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MASS, BERNOULLI, AND
ENERGY EQUATIONS

his chapter deals with three equations commonly used in fluid
Tmechanics: the mass, Bernoulli, and energy equations. The mass equa-

tion is an expression of the conservation of mass principle. The
Bernoulli equation is concerned with the conservation of kinetic, potential,
and flow energies of a fluid stream and their conversion to each other in
regions of flow where net viscous forces are negligible and where other
restrictive conditions apply. The energy equation is a statement of the con-
servation of energy principle. In fluid mechanics, it is found convenient to
separate mechanical energy from thermal energy and to consider the con-
version of mechanical energy to thermal energy as a result of frictional
effects as mechanical energy loss. Then the energy equation becomes the
mechanical energy balance.

We start this chapter with an overview of conservation principles and the
conservation of mass relation. This is followed by a discussion of various
forms of mechanical energy and the efficiency of mechanical work devices
such as pumps and turbines. Then we derive the Bernoulli equation by
applying Newton’s second law to a fluid element along a streamline and
demonstrate its use in a variety of applications. We continue with the devel-
opment of the energy equation in a form suitable for use in fluid mechanics
and introduce the concept of head loss. Finally, we apply the energy equa-
tion to various engineering systems.
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OBJECTIVES

When you finish reading this chapter, you
should be able to

Apply the mass equation to
balance the incoming and
outgoing flow rates in a flow
system

Recognize various forms of
mechanical energy, and work
with energy conversion
efficiencies

Understand the use and
limitations of the Bernoulli
equation, and apply it to solve a
variety of fluid flow problems

Work with the energy equation

expressed in terms of heads, and
use it to determine turbine
power output and pumping
power requirements
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5-1 = INTRODUCTION

You are already familiar with numerous conservation laws such as the laws
of conservation of mass, conservation of energy, and conservation of
momentum. Historically, the conservation laws are first applied to a fixed
quantity of matter called a closed system or just a system, and then extended
to regions in space called control volumes. The conservation relations are
also called balance equations since any conserved quantity must balance
during a process. We now give a brief description of the conservation of
mass, momentum, and energy relations (Fig. 5-1).

FIGURE 5-1
Many fluid flow devices such as this Conservation of Mass
Pelton wheel hydraulic turbine are The conservation of mass relation for a closed system undergoing a change

analyzed by applying the conservation
of mass, momentum, and energy
principles.

Courtesy of Hydro Tasmania, www.hydro.com.au.
Used by permission.

is expressed as my,, = constant or dm/dt = 0, which is a statement of the
obvious that the mass of the system remains constant during a process. For
a control volume (CV), mass balance is expressed in the rate form as

. . . dmcy
Conservation of mass: My, — Moy =
dt

where m;, and m, are the total rates of mass flow into and out of the con-
trol volume, respectively, and dm/dt is the rate of change of mass within
the control volume boundaries. In fluid mechanics, the conservation of mass
relation written for a differential control volume is usually called the conti-
nuity equation. Conservation of mass is discussed in Section 5-2.

(5-1)

Conservation of Momentum

The product of the mass and the velocity of a body is called the linear
momentum or just the momentum of the body, and the momentum of a rigid
body of mass m moving with a velocity Vis mV. Newton’s second law states
that the acceleration of a body is proportional to the net force acting on it
and is inversely proportional to its mass, and that the rate of change of the
momentum of a body is equal to the net force acting on the body. Therefore,
the momentum of a system remains constant when the net force acting on it
is zero, and thus the momentum of such systems is conserved. This is known
as the conservation of momentum principle. In fluid mechanics, Newton’s
second law is usually referred to as the linear momentum equation, which is
discussed in Chap. 6 together with the angular momentum equation.

Conservation of Energy

Energy can be transferred to or from a closed system by heat or work, and
the conservation of energy principle requires that the net energy transfer to
or from a system during a process be equal to the change in the energy con-
tent of the system. Control volumes involve energy transfer via mass flow
also, and the conservation of energy principle, also called the energy bal-
ance, is expressed as

. . dE vy
Conservation of energy: Ey,—E,= dr

(5-2)
where Ein and Eout are the total rates of energy transfer into and out of the

control volume, respectively, and dE./dt is the rate of change of energy
within the control volume boundaries. In fluid mechanics, we usually limit

o
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our consideration to mechanical forms of energy only. Conservation of
energy is discussed in Section 5-6.

5-2 = CONSERVATION OF MASS

The conservation of mass principle is one of the most fundamental princi-
ples in nature. We are all familiar with this principle, and it is not difficult to
understand. As the saying goes, You cannot have your cake and eat it too! A
person does not have to be a scientist to figure out how much vinegar-and-

oil dressing will be obtained by mixing 100 g of oil with 25 g of vinegar. 2 kg . lokg | | 18kg

Even chemical equations are balanced on the basis of the conservation of H, 0, H,0

mass principle. When 16 kg of oxygen reacts with 2 kg of hydrogen, 18 kg

of water is formed (Fig. 5-2). In an electrolysis process, the water will sep- FIGURE 5-2

arate back to 2 kg of hydrogen and 16 kg of oxygen. Mass is conserved even during
Mass, like energy, is a conserved property, and it cannot be created or chemical reactions.

destroyed during a process. However, mass m and energy E can be con-
verted to each other according to the well-known formula proposed by
Albert Einstein (1879-1955):

E = mc? (5-3)

where c is the speed of light in a vacuum, which is ¢ = 2.9979 X 108 m/s.
This equation suggests that the mass of a system changes when its energy
changes. However, for all energy interactions encountered in practice, with
the exception of nuclear reactions, the change in mass is extremely small and
cannot be detected by even the most sensitive devices. For example, when
1 kg of water is formed from oxygen and hydrogen, the amount of energy
released is 15,879 kJ, which corresponds to a mass of 1.76 X 10-10 kg. A
mass of this magnitude is beyond the accuracy required by practically all
engineering calculations and thus can be disregarded.

For closed systems, the conservation of mass principle is implicitly used by
requiring that the mass of the system remain constant during a process. For
control volumes, however, mass can cross the boundaries, and so we must
keep track of the amount of mass entering and leaving the control volume.

Mass and Volume Flow Rates

The amount of mass flowing through a cross section per unit time is called
the mass flow rate and is denoted by n1. The dot over a symbol is used to
indicate time rate of change.

A fluid flows into or out of a control volume, usually through pipes or
ducts. The differential mass flow rate of fluid flowing across a small area
element dA,_ in a cross section of the pipe is proportional to dA, itself, the
fluid density p, and the component of the flow velocity normal to dA,,

which we denote as V,, and is expressed as (Fig. 5-3) %
\
o = pV, dA, 54 Control surface “‘
Note that both 6 and d are used to indicate differential quantities, but & is '
typically used for quantities (such as heat, work, and mass transfer) that are FIGURE 5-3
path functions and have inexact differentials, while d is used for quantities The normal velocity V, for a surface
(such as properties) that are point functions and have exact differentials. For is the component of velocity
flow through an annulus of inner radius r; and outer radius r,, for example, perpendicular to the surface.

o
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V.

avg

2 2
J dA, = A, — A, = m(r5 — r?) but J Om = My, (total mass flow rate
1 1

'\\ through the annulus), not m, — m,. For specified values of r, and r,, the
value of the integral of dA, is fixed (thus the names point function and exact
}/ differential), but this is not the case for the integral of 6m (thus the names
> path function and inexact differential).

The mass flow rate through the entire cross-sectional area of a pipe or
duct is obtained by integration:

FIGURE 54
The average velocity V,,, is defined = j Sin = J pV, dA, (kg/s) (5-5)
as the average speed through a cross n n ‘

section. While Eq. 5-5 is always valid (in fact it is exact), it is not always practi-

cal for engineering analyses because of the integral. We would like instead
to express mass flow rate in terms of average values over a cross section of
the pipe. In a general compressible flow, both p and V, vary across the pipe.
In many practical applications, however, the density is essentially uniform
over the pipe cross section, and we can take p outside the integral of Eq.
5-5. Velocity, however, is never uniform over a cross section of a pipe
because of the no-slip condition at the walls. Rather, the velocity varies
from zero at the walls to some maximum value at or near the centerline of
Fee=T==T === 7 the pipe. We define the average velocity V,,, as the average value of V,
across the entire cross section of the pipe (Fig. 54),

i

H . 1

1 Average velocity: Ve = — | V,dA. (5-6)
! g

1 A

A

c

‘ where A, is the area of the cross section normal to the flow direction. Note

Cross séction that if the speed were V,, all through the cross section, the mass flow rate

would be identical to that obtained by integrating the actual velocity profile.

