

Chapter 12 Multimedia Information

Chapter Figures

ASDF9H...
$$\rightarrow$$
 Lossless data
compression \rightarrow 11010101... \rightarrow Data
expansion \rightarrow ASDF9H...

Assume

- 5 symbol information source: {a,b,c,d,e}
- symbol probabilities: {1/4, 1/4,1/4,1/8,1/8}

aedbbad.... mapped into 00 111 110 01 01 00 110 ... 17 bits Note: decoding done without commas or spaces

• "Blank" in strings of alphanumeric information -----\$5-----\$2-----\$3-----

• "0" (white) and "1" (black) in fax documents

Run	Length	Codeword	Codeword $(m = 4)$
1	0	0000	0000
01	1	0001	0001
001	2	0010	0010
0001	3	0011	0011
00001	4		
000001	5		
0000001	6		
•	•	•	•
00001	2 ^m – 2	1110	1110
00000	run >2 ^{<i>m</i>} – 2	1111	1111

←m→

15w 10wb 15w 15w 15w 12wb 15w 15w 6wb 15w b

Run	Length	Codeword Codeword ($m = 4$)	
1	0	1000	10000
01	1	1001	10001
001	2	1010	10010
0001	3	1011	10011
00001	4		
000001	5		
0000001	6		
•	•		•
. 000 01	$2^{m} - 1$	1111	11111
00000	run >2‴ – 1	0	0
	<i>←m</i> + 1→		

(a) Huffman code applied to white runs and black runs

(b) Encode differences between consecutive lines

"All tall We all are tall. All small We all are small."

Can be mapped into:

"All_ta[2,3]We_[6,4]are[4,5]._[1,4]sm[6,1 5][31,5]."

Quantize the difference between prediction and actual signal:

The end-to-end error is only the error introduced by the quantizer!

component signal

8x8 block of 8-bit pixel values

Quantized DCT Coefficients

Info = *M* bits/pixel x (*W*x*H*) pixels/frame x *F* frames/second

