltage to the primary side of the transformer while
leaving the secondary side open. The current into the
primary side is measured, as is the power dissipated.

The short-circuit test, shown in Figure P7.40(b),
is performed by increasing the primary voltage until
rated current is going into the transformer while the
secondary side is short-circuited. The current into the
transformer, the applied voltage, and the power
dissipated are measured.

The equivalent circuit of a transformer is shown
in Figure P7.40(c), where rw and Lw represent the
winding resistance and inductance, respectively, and rc
and Lc represent the losses in the core of the
transformer and the inductance of the core. The ideal
transformer is also included in the model.

With the open-circuit test, we may assume that
ĨP = ĨS = 0. Then all the current that is measured is
directed through the parallel combination of rc and Lc.
We also assume that |rc||jωLc| is much greater than
rw + jωLw . Using these assumptions and the
open-circuit test data, we can find the resistance rc and
the inductance Lc.

In the short-circuit test, we assume that Ṽsecondary

is zero, so that the voltage on the primary side of the

ideal transformer is also zero, causing no current flow
through the rc − Lc parallel combination. Using this
assumption with the short-circuit test data, we are able
to find the resistance rw and inductance Lw .

Using the following test data, find the equivalent
circuit of the transformer:

Open-circuit test: Ṽ = 241 V

Ĩ = 0.95 A

P = 32 W

Short-circuit test: Ṽ = 5 V

Ĩ = 5.25 A

P = 26 W

Both tests were made at ω = 377 rad/s.

+
_∼

A W

VV
~

s

(a)

∼

A W

VV
~

s

(b)

+

_

L wrw

rc Lc

~Ip
~IS

_

+

Vsecondary

(c)

Figure P7.40

7.41 Using the methods of Problem 7.40 and the
following data, find the equivalent circuit of the
transformer tested:

Open-circuit test: ṼP = 4,600 V

ĨOC = 0.7 A

P = 200 W

Short-circuit test: P = 50 W

ṼP = 5.2 V

The transformer is a 460-kVA transformer, and the
tests are performed at 60 Hz.
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7.42 A method of thermal treatment for a steel pipe is to
heat the pipe by the Joule effect, flowing a current
directly in the pipe. In most cases, a low-voltage
high-current transformer is used to deliver the current
through the pipe. In this problem, we consider a
single-phase transformer at 220 V rms, which delivers
1 V. Due to the pipe’s resistance variation with
temperature, a secondary voltage regulation is needed
in the range of 10 percent, as shown in Figure P7.42.
The voltage regulation is obtained with five different
slots in the primary winding (high-voltage regulation).
Assuming that the secondary coil has two turns, find
the number of turns for each slot.

5

220 V

Pipe

Sliding contact

4 3
2

1

1.2 V ±

–+

Figure P7.42

7.43 With reference to Problem 7.42, assume that the
pipe’s resistance is 0.0002 �, the secondary resistance
(connections + slide contacts) is 0.00005 �, and the
primary current is 28.8 A with pf = 0.91 Find

a. The plot number.

b. The secondary reactance.

c. The power transfer efficiency.

7.44 A single-phase transformer used for street lighting
(high-pressure sodium discharge lamps) converts 6 kV
to 230 V (to load) with an efficiency of 0.95. Assuming
pf = 0.8 and the primary apparent power is 30 kVA,
find

a. The secondary current.

b. The transformer’s ratio.

Section 7.4: Three-Phase Power

7.45 The magnitude of the phase voltage of a balanced
three-phase wye system is 220 V rms. Express each
phase and line voltage in both polar and rectangular
coordinates.

7.46 The phase currents in a four-wire wye-connected
load are as follows:

Ĩan = 10∠0, Ĩbn = 12∠5π

6
Ĩcn = 8∠2.88

Determine the current in the neutral wire.

7.47 For the circuit shown in Figure P7.47, we see that
each voltage source has a phase difference of 2π/3 in
relation to the others.

a. Find ṼRW , ṼWB , and ṼBR , where
ṼRW = ṼR − ṼW , ṼWB = ṼW − ṼB ,
and ṼBR = ṼB − ṼR .

b. Repeat part a, using the calculations

ṼRW = ṼR

√
3∠(−π/6)

VWB = VW

√
3∠(−π/6)

VBR = VB

√
3∠(−π/6)

c. Compare the results of part a with the results of
part b.

+
_∼

+
_∼

+
_∼

V
~

W V
~

R

V
~

B

120∠ 2π ⁄ 3

120∠ 4π ⁄ 3

120∠ 0°

Figure P7.47

7.48 For the three-phase circuit shown in Figure P7.48,
find the current in the neutral wire and the real power.

7.49 For the circuit shown in Figure P7.49, find the
current in the neutral wire and the real power.
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~
IR

~
IW

~
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~
IN

50 Ω
j45 Ω

_ j20 Ω

V
~

R = 110∠ 0 V

V
~

W = 110∠ 2π ⁄ 3 V

V
~

B = 110∠ 4π ⁄ 3 V

Figure P7.48

~IR

~IW

~IB

~IN

10 Ω
10 Ω

10 Ω

V~R = 220∠ 0 

V~W = 220∠ 2π ⁄ 3 

V~B = 220∠ 4π ⁄ 3 

Figure P7.49

7.50 A three-phase steel-treatment electric oven has a
phase resistance of 10 � and is connected at
three-phase 380-V AC. Compute

a. The current flowing through the resistors in wye
and delta connections.

b. The power of the oven in wye and delta
connections.