FIGURE 5-5 Thus for incompressible flow or even for compressible flow where p is uni-
The volume flow rate is the volume of ~ form across A, Eq. 5-5 becomes

fluid flowing through a cross section i = pVieAe (kg/s) 5-7)

per unit time.
For compressible flow, we can think of p as the bulk average density over the

cross section, and then Eq. 57 can still be used as a reasonable approximation.
For simplicity, we drop the subscript on the average velocity. Unless other-
wise stated, V denotes the average velocity in the flow direction. Also, A,
denotes the cross-sectional area normal to the flow direction.

The volume of the fluid flowing through a cross section per unit time is
called the volume flow rate V (Fig. 5-5) and is given by

V= J V,dA, = VyyA, = VA, (m’s) (5-8)
A

An early form of Eq. 5-8 was published in 1628 by the Italian monk Bene-
detto Castelli (circa 1577-1644). Note that many fluid mechanics textbooks
use Q instead of V for volume flow rate. We use V/ to avoid confusion with
heat transfer.
The mass and volume flow rates are related by
v

m=pV = . (5-9)
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where v is the specific volume. This relation is analogous to m = pV =

V/v, which is the relation between the mass and the volume of a fluid in a
container.

Conservation of Mass Principle

The conservation of mass principle for a control volume can be expressed
as: The net mass transfer to or from a control volume during a time interval
At is equal to the net change (increase or decrease) in the total mass within
the control volume during At. That is,

(Total mass entering) B (Total mass 1eaving> B ( Net change in mass >
t

the CV during At the CV during Az within the CV during A
or
Miy = Moy = Amey— (kg) (5-10)
where Amcy = Mg, — My 18 the change in the mass of the control vol- FIGURE 5-6

ume during the process (Fig. 5-6). It can also be expressed in rate form as Conservation of mass principle

Hy, — Hgy = dmeyldt (kg/s) (5-11) for an ordinary bathtub.

where m1,, and m, are the total rates of mass flow into and out of the con-

trol volume, and dm/dt is the rate of change of mass within the control

volume boundaries. Equations 5-10 and 5-11 are often referred to as the /’/ \\_

mass balance and are applicable to any control volume undergoing any 4 dV ""\\

kind of process. - \ 7
Consider a control volume of arbitrary shape, as shown in Fig. 5-7. The A m‘

mass of a differential volume dV within the control volume is dm = p dV. Control v

The total mass within the control volume at any instant in time ¢ is deter- volume (CV) /~

-~

. ————
4

mined by integration to be e
Control surf: CS
Total mass within the CV: Mmey = J pdVv (5-12) ontrol surface (CS)
v FIGURE 5-7
Then the time rate of change of the amount of mass within the control vol- The differential control volume dV
ume can be expressed as and the differential control surface
dme d dA used in the derivation of the
Rate of change of mass within the CV: 7\/ = J pdV (5-13) conservation of mass relation.
CcvV

For the special case of no mass crossing the control surface (i.e., the control
volume resembles a closed system), the conservation of mass principle
reduces to that of a system that can be expressed as dm/dt = 0. This rela-
tion is valid whether the control volume is fixed, moving, or deforming.
Now consider mass flow into or out of the control volume through a differ-
ential area dA on the control surface of a fixed control volume. Let 7 be the
outward unit vector of dA normal to dA and V be the flow velocity at dA rel-
ative to a fixed coordinate system, as shown in Fig. 5-7. In general, the
velocity may cross dA at an angle 6 off the normal of dA, and the mass flow
rate is proportional to the normal component of velocity V, = Vcos 6 rang-
ing from a maximum outflow of V for # = 0 (flow is normal to dA) to a min;
imum of zero for § = 90° (flow is tangent to dA) to a maximum inflow of V
for & = 180° (flow is normal to dA but in the opposite direction). Making
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use of the concept of dot product of two vectors, the magnitude of the nor-
mal component of velocity can be expressed as

Normal component of velocity: V,=Vcosf = Vi (5-14)

The mass flow rate through dA is proportional to the fluid density p, normal
velocity V,, and the flow area dA, and can be expressed as

Differential mass flow rate:  ém = pV, dA = p(V cos 0) dA = p(\7- nydA  (5-15)

The net flow rate into or out of the control volume through the entire con-
trol surface is obtained by integrating 6m over the entire control surface,

Net mass flow rate: Mgy = J om = j pV,dA = J p(‘7 - 1) dA (5-16)
CS CS CS

Note that V- i = V cos 8 is positive for 6 < 90° (outflow) and negative for

6 > 90° (inflow). Therefore, the direction of flow is automatically

accounted for, and the surface integral in Eq. 5-16 directly gives the net

mass flow rate. A positive value for m1,, indicates net outflow, and a nega-

tive value indicates a net inflow of mass.

Rearranging Eq. 5-11 as dm/dt + m, — ny, = 0, the conservation of

in

mass relation for a fixed control volume can then be expressed as
@)
General conservation of mass: d f pdV + J p(\7' n)dA =0 (5-17)
SB d d Ccv CS
% = EJ pb dV + J pb(vV-m)dA | Tt states that the time rate of change of mass within the control volume plus
cv cs the net mass flow rate through the control surface is equal to zero.
l l The general conservation of mass relation for a control volume can also
be derived using the Reynolds transport theorem (RTT) by taking the prop-
B=m b=1 b=1 erty B to be the mass m (Chap. 4). Then we have b = 1 since dividing the
© l l l mass by mass to get the property per unit mass gives unity. Also, the mass
of a system is constant, and thus its time derivative is zero. That is, dm/dt
dmgs d S = 0. Then the Reynolds transport equation reduces immediately to Eq.
a E] pav+ J PV =) dA 5-17, as shown in Fig. 5-8, and thus illustrates that the Reynolds transport
v s theorem is a very powerful tool indeed. In Chap. 6 we apply the RTT to
obtain the linear and angular momentum equations for control volumes.
Splitting the surface integral in Eq. 5-17 into two parts—one for the out-
going flow streams (positive) and one for the incoming streams (negative)—
the general conservation of mass relation can also be expressed as
FIGURE 5-8 % J pdV+ > J pV, dA — 2 j pV,dA =0 (5-18)
The conservation of mass equation cv out moa
is obtained by replacing B in the where A represents the area for an inlet or outlet, and the summation signs
Reynolds transport theorem by are used to emphasize that all the inlets and outlets are to be considered.
mass m, and b by 1 (m per unit Using the definition of mass flow rate, Eq. 5-18 can also be expressed as

mass = m/m = 1). J p
m
—j pdV=Sm— m or C=m-Sm (519
dr ). P dt

out in out

There is considerable flexibility in the selection of a control volume when
solving a problem. Several control volume choices may be correct, but some
are more convenient to work with. A control volume should not introduce
any unnecessary complications. The proper choice of a control volume can
make the solution of a seemingly complicated problem rather easy. A simple

o
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rule in selecting a control volume is to make the control surface normal to 4 v A/cos 6

flow at all locations where it crosses fluid flow, whenever possible. This (//

way the dot product Vi simply becomes the magnitude of the velocity, — SV
/n /

and the integral J p(V - n) dA becomes simply pVA (Fig. 5-9).

V,=Vcos 6
A

m = p(Vcos 0)A/cos ) = pVA

(a) Control surface at an angle to flow

Moving or Deforming Control Volumes

Equations 5-17 and 5-18 are also valid for moving or deforming control A

volumes provided that the absolute velocity V is replaced by the relative \ 4:/ —
velocity V., which is the fluid velocity relative to the control surface (Chap. — :—'i—»v
4). In the case of a nondeforming control volume, relative velocity is the —— I

fluid velocity observed by a person moving with the control volume and is m=pVA

expressed as V =V- VCV, where Vis the fluid velocity and VCV is the

velocity of the control volume, both relative to a fixed point outside. Again

note that this is a vector subtraction. FIGURE 5-9
Some practical problems (such as the injection of medication through the A control surface should always be

needle of a syringe by the forced motion of the plunger) involve deforming  selected normal to flow at all locations

control volumes. The conservation of mass relations developed can still be ~ Where it crosses the fluid flow to avoid

used for such deforming control volumes provided that the velocity of the ~ complications, even though the result

fluid crossing a deforming part of the control surface is expressed relative to is the same.

the control surface (that is, the fluid velocity should be expressed relative to

a reference frame attached to the deforming part of the control surface). The

relative velocity in this case at any point on the control surface is expressed

as V.=V — V., where Vq is the local velocity of the control surface at that

point relative to a fixed point outside the control volume.

(b) Control surface normal to flow

Mass Balance for Steady-Flow Processes
During a steady-flow process, the total amount of mass contained within a
control volume does not change with time (m, = constant). Then the con-
servation of mass principle requires that the total amount of mass entering a
control volume equal the total amount of mass leaving it. For a garden hose
nozzle in steady operation, for example, the amount of water entering the
nozzle per unit time is equal to the amount of water leaving it per unit time.
When dealing with steady-flow processes, we are not interested in the

amount of mass that flows in or out of a device over time; instead, we are my =2 ke/s my =3 ks
interested in the amount of mass flowing per unit time, that is, the mass flow l | | l
rate m. The conservation of mass principle for a general steady-flow system = F-oif=m—————=x-— n

with multiple inlets and outlets can be expressed in rate form as (Fig. 5-10)

|
|
i |
|
Steady flow: E m= E m (kg/s) (5-20) | cv :
in out !
| |
|
It states that the total rate of mass entering a control volume is equal to the | !
total rate of mass leaving it. [ l [
Many engineering devices such as nozzles, diffusers, turbines, compres-
sors, and pumps involve a single stream (only one inlet and one outlet). For
these cases, we denote the inlet state by the subscript 1 and the outlet state
by the subscript 2, and drop the summation signs. Then Eq. 5-20 reduces,
for single-stream steady-flow systems, to

my=my +my=5ke/s

FIGURE 5-10

Conservation of mass principle
for a two-inlet—one-outlet
Steady flow (single stream): m=m, — p VA =p,V,A, (5-21) steady-flow system.

o
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my =2 kg/ls
V, = 0.8 m¥/s

NW

Air
compressor

S
|
|
|
|
|

.

my =2ke/s
Vy=1.4mYs
FIGURE 5-11

During a steady-flow process,
volume flow rates are not necessarily
conserved although mass flow

rates are.

Bucket

FIGURE 5-12

Schematic for Example 5-1.

Special Case: Incompressible Flow

The conservation of mass relations can be simplified even further when the
fluid is incompressible, which is usually the case for liquids. Canceling the
density from both sides of the general steady-flow relation gives

Steady, incompressible flow: E V= E v (m*/s) (5-22)
in out

For single-stream steady-flow systems it becomes

Steady, incompressible flow (single stream): Vl = Vz - VA = VA, (5-23)

It should always be kept in mind that there is no such thing as a “conserva-
tion of volume” principle. Therefore, the volume flow rates into and out of a
steady-flow device may be different. The volume flow rate at the outlet of
an air compressor is much less than that at the inlet even though the mass
flow rate of air through the compressor is constant (Fig. 5-11). This is due
to the higher density of air at the compressor exit. For steady flow of lig-
uids, however, the volume flow rates, as well as the mass flow rates, remain
constant since liquids are essentially incompressible (constant-density) sub-
stances. Water flow through the nozzle of a garden hose is an example of
the latter case.

The conservation of mass principle is based on experimental observations
and requires every bit of mass to be accounted for during a process. If you
can balance your checkbook (by keeping track of deposits and withdrawals,
or by simply observing the “conservation of money” principle), you should
have no difficulty applying the conservation of mass principle to engineer-
ing systems.

EXAMPLE 5-1 Water Flow through a Garden Hose Nozzle

A garden hose attached with a nozzle is used to fill a 10-gal bucket. The
inner diameter of the hose is 2 cm, and it reduces to 0.8 cm at the nozzle
exit (Fig. 5-12). If it takes 50 s to fill the bucket with water, determine
(a) the volume and mass flow rates of water through the hose, and (b) the
average velocity of water at the nozzle exit.

mass flow rates of water and the exit velocity are to be determined.
Assumptions 1 Water is an incompressible substance. 2 Flow through the
hose is steady. 3 There is no waste of water by splashing.

Properties \We take the density of water to be 1000 kg/m3 = 1 kg/L.
Analysis (a) Noting that 10 gal of water are discharged in 50 s, the volume
and mass flow rates of water are

A1 S0
m = pV = (1 kg/L)(0.757 L/s) = 0.757 kg/s

(b) The cross-sectional area of the nozzle exit is

v 10 gal /3.
_ U <M> = 0757 L/s
1 gal

|
[
[
[
[
|
|
[
[
SOLUTION A garden hose is used to fill a water bucket. The volume and
A, = mr2 = 7(0.4 cm)> = 0.5027 cm® = 0.5027 X 10~ * m?
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The volume flow rate through the hose and the nozzle is constant. Then the
average velocity of water at the nozzle exit becomes

v 0.757 L/s ( 1m’

Ve = —4 2
A, 0.5027 X 10 *m

Discussion It can be shown that the average velocity in the hose is 2.4 m/s.
Therefore, the nozzle increases the water velocity by over six times.

= 15.1
1000L) Sl m/s

EXAMPLE 5-2 Discharge of Water from a Tank v

A 4-ft-high, 3-ft-diameter cylindrical water tank whose top is open to the
atmosphere is initially filled with water. Now the discharge plug near the bot-
tom of the tank is pulled out, and a water jet whose diameter is 0.5 in
streams out (Fig. 5-13). The average velocity of the jet is given by
V = V2gh, where h is the height of water in the tank measured from the

center of the hole (a variable) and g is the gravitational acceleration. Deter- I

mine how long it will take for the water level in the tank to drop to 2 ft from hI hy et

s
|

|7
the bottom.

SOLUTION The plug near the bottom of a water tank is pulled out. The 0 1 Dignk W
time it will take for half of the water in the tank to empty is to be deter-
mined.
Assumptions 1 Water is an incompressible substance. 2 The distance FIGURE 5-13
between the bottom of the tank and the center of the hole is negligible com- Schematic for Example 5-2.
pared to the total water height. 3 The gravitational acceleration is 32.2 ft/s2.
Analysis We take the volume occupied by water as the control volume. The
size of the control volume decreases in this case as the water level drops,
and thus this is a variable control volume. (We could also treat this as a
fixed control volume that consists of the interior volume of the tank by disre-
garding the air that replaces the space vacated by the water.) This is obvi-
ously an unsteady-flow problem since the properties (such as the amount of
mass) within the control volume change with time.
The conservation of mass relation for a control volume undergoing any
process is given in the rate form as

dmCV
out dt

My, — m (1)
During this process no mass enters the control volume (m;, = 0), and the
mass flow rate of discharged water can be expressed as

moul = (pVA)out =pV ZghAjet (2)
where A,

Lt = mD%,/4 is the cross-sectional area of the jet, which is constant.
Noting that the density of water is constant, the mass of water in the tank at
any time is

Mey = pV = pAlankh (3)

where A, = mD%,/4 is the base area of the cylindrical tank. Substituting
Egs. 2 and 3 into the mass balance relation (Eq. 1) gives

d(pA yih D2 /4) dh
—p\V2ghA, = % — —p\V2gh(mD2,/4) = %
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Canceling the densities and other common terms and separating the vari-

ables give
thank dh
dt = —— —F—
Die \/2gh

Integrating from t = O at which h = hy to t = t at which h = h, gives
J[dt= _ Din thdh o Vo — \/]72<Dtank)2
0 Dj2e{\/2§ o Vh \/872 D
Substituting, the time of discharge is determined to be
t:\/ﬁ—\/ﬁcx 12in
V/32.2/2 fts> \ 0.51n

Therefore, half of the tank will be emptied in 12.6 min after the discharge
hole is unplugged.

Discussion Using the same relation with h, = O gives { = 43.1 min for the
discharge of the entire amount of water in the tank. Therefore, emptying the
bottom half of the tank takes much longer than emptying the top half. This
is due to the decrease in the average discharge velocity of water with
decreasing h.

jet

2
) =757 s = 12.6 min

5-3 = MECHANICAL ENERGY AND EFFICIENCY

Many fluid systems are designed to transport a fluid from one location to
another at a specified flow rate, velocity, and elevation difference, and the
system may generate mechanical work in a turbine or it may consume
mechanical work in a pump or fan during this process. These systems do
not involve the conversion of nuclear, chemical, or thermal energy to
mechanical energy. Also, they do not involve any heat transfer in any signif-
icant amount, and they operate essentially at constant temperature. Such
systems can be analyzed conveniently by considering the mechanical forms
of energy only and the frictional effects that cause the mechanical energy to
be lost (i.e., to be converted to thermal energy that usually cannot be used
for any useful purpose).