7.51 A naval in-board synchronous generator has an
apparent power of 50 kVA and supplies a three-phase
network of 380 V. Compute the phase currents, the
active powers, and the reactive powers if

a. The power factor is 0.85.

b. The power factor is 1.

7.52 In the circuit of Figure P7.52:

vs1 = 170 cos(ωt) V

vs2 = 170 cos(ωt + 2π/3) V

vs3 = 170 cos(ωt − 2π/3) V

f = 60 Hz Z1 = 0.5∠20◦ �

Z2 = 0.35∠0◦ � Z3 = 1.7∠(−90◦) �

Determine the current through Z1, using

a. Loop/mesh analysis.

b. Node analysis.

c. Superposition.

Z3Z2

Z1
V
~

s1

V
~

s3 V
~

s2

+_

+_
+ _

Figure P7.52

7.53 Determine the current through R in the circuit of
Figure P7.53:

v1 = 170 cos(ωt) V

v2 = 170 cos(ωt − 2π/3) V

v3 = 170 cos(ωt + 2π/3) V

f = 400 Hz R = 100 �

C = 0.47 µF L = 100 mH

L

R

C

V
~

1

V
~

2

V
~

3

+_

+_

+ _

Figure P7.53

7.54 The three sources in the circuit of Figure P7.54 are
connected in wye configuration and the loads in a delta
configuration. Determine the current through each
impedance.

vs1 = 170 cos(ωt) V

vs2 = 170 cos(ωt + 2π/3) V

vs3 = 170 cos(ωt − 2π/3) V

f = 60 Hz Z1 = 3∠0 �

Z2 = 7∠π/2 � Z3 = 0 − j11 �

Z3

Z1

Z2

V~1

V~3 V~2

+_

+_

+ _

Figure P7.54
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7.55 If we model each winding of a three-phase motor
like the circuit shown in Figure P7.55(a) and connect
the windings as shown in Figure P7.55(b), we have the
three-phase circuit shown in Figure P7.55(c). The
motor can be constructed so that R1 = R2 = R3 and
L1 = L2 = L3, as is the usual case. If we connect the
motor as shown in Figure P7.55(c), find the currents
ĨR , ĨW , ĨB , and ĨN , assuming that the resistances are
40 � each and each inductance is 5 mH. The frequency
of each of the sources is 60 Hz.

1st winding 2nd winding

R1 R2

L1 L2

3rd winding

R3

L3

(a)

V
~

1 V
~

2 V
~

3 

R1

L1

R2

L2

R3

L3

V
~

2 V
~

3V
~

1

(b)

V
~

R,  
~
IR

IN

416∠ _30° V
~

W,  
~
IW

V
~

B, 
~
IB

416∠ 90° 

_

+

+
_

R1

L1

R2

L2

L3

R3

(c)

416∠ 210° 

+

–

Figure P7.55

7.56 With reference to the motor of Problem 7.54,

a. How much power (in watts) is delivered to the
motor?

b. What is the motor’s power factor?

c. Why is it common in industrial practice not to
connect the ground lead to motors of this type?

7.57 In general, a three-phase induction motor is
designed for wye connection operation. However, for
short-time operation, a delta connection can be used at
the nominal wye voltage. Find the ratio between the
power delivered to the same motor in the wye and
delta connections.

7.58 The electric power company is concerned with the
loading of its transformers. Since it is responsible for a
large number of customers, it must be certain that it
can supply the demands of all customers. The power
company’s transformers will deliver rated kVA to the
secondary load. However, if the demand increased to a
point where greater than rated current were required,
the secondary voltage would have to drop below rated
value. Also, the current would increase, and with it the
I 2R losses (due to winding resistance), possibly
causing the transformer to overheat. Unreasonable
current demand could be caused, for example, by
excessively low power factors at the load.

The customer, on the other hand, is not greatly
concerned with an inefficient power factor, provided
that sufficient power reaches the load. To make the
customer more aware of power factor considerations,
the power company may install a penalty on the
customer’s bill. A typical penalty–power factor chart is
shown in Table 7.3. Power factors below 0.7 are not
permitted. A 25 percent penalty will be applied to any
billing after two consecutive months in which the
customer’s power factor has remained below 0.7.

Table 7.3

Power factor Penalty

0.850 and higher None
0.8 to 0.849 1%
0.75 to 0.799 2%
0.7 to 0.749 3%

Courtesy of Detroit Edison.

The wye-wye circuit shown in Figure P7.58 is
representative of a three-phase motor load. Assume
rms values.

a. Find the total power supplied to the motor.
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b. Find the power converted to mechanical energy if
the motor is 80 percent efficient.

c. Find the power factor.

d. Does the company risk facing a power factor
penalty on its next bill if all the motors in the
factory are similar to this one?

+
_

∼

+
_∼ ∼+_

R
W

B

5 Ω
j6 Ω

120∠ 0 120∠ 2π ⁄ 3

120∠ _2π ⁄ 3
5 Ω

5 Ω
j6 Ω

j6 Ω

Figure P7.58

7.59 A residential four-wire system supplies power at
220 V rms to the following single-phase appliances: On
the first phase, there are ten 75-W bulbs. On the second
phase, there is a 750-W vacuum cleaner with a power
factor of 0.87. On the third phase, these are ten 40-W
fluorescent lamps with power factor of 0.64. Find

a. The current in the netural wire.

b. The real, reactive, and apparent power for each
phase.