The mechanical energy can be defined as the form of energy that can be
converted to mechanical work completely and directly by an ideal mechani-
cal device such as an ideal turbine. Kinetic and potential energies are the
familiar forms of mechanical energy. Thermal energy is not mechanical
energy, however, since it cannot be converted to work directly and com-
pletely (the second law of thermodynamics).

A pump transfers mechanical energy to a fluid by raising its pressure, and
a turbine extracts mechanical energy from a fluid by dropping its pressure.
Therefore, the pressure of a flowing fluid is also associated with its mechan-
ical energy. In fact, the pressure unit Pa is equivalent to Pa = N/m? =
N - m/m? = J/m?, which is energy per unit volume, and the product Pv or
its equivalent P/p has the unit J/kg, which is energy per unit mass. Note that
pressure itself is not a form of energy. But a pressure force acting on a fluid
through a distance produces work, called flow work, in the amount of P/p
per unit mass. Flow work is expressed in terms of fluid properties, and it is
convenient to view it as part of the energy of a flowing fluid and call it flow

o
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energy. Therefore, the mechanical energy of a flowing fluid can be
expressed on a unit-mass basis as (Fig. 5-14).

2

emech:;—’—z-'_gZ

where P/p is the flow energy, V*/2 is the kinetic energy, and gz is the poten-
tial energy of the fluid, all per unit mass. Then the mechanical energy
change of a fluid during incompressible flow becomes

Pz_P1+V§_V%
p 2

+ 8z —z1) (kJ/kg) (5-24)

Aemech =
Therefore, the mechanical energy of a fluid does not change during flow if
its pressure, density, velocity, and elevation remain constant. In the absence
of any losses, the mechanical energy change represents the mechanical
work supplied to the fluid (if Ae > 0) or extracted from the fluid (if
Aeoen < 0).

Consider a container of height £ filled with water, as shown in Fig. 5-15,
with the reference level selected at the bottom surface. The gage pressure
and the potential energy per unit mass are, respectively, P, = 0 and pe,
= gh at point A at the free surface, and P, = pgh and pe; = 0 at point B at
the bottom of the container. An ideal hydraulic turbine would produce the
same work per unit mass wy.;,. = &h whether it receives water (or any
other fluid with constant density) from the top or from the bottom of the
container. Note that we are also assuming ideal flow (no irreversible losses)
through the pipe leading from the tank to the turbine. Therefore, the total
mechanical energy of water at the bottom is equivalent to that at the top.

The transfer of mechanical energy is usually accomplished by a rotating
shaft, and thus mechanical work is often referred to as shaft work. A pump
or a fan receives shaft work (usually from an electric motor) and transfers it
to the fluid as mechanical energy (less frictional losses). A turbine, on the
other hand, converts the mechanical energy of a fluid to shaft work. In the
absence of any irreversibilities such as friction, mechanical energy can be
converted entirely from one mechanical form to another, and the mechani-
cal efficiency of a device or process can be defined as (Fig. 5-16)

mech

MeChanical energy OUtPUt _ EmcchAV out 1 — EmcchA, loss (5-25)
Mechanical energy inpl'lt Emech. in Emech. in

MNmech =

A conversion efficiency of less than 100 percent indicates that conversion is
less than perfect and some losses have occurred during conversion. A

Winax = mgh
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Atmosphere

14
0 Patm
m=2Xkgls
. . P-P . pgh .
Wmax=m% =m% =nmgh
= (2 kg/s)(9.81 m/s)(10 m)
=196 W
FIGURE 5-14

In the absence of any changes in flow
velocity and elevation, the power
produced by an ideal hydraulic turbine
is proportional to the pressure drop

of water across the turbine.

FIGURE 5-15

The mechanical energy of water

at the bottom of a container is equal
to the mechanical energy at any
depth including the free surface

of the container.
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Fan mechanical efficiency of 97 percent indicates that 3 percent of the mechani-
— cal energy input is converted to thermal energy as a result of frictional heat-
5O W| [l |— i = 0.50 kes ing, and this will manifest itself as a slight rise in the temperature of the

R @ # . @ fluid.

— In fluid systems, we are usually interested in increasing the pressure,

. velocity, and/or elevation of a fluid. This is done by supplying mechanical

V| energy to the fluid by a pump, a fan, or a compressor (we will refer to all of

V,=0,V,=12m/s them as pumps). Or we are interested in the reverse process of extracting

31=2 mechanical energy from a fluid by a turbine and producing mechanical
Pi=pP,

power in the form of a rotating shaft that can drive a generator or any other
: 2 rotary device. The degree of perfection of the conversion process between
AEnech, uig _ _MV2/2

Mmech, fan = : the mechanical work supplied or extracted and the mechanical energy of the
W%haft, in Wshaft, in

(050 kg/)(12 misy?2 fluid is expressed by the pump efficiency and turb.lne efﬁc1enFy, defined as
50w _ Mechanical energy increase of the fluid AE ech, fluid ~ Woump, u
=072 Tpump = Mechanical energy input W W (5-26)
gy p Wshaft, in pump
FIGURE 5-16 where AE, o fuid = Emech, ot — Emech, in 18 the rate of increase in the mechan-
The mechanical efficiency of a fan ical energy of the fluid, which is equivalent to the useful pumping power
is the ratio of the kinetic energy w. supplied to the fluid, and
. . pump, u g
of air at the fan exit to the ) W .
mechanical power input. —— Mechanical energy output —hatowr W‘“"bine (5-27)
1 Mechanical energy decrease of the fluid — |AE, . nuial ~ Wirbine e
where |AE, i nuial = Enmecnin = Emech, ou 15 the rate of decrease in the

mechanical energy of the fluid, which is equivalent to the mechanical power
extracted from the fluid by the turbine W, .. and we use the absolute
value sign to avoid negative values for efficiencies. A pump or turbine
efficiency of 100 percent indicates perfect conversion between the shaft
work and the mechanical energy of the fluid, and this value can be
approached (but never attained) as the frictional effects are minimized.

The mechanical efficiency should not be confused with the motor
efficiency and the generator efficiency, which are defined as

Mechanical power output Wt ou
nmo[or = -

Motor: (5-28)

Electric power input Welecl in

Nwrbine = 075 Ngenerator = 0-97 and

Electric power output Weeet, out

Generator: N, = - - = — (5-29)
Turbine — E1EHIOT T Mechanical power input W,

A pump is usually packaged together with its motor, and a turbine with its

generator. Therefore, we are usually interested in the combined or overall

Thurbine-—gen = Thurbinel generator efficiency of pump-motor and turbine—generator combinations (Fig. 5-17),
=0.75x0.97 which are defined as

=0.73 . .
WpumpA, u AEmcch, fluid
FIGURE 5—1 7 npump—molor = npump Mmotor = W = W (5_30)
The overall efficiency of a turbine— clectin clectin
generator is the product of the and
efficiency of the turbine and the B ~ Waeow  Weteet ou
efﬁciency of the generator, and MNwrbine—gen — turbine T generator — W . - |AE . | (5-31)
represents the fraction of the rbine, ¢ mech. fluid
mechanical energy of the fluid All the efficiencies just defined range between 0 and 100 percent. The
converted to electric energy. lower limit of O percent corresponds to the conversion of the entire

o
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mechanical or electric energy input to thermal energy, and the device in
this case functions like a resistance heater. The upper limit of 100 percent
corresponds to the case of perfect conversion with no friction or other irre-

versibilities, and thus no conversion of mechanical or electric energy to
thermal energy.

: EXAMPLE 5-3 Performance of a Hydraulic Turbine-Generator

® The water in a large lake is to be used to generate electricity by the installa-
tion of a hydraulic turbine-generator at a location where the depth of the
water is 50 m (Fig. 5-18). Water is to be supplied at a rate of 5000 kg/s. If
the electric power generated is measured to be 1862 kW and the generator
efficiency is 95 percent, determine (a) the overall efficiency of the tur-
bine-generator, (b) the mechanical efficiency of the turbine, and (c) the
shaft power supplied by the turbine to the generator.

SOLUTION A hydraulic turbine—generator is to generate electricity from the
water of a lake. The overall efficiency, the turbine efficiency, and the shaft
power are to be determined.

Assumptions 1 The elevation of the lake remains constant. 2 The mechani-
cal energy of water at the turbine exit is negligible.

Properties The density of water can be taken to be p = 1000 kg/m3.
Analysis (a) We take the bottom of the lake as the reference level for conve-
nience. Then kinetic and potential energies of water are zero, and the
change in its mechanical energy per unit mass becomes

P 2 1 kl/kg
€mech, in — Cmech, out = b 0 = gh = (9.81 m/s*)(50 m) 1000 )~ 0.491 kJ/kg

Then the rate at which mechanical energy is supplied to the turbine by the
fluid and the overall efficiency become

|AEmech, ﬂuid| = ’h(emech, in emech, out) = (5000 kg/S)(0491 kJ/kg) = 2455 kw

Welecl, out _ 1862 kW

rall — urbine—gen . N :0.76
MNoverall = Mturbine—ge IAE pecn il 2455 kW

(b) Knowing the overall and generator efficiencies, the mechanical efficiency
of the turbine is determined from
nturbine—gen 0.76
nturbine—gen = MNturbine ngeneralor — MNiurbine — ngcncmtor = 0.95 = 0.80

(c) The shaft power output is determined from the definition of mechanical
efficiency,

Wshaft, out — nturbine|AEmech, ﬂuid| = (080)(2455 kW) = 1964 kW

T Lake ngenerat()r =095

1862 kW

Generator
- FIGURE 5-18

1t = 5000 kg/s Schematic for Example 5-3.

o
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Discussion Note that the lake supplies 2455 kW of mechanical energy to
the turbine, which converts 1964 kW of it to shaft work that drives the gen-
erator, which generates 1862 kW of electric power. There are irreversible
losses through each component.

EXAMPLE 54 Conservation of Energy for
an Oscillating Steel Ball

The motion of a steel ball in a hemispherical bowl of radius h shown in Fig.
5-19 is to be analyzed. The ball is initially held at the highest location at
point A, and then it is released. Obtain relations for the conservation of
energy of the ball for the cases of frictionless and actual motions.

SOLUTION A steel ball is released in a bowl. Relations for the energy bal-
ance are to be obtained.

Assumptions The motion is frictionless, and thus friction between the ball,
the bowl, and the air is negligible.

Analysis When the ball is released, it accelerates under the influence of
gravity, reaches a maximum velocity (and minimum elevation) at point B at
the bottom of the bowl, and moves up toward point C on the opposite side.
In the ideal case of frictionless motion, the ball will oscillate between points
A and C. The actual motion involves the conversion of the kinetic and poten-
tial energies of the ball to each other, together with overcoming resistance to
motion due to friction (doing frictional work). The general energy balance for
any system undergoing any process is

Ein - Eout = AE‘system
Net energy transfer Change in internal, kinetic,
by heat, work, and mass potential, etc., energies

Then the energy balance for the ball for a process from point 1 to point 2

becomes
~Whiiction — (K€, + pe,) — (ke; + pey)
or
Vi V3
7 + 8z = 7 + 822 T Wriction

since there is no energy transfer by heat or mass and no change in the inter-
nal energy of the ball (the heat generated by frictional heating is dissipated to

FIGURE 5-19
Schematic for Example 5—4. 0 B @
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the surrounding air). The frictional work term w0, IS Often expressed as g
to represent the loss (conversion) of mechanical energy into thermal energy.
For the idealized case of frictionless motion, the last relation reduces to
V%+ —V§+ V2+ =C= tant
2 821 = > 82, or 2 gz = C = constan
where the value of the constant is C = gh. That is, when the frictional
effects are negligible, the sum of the kinetic and potential energies of the
ball remains constant.
Discussion This is certainly a more intuitive and convenient form of the
conservation of energy equation for this and other similar processes such as
the swinging motion of the pendulum of a wall clock. The relation obtained
is analogous to the Bernoulli equation derived in Section 5-4.

Most processes encountered in practice involve only certain forms of
energy, and in such cases it is more convenient to work with the simplified
versions of the energy balance. For systems that involve only mechanical
forms of energy and its transfer as shaft work, the conservation of energy
principle can be expressed conveniently as

Emech, in Emech, out — AEmech, system + Emech, loss (5_32)

where E| ... 105 TEPresents the conversion of mechanical energy to thermal
energy due to irreversibilities such as friction. For a system in steady
operation, the mechanical energy balance becomes E = E

+E (Fig. 5-20).

mech, in mech, out

mech, loss

5-4 - THE BERNOULLI EQUATION

The Bernoulli equation is an approximate relation between pressure,
velocity, and elevation, and is valid in regions of steady, incompressible
flow where net frictional forces are negligible (Fig. 5-21). Despite its sim-
plicity, it has proven to be a very powerful tool in fluid mechanics. In this
section, we derive the Bernoulli equation by applying the conservation of
linear momentum principle, and we demonstrate both its usefulness and its
limitations.

The key approximation in the derivation of the Bernoulli equation is that
viscous effects are negligibly small compared to inertial, gravitational, and
pressure effects. Since all fluids have viscosity (there is no such thing as an
“inviscid fluid”), this approximation cannot be valid for an entire flow field
of practical interest. In other words, we cannot apply the Bernoulli equation
everywhere in a flow, no matter how small the fluid’s viscosity. However, it
turns out that the approximation is reasonable in certain regions of many
practical flows. We refer to such regions as inviscid regions of flow, and we
stress that they are not regions where the fluid itself is inviscid or friction-
less, but rather they are regions where net viscous or frictional forces are
negligibly small compared to other forces acting on fluid particles.

Care must be exercised when applying the Bernoulli equation since it is
an approximation that applies only to inviscid regions of flow. In general,
frictional effects are always important very close to solid walls (boundary
layers) and directly downstream of bodies (wakes). Thus, the Bernoulli

o

v
Steady flow
Vi=V,
H=z+h
P 1= P 2= P atm
Emech, in = Emech, out + Emech, loss

Wpump +mgzy =mgz + Emech, loss

14

pump = mgh+ Emech, loss

FIGURE 5-20

Most fluid flow problems involve
mechanical forms of energy only, and
such problems are conveniently solved
by using a mechanical energy balance.

Bernoulli equation valid
/A%
I~
—

Bernoulli equation not valid

FIGURE 5-21

The Bernoulli equation is an
approximate equation that is valid
only in inviscid regions of flow where
net viscous forces are negligibly small
compared to inertial, gravitational, or
pressure forces. Such regions occur
outside of boundary layers and wakes.



cen72367_ch05.gxd 10/29/04 2:25 PM Page 186
Printed from PDF by LPS

186
FLUID MECHANICS

approximation is typically useful in flow regions outside of boundary layers
and wakes, where the fluid motion is governed by the combined effects of
pressure and gravity forces.

The motion of a particle and the path it follows are described by the
velocity vector as a function of time and space coordinates and the initial
position of the particle. When the flow is steady (no change with time at a
specified location), all particles that pass through the same point follow the
same path (which is the streamline), and the velocity vectors remain tangent
to the path at every point.

Acceleration of a Fluid Particle
Often it is convenient to describe the motion of a particle in terms of its dis-
tance s along a streamline together with the radius of curvature along the
streamline. The velocity of the particle is related to the distance by V
= ds/dt, which may vary along the streamline. In two-dimensional flow, the
acceleration can be decomposed into two components: streamwise accelera-
tion a, along the streamline and normal acceleration a,, in the direction nor-
mal to the streamline, which is given as a, = V*R. Note that streamwise
acceleration is due to a change in speed along a streamline, and normal
acceleration is due to a change in direction. For particles that move along a
straight path, a, = 0 since the radius of curvature is infinity and thus there
is no change in direction. The Bernoulli equation results from a force bal-
ance along a streamline.
One may be tempted to think that acceleration is zero in steady flow since
acceleration is the rate of change of velocity with time, and in steady flow
f there is no change with time. Well, a garden hose nozzle tells us that this
understanding is not correct. Even in steady flow and thus constant mass
flow rate, water accelerates through the nozzle (Fig. 5-22 as discussed in

FIGURE 5-22 Chap. 4). Steady simply means no change with time at a specified location,
During steady flow, a fluid may not but the value of a quantity may change from one location to another. In the
accelerate in time at a fixed point, but ~ case of a nozzle, the velocity of water remains constant at a specified point,
it may accelerate in space. but it changes from the inlet to the exit (water accelerates along the nozzle).

Mathematically, this can be expressed as follows: We take the velocity V
of a fluid particle to be a function of s and r. Taking the total differential of
V(s, f) and dividing both sides by dr give

dv.  oVds aV
e 97

— = 5-33
dt ds dt ot ( )

dV=ﬂ/ds+ﬂ/dt and
Js Jat
In steady flow dV/ot = 0 and thus V = V(s), and the acceleration in the s-
direction becomes

_dv_ovds gV, v
CTw T asar os ds

where V = ds/dt if we are following a fluid particle as it moves along a

streamline. Therefore, acceleration in steady flow is due to the change of

velocity with position.

Derivation of the Bernoulli Equation
Consider the motion of a fluid particle in a flow field in steady flow
described in detail in Chap. 4. Applying Newton’s second law (which is

o
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Steady flow along a streamline

(P +dP)dA

FIGURE 5-23
The forces acting on a fluid
N particle along a streamline.

referred to as the conservation of linear momentum relation in fluid
mechanics) in the s-direction on a particle moving along a streamline gives

D' F, = ma, (5-35)

In regions of flow where net frictional forces are negligible, the significant
forces acting in the s-direction are the pressure (acting on both sides) and
the component of the weight of the particle in the s-direction (Fig. 5-23).
Therefore, Eq. 5-35 becomes

PdA — (P +dP)dA — Wsin0 = mV fl—v (5-36)
A
where 6 is the angle between the normal of the streamline and the vertical z-
axis at that point, m = pV = p dA ds is the mass, W = mg = pg dA ds is
the weight of the fluid particle, and sin § = dz/ds. Substituting,

dz dv
—dPdA — pgdA ds = = pdAds vV (5-37)
ds ds
Canceling dA from each term and simplifying,
—dP — pgdz = pVdV (5-38)
. L . Steady flow al li
Noting that V dV = 1 d(V?) and dividing each term by p gives . g te? y flow alonze shes
eneral:
apr ., _ dp _ V?
7+§d(V )+ gdz=0 (5-39) Jp—+7+gz=constant
Integrating (Fig. 5-24),
& & ( & ) Incompressible flow (p = constant):
ar v?
Steady flow: ; + Y + gz = constant (along a streamline) (5-40) 7P o VTZ + gz = constant

since the last two terms are exact differentials. In the case of incompressible
flow, the first term also becomes an exact differential, and its integration

gives FIGURE 5-24
2 The Bernoulli equation is derived

Steady, incompressible flow: — + — + gz = constant (along a streamline) (5-41) assuming incompressible flow.
p 2 . ”

and thus it should not be used

This is the famous Bernoulli equation, which is commonly used in fluid for flows with significant
mechanics for steady, incompressible flow along a streamline in inviscid compressibility effects.

o
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regions of flow. The value of the constant can be evaluated at any point on

the streamline where the pressure, density, velocity, and elevation are

0 known. The Bernoulli equation can also be written between any two points
= e on the same streamline as

P Vi P, V3

p Steady, incompressible flow: —+—+tgy=—"+—=

+ 82» (5-42)
5 g onstan p 2 P 2 §

The Bernoulli equation is obtained from the conservation of momentum
for a fluid particle moving along a streamline. It can also be obtained from
the first law of thermodynamics applied to a steady-flow system, as shown
= in Section 5-7.

The Bernoulli equation was first stated in words by the Swiss mathemati-
FIGURE 5-25 cian Daniel Bernoulli (1700-1782) in a text written in 1738 when he was
The Bernoulli equation states that the  working in St. Petersburg, Russia. It was later derived in equation form by
sum of the kinetic, potential, and flow  hjs associate Leonhard Euler in 1755. We recognize V%2 as kinetic energy,
energies of a fluid particle is constant o7 a5 porential energy, and Plp as flow energy, all per unit mass. Therefore,
along a streamline during steady flow.  the Bernoulli equation can be viewed as an expression of mechanical energy
balance and can be stated as follows (Fig. 5-25):

The sum of the kinetic, potential, and flow energies of a fluid particle is
constant along a streamline during steady flow when the compressibility
and frictional effects are negligible.

The kinetic, potential, and flow energies are the mechanical forms of
energy, as discussed in Section 5-3, and the Bernoulli equation can be
viewed as the “conservation of mechanical energy principle.” This is equiva-
lent to the general conservation of energy principle for systems that do not
involve any conversion of mechanical energy and thermal energy to each
other, and thus the mechanical energy and thermal energy are conserved sep-
arately. The Bernoulli equation states that during steady, incompressible flow
with negligible friction, the various forms of mechanical energy are con-
verted to each other, but their sum remains constant. In other words, there is
no dissipation of mechanical energy during such flows since there is no fric-
tion that converts mechanical energy to sensible thermal (internal) energy.

Recall that energy is transferred to a system as work when a force is
applied to a system through a distance. In the light of Newton’s second law
of motion, the Bernoulli equation can also be viewed as: The work done by
the pressure and gravity forces on the fluid particle is equal to the increase
in the kinetic energy of the particle.

Despite the highly restrictive approximations used in its derivation, the
Bernoulli equation is commonly used in practice since a variety of practical
fluid flow problems can be analyzed to reasonable accuracy with it. This is
because many flows of practical engineering interest are steady (or at least
steady in the mean), compressibility effects are relatively small, and net
frictional forces are negligible in regions of interest in the flow.

Force Balance across Streamlines

It is left as an exercise to show that a force balance in the direction n normal
to the streamline yields the following relation applicable across the stream-
lines for steady, incompressible flow:

V? .
; + J R dn + gz = constant (across streamlines) (5-43)

o
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For flow along a straight line, R — % and thus relation (Eq. 5-44) reduces z z

to P/lp + gz = constant or P = —pgz + constant, which is an expression A c
for the variation of hydrostatic pressure with vertical distance for a station-

ary fluid body. Therefore, the variation of pressure with elevation in steady, e
incompressible flow along a straight line is the same as that in the stationary 5 )
fluid (Fig. 5-26). Stationary fluid Flowing fluid
Unsteady, Compressible Flow i ol
Similarly, using both terms in the acceleration expression (Eq. 5-33), it can FIGURE 5-26
be shown that the Bernoulli equation for unsteady, compressible flow is The variation of pressure with
AP FYY V2 elevation in steady, incompressible
Unsteady, compressible flow: J ) + J o ds + > + gz = constant (5-44) flow along a straight line is the

same as that in the stationary fluid
(but this is not the case for a

Static, Dynamic, and Stagnation Pressures curved flow section).
The Bernoulli equation states that the sum of the flow, kinetic, and potential

energies of a fluid particle along a streamline is constant. Therefore, the

kinetic and potential energies of the fluid can be converted to flow energy

(and vice versa) during flow, causing the pressure to change. This phenome-

non can be made more visible by multiplying the Bernoulli equation by the

density p,

V_
P+p B + pgz = constant (along a streamline) (5-45)

Each term in this equation has pressure units, and thus each term represents
some kind of pressure:

* P is the static pressure (it does not incorporate any dynamic effects); it
represents the actual thermodynamic pressure of the fluid. This is the
same as the pressure used in thermodynamics and property tables.

e pV?2is the dynamic pressure; it represents the pressure rise when the
fluid in motion is brought to a stop isentropically.

* pgzis the hydrostatic pressure, which is not pressure in a real sense
since its value depends on the reference level selected; it accounts for the

elevation effects, i.e., of fluid weight on pressure. Dynamic
. . . . pressure
The sum of the static, dynamic, and hydrostatic pressures is called the total Piezometer Stagnation
pressure. Therefore, the Bernoulli equation states that the total pressure _ pressure, Py,
along a streamline is constant. Static pV;
The sum of the static and dynamic pressures is called the stagnation pressure, P Pitot
tube

pressure, and it is expressed as

V2 V2 .—) / —
Pag=P+p—  (kPa) (5-46)

stag

The stagnation pressure represents the pressure at a point where the fluid is Stagnation
brought to a complete stop isentropically. The static, dynamic, and stagna- potnt
tion pressures are shown in Fig. 5-27. When static and stagnation pressures Vel 2= P)
are measured at a specified location, the fluid velocity at that location can p
be calculated from FIGURE 5-27
V= M (5-47) The static, dynamic, and
p stagnation pressures.
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Equation 5-47 is useful in the measurement of flow velocity when a com-
bination of a static pressure tap and a Pitot tube is used, as illustrated in Fig.
5-27. A static pressure tap is simply a small hole drilled into a wall such
that the plane of the hole is parallel to the flow direction. It measures the sta-
tic pressure. A Pitot tube is a small tube with its open end aligned into the
flow so as to sense the full impact pressure of the flowing fluid. It measures
the stagnation pressure. In situations in which the static and stagnation pres-
sure of a flowing liquid are greater than atmospheric pressure, a vertical trans-
parent tube called a piezometer tube (or simply a piezometer) can be
attached to the pressure tap and to the Pitot tube, as sketched in Fig. 5-27.
The liquid rises in the piezometer tube to a column height (head) that is pro-
portional to the pressure being measured. If the pressures to be measured are
below atmospheric, or if measuring pressures in gases, piezometer tubes do
Hi not work. However, the static pressure tap and Pitot tube can still be used, but

igh Correct Low

they must be connected to some other kind of pressure measurement device

such as a U-tube manometer or a pressure transducer (Chap. 3). Sometimes

it is convenient to integrate static pressure holes on a Pitot probe. The result
—_—

FIGURE 5-28

Close-up of a Pitot-static probe,
showing the stagnation pressure

hole and two of the five static
circumferential pressure holes.

Photo by Po-Ya Abel Chuang. Used by permission.

is a Pitot-static probe, as shown in Fig. 5-28 and discussed in more detail in

Chap. 8. A Pitot-static probe connected to a pressure transducer or a

manometer measures the dynamic pressure (and thus fluid velocity) directly.

When the static pressure is measured by drilling a hole in the tube wall,

FIGURE 5-29 care must be exercised to ensure that the opening of the hole is flush with

the wall surface, with no extrusions before or after the hole (Fig. 5-29).

Otherwise the reading will incorporate some dynamic effects, and thus it
will be in error.

When a stationary body is immersed in a flowing stream, the fluid is
brought to a stop at the nose of the body (the stagnation point). The flow
Stagnation streamline streamline that extends from far upstream to the stagnation point is called
the stagnation streamline (Fig. 5-30). For a two-dimensional flow in the
xy-plane, the stagnation point is actually a line parallel the z-axis, and the
stagnation streamline is actually a surface that separates fluid that flows
over the body from fluid that flows under the body. In an incompressible
flow, the fluid decelerates nearly isentropically from its free-stream value to
zero at the stagnation point, and the pressure at the stagnation point is thus
the stagnation pressure.

Careless drilling of the static pressure
tap may result in an erroneous reading
of the static pressure.

FIGURE 5-30

Streaklines produced by colored fluid  Limitations on the Use of the Bernoulli Equation
introduced upstream of an airfoil; The Bernoulli equation (Eq. 5-41) is one of the most frequently used and
since the flow is steady, the streaklines  misused equations in fluid mechanics. Its versatility, simplicity, and ease of
are the same as streamlines and use make it a very valuable tool for use in analysis, but the same attributes
Pathlifllies(-l The stagnation streamline also make it very tempting to misuse. Therefore, it is important to under-
is marked.

stand the restrictions on its applicability and observe the limitations on its

Courtesy ONERA. Photograph by Werlé. use, as explained here:

1. Steady flow The first limitation on the Bernoulli equation is that it is
applicable to steady flow. Therefore, it should not be used during the
transient start-up and shut-down periods, or during periods of change in
the flow conditions. Note that there is an unsteady form of the Bernoulli
equation (Eq. 5-44), discussion of which is beyond the scope of the
present text (see Panton, 1996).



cen72367_ch05.gxd 10/29/04 2:25 PM Page 191
Printed from PDF by LPS

191
CHAPTER 5
Sudden Long and narrow
expansion @ tubes

Flow through
A fan @4\%,_’@ avalveg
—_—
.

@ @ —_ Boundary layers FIGURE 5-31
| - /\

. ® @ '7\\ Frictional effects and components

Q Wakes— that disturb the streamlined

A heating section ,\\ structure of flow in a flow

* section make the Bernoulli

equation invalid.

2. Frictionless flow Every flow involves some friction, no matter how
small, and frictional effects may or may not be negligible. The situation
is complicated even more by the amount of error that can be tolerated. In
general, frictional effects are negligible for short flow sections with
large cross sections, especially at low flow velocities. Frictional effects
are usually significant in long and narrow flow passages, in the wake
region downstream of an object, and in diverging flow sections such as
diffusers because of the increased possibility of the fluid separating from
the walls in such geometries. Frictional effects are also significant near
solid surfaces, and thus the Bernoulli equation is usually applicable
along a streamline in the core region of the flow, but not along a
streamline close to the surface (Fig. 5-31).

A component that disturbs the streamlined structure of flow and thus
causes considerable mixing and backflow such as a sharp entrance of a
tube or a partially closed valve in a flow section can make the Bernoulli
equation inapplicable.

3. No shaft work The Bernoulli equation was derived from a force
balance on a particle moving along a streamline. Therefore, the
Bernoulli equation is not applicable in a flow section that involves a
pump, turbine, fan, or any other machine or impeller since such devices
destroy the streamlines and carry out energy interactions with the fluid
particles. When the flow section considered involves any of these
devices, the energy equation should be used instead to account for the
shaft work input or output. However, the Bernoulli equation can still be
applied to a flow section prior to or past a machine (assuming, of course,
that the other restrictions on its use are satisfied). In such cases, the
Bernoulli constant changes from upstream to downstream of the device.

4. Incompressible flow One of the assumptions used in the derivation of
the Bernoulli equation is that p = constant and thus the flow is
incompressible. This condition is satisfied by liquids and also by gases
at Mach numbers less than about 0.3 since compressibility effects and
thus density variations of gases are negligible at such relatively low
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FIGURE 5-32

‘When the flow is irrotational, the
Bernoulli equation becomes applicable
between any two points along the flow
(not just on the same streamline).

FIGURE 5-33

An alternative form of the Bernoulli
equation is expressed in terms of
heads as: The sum of the pressure,
velocity, and elevation heads is
constant along a streamline.

velocities. Note that there is a compressible form of the Bernoulli
equation (Egs. 5-40 and 5-44).

5. No heat transfer The density of a gas is inversely proportional to
temperature, and thus the Bernoulli equation should not be used for flow
sections that involve significant temperature change such as heating or
cooling sections.

6. Flow along a streamline Strictly speaking, the Bernoulli equation
Plp + V?/2 + gz = C is applicable along a streamline, and the value
of the constant C, in general, is different for different streamlines. But
when a region of the flow is irrotational, and thus there is no vorticity
in the flow field, the value of the constant C remains the same for all
streamlines, and, therefore, the Bernoulli equation becomes applicable
across streamlines as well (Fig. 5-32). Therefore, we do not need to be
concerned about the streamlines when the flow is irrotational, and we
can apply the Bernoulli equation between any two points in the
irrotational region of the flow (Chap. 10).

We derived the Bernoulli equation by considering two-dimensional flow
in the xz-plane for simplicity, but the equation is valid for general three-
dimensional flow as well, as long as it is applied along the same streamline.
We should always keep in mind the assumptions used in the derivation of
the Bernoulli equation and make sure that they are not violated.

Hydraulic Grade Line (HGL)
and Energy Grade Line (EGL)

It is often convenient to represent the level of mechanical energy graphically
using heights to facilitate visualization of the various terms of the Bernoulli
equation. This is done by dividing each term of the Bernoulli equation by g
to give

P V?

— + — + z = H = constant

(5-48)
pg 28

(along a streamline)

Each term in this equation has the dimension of length and represents some
kind of “head” of a flowing fluid as follows:

* Plpg is the pressure head; it represents the height of a fluid column that
produces the static pressure P.

e V?/2g is the velocity head; it represents the elevation needed for a fluid
to reach the velocity V during frictionless free fall.

* zis the elevation head; it represents the potential energy of the fluid.

Also, H is the total head for the flow. Therefore, the Bernoulli equation can
be expressed in terms of heads as: The sum of the pressure, velocity, and
elevation heads along a streamline is constant during steady flow when the
compressibility and frictional effects are negligible (Fig. 5-33).

If a piezometer (measures static pressure) is tapped into a pipe, as shown
in Fig. 5-34, the liquid would rise to a height of P/pg above the pipe center.
The hydraulic grade line (HGL) is obtained by doing this at several loca-
tions along the pipe and drawing a line through the liquid levels in the
piezometers. The vertical distance above the pipe center is a measure of
pressure within the pipe. Similarly, if a Pitot tube (measures static +

o
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dynamic pressure) is tapped into a pipe, the liquid would rise to a height of
Plpg + V?/2g above the pipe center, or a distance of V?/2g above the HGL.
The energy grade line (EGL) is obtained by doing this at several locations
along the pipe and drawing a line through the liquid levels in the Pitot tubes.

Noting that the fluid also has elevation head z (unless the reference level
is taken to be the centerline of the pipe), the HGL and EGL can be defined
as follows: The line that represents the sum of the static pressure and the
elevation heads, P/pg + z, is called the hydraulic grade line. The line that
represents the total head of the fluid, P/pg + V?2g + z, is called the
energy grade line. The difference between the heights of EGL and HGL is
equal to the dynamic head, V?/2g. We note the following about the HGL
and EGL:

* For stationary bodies such as reservoirs or lakes, the EGL and HGL
coincide with the free surface of the liquid. The elevation of the free
surface z in such cases represents both the EGL and the HGL since the
velocity is zero and the static pressure (gage) is zero.

» The EGL is always a distance V*/2g above the HGL. These two lines
approach each other as the velocity decreases, and they diverge as the
velocity increases. The height of the HGL decreases as the velocity
increases, and vice versa.

* In an idealized Bernoulli-type flow, EGL is horizontal and its height
remains constant. This would also be the case for HGL when the flow
velocity is constant (Fig. 5-35).

* For open-channel flow, the HGL coincides with the free surface of the
liquid, and the EGL is a distance V?*/2g above the free surface.

* At a pipe exit, the pressure head is zero (atmospheric pressure) and thus
the HGL coincides with the pipe outlet (location 3 on Fig. 5-34).

* The mechanical energy loss due to frictional effects (conversion to
thermal energy) causes the EGL and HGL to slope downward in the
direction of flow. The slope is a measure of the head loss in the pipe
(discussed in detail in Chap. 8). A component that generates significant
frictional effects such as a valve causes a sudden drop in both EGL and
HGL at that location.

* A steep jump occurs in EGL and HGL whenever mechanical energy is
added to the fluid (by a pump, for example). Likewise, a steep drop

o
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FIGURE 5-34

The hydraulic grade line (HGL) and
the energy grade line (EGL) for free
discharge from a reservoir through a
horizontal pipe with a diffuser.
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0
FIGURE 5-35

In an idealized Bernoulli-type flow,
EGL is horizontal and its height
remains constant. But this is not
the case for HGL when the flow

velocity varies along the flow.
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EGL occurs in EGL and HGL whenever mechanical energy is removed from
r =~ " the fluid (by a turbine, for example), as shown in Fig. 5-36.
//I/' L \l\ * The pressure (gage) of a fluid is zero at locations where the HGL
J/ | I intersects the fluid. The pressure in a flow section that lies above the HGL
T |l‘\ is negative, and the pressure in a section that lies below the HGL is
T 1 positive (Fig. 5-37). Therefore, an accurate drawing of a piping system
== === and the HGL can be used to determine the regions where the pressure in

pap Tubine the pipe is negative (below the atmospheric pressure).

(NI ) The last remark enables us to avoid situations in which the pressure drops
\S\ \><\ below the vapor pressure of the liquid (which causes cavitation, as dis-

W W cussed in Chap. 2). Proper consideration is necessary in the placement of a
liquid pump to ensure that the suction side pressure does not fall too low,
FIGURE 5-36 especially at elevated temperatures where vapor pressure is higher than it is
at low temperatures.

pump turbine

A steep jump occurs in EGL and HGL . . . -
whenever mechanical energy is added Now we examine Fig. 5-34 more closely. At point O (at the liquid surface),

to the fluid by a pump, and a steep drop EGL and HGL are even with the .liquid surface .since ther.e is no flow there.
occurs whenever mechanical energy is HGL decreases rapidly as the liquid accelerates into the pipe; however, EGL
removed from the fluid by a turbine. decreases very slowly through the well-rounded pipe inlet. EGL declines con-
tinually along the flow direction due to friction and other irreversible losses in

the flow. EGL cannot increase in the flow direction unless energy is supplied

Negative P to the fluid. HGL can rise or fall in the flow direction, but can never exceed

EGL. HGL rises in the diffuser section as the velocity decreases, and the sta-
tic pressure recovers somewhat; the total pressure does not recover, however,
/ - and EGL decreases through the diffuser. The difference between EGL and
Positive P T\ HGL is V3/2g at point 1, and V3/2g at point 2. Since V, > V,, the difference
Positive p\\\ between the two grade lines is larger at point 1 than at point 2. The downward
slope of both grade lines is larger for the smaller diameter section of pipe

since the frictional head loss is greater. Finally, HGL decays to the liquid sur-

FIGURE 5-37 face at the outlet since the pressure there is atmospheric. However, EGL is

The pressure (gage) of a fluid is zero ]l higher than HGL by the amount V2/2g since V; = V, at the outlet.
at locations where the HGL intersects

the fluid, and the pressure is negative

(vacuum) in a flow section that lies 5—5 = APPLICATIONS OF THE
above the HGL. BERNOULLI EQUATION

In Section 5-4, we discussed the fundamental aspects of the Bernoulli equa-
tion. In this section, we demonstrate its use in a wide range of applications
through examples.

EXAMPLE 5-5 Spraying Water into the Air

Water is flowing from a hose attached to a water main at 400 kPa gage (Fig.
5-38). A child places his thumb to cover most of the hose outlet, causing a
thin jet of high-speed water to emerge. If the hose is held upward, what is
the maximum height that the jet could achieve?

SOLUTION Water from a hose attached to the water main is sprayed into
the air. The maximum height the water jet can rise is to be determined.

Assumptions 1 The flow exiting into the air is steady, incompressible, and
irrotational (so that the Bernoulli equation is applicable). 2 The water pressure
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in the hose near the outlet is equal to the water main pressure. 3 The surface X

tension effects are negligible. 4 The friction between the water and air is neg-
ligible. 5 The irreversibilities that may occur at the outlet of the hose due to \v
abrupt expansion are negligible. ‘
Properties We take the density of water to be 1000 kg/m3.

Analysis This problem involves the conversion of flow, kinetic, and potential
energies to each other without involving any pumps, turbines, and wasteful
components with large frictional losses, and thus it is suitable for the use of
the Bernoulli equation. The water height will be maximum under the stated
assumptions. The velocity inside the hose is relatively low (V; = 0) and we
take the hose outlet as the reference level (z; = 0). At the top of the water
trajectory V, = 0, and atmospheric pressure pertains. Then the Bernoulli
equation simplifies to

Water jet

P, V%/‘O e 0 P, V%/‘O P, P,
— + — V41 = — 4+ — + 25 — = + 25
pg 28 pg 28 PE P8
Solving for z, and substituting,
g P Pan _ Prooee 400 kPa <1000 N/mz) (1 kg - m/sz)
: P8 P8 (1000 kg/m®)(9.81 m/s?) \ 1kPa IN
=40.8m

FIGURE 5-38

Therefore, the water jet can rise as high as 40.8 m into the sky in this case. Schematic for Example 5-5.

Discussion The result obtained by the Bernoulli equation represents the
upper limit and should be interpreted accordingly. It tells us that the water
cannot possibly rise more than 40.8 m, and, in all likelihood, the rise will be
much less than 40.8 m due to irreversible losses that we neglected.

EXAMPLE 5-6 Water Discharge from a Large Tank

A large tank open to the atmosphere is filled with water to a height of 5 m
from the outlet tap (Fig. 5-39). A tap near the bottom of the tank is now D
opened, and water flows out from the smooth and rounded outlet. Determine
the water velocity at the outlet.

|

|

|

|

||

||

|

|

SOLUTION A tap near the bottom of a tank is opened. The exit velocity of 5m . z

water from the tank is to be determined.

Assumptions 1 The flow is incompressible and irrotational (except very close v

to the walls). 2 The water drains slowly enough that the flow can be approxi- 1 -~
mated as steady (actually quasi-steady when the tank begins to drain). 0

Analysis This problem involves the conversion of flow, kinetic, and potential @
energies to each other without involving any pumps, turbines, and wasteful

components with large frictional losses, and thus it is suitable for the use of FIGURE 5-39
the Bernoulli equation. We take point 1 to be at the free surface of water so Schematic for Example 5-6.
that P, = P, (open to the atmosphere), V; = O (the tank is large relative to

the outlet), and z; = 5 m and z, = O (we take the reference level at the

center of the outlet). Also, P, = P, (water discharges into the atmosphere).

Then the Bernoulli equation simplifies to

0

0
Pl vi/ P, V3 V3
+71 +21: +72+Zz/' N 21:72
g 28 8

2g 2g
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Solving for V, and substituting,
V, = V2gz; = V2(9.81 m/s*)(5 m) = 9.9 m/s

The relation V = V/2gz is called the Toricelli equation.

Therefore, the water leaves the tank with an initial velocity of 9.9 m/s.

This is the same velocity that would manifest if a solid were dropped a dis-
tance of 5 m in the absence of air friction drag. (What would the velocity be
if the tap were at the bottom of the tank instead of on the side?)
Discussion |f the orifice were sharp-edged instead of rounded, then the flow
would be disturbed, and the velocity would be less than 9.9 m/s, especially
near the edges. Care must be exercised when attempting to apply the
Bernoulli equation to situations where abrupt expansions or contractions
occur since the friction and flow disturbance in such cases may not be neg-
ligible.

EXAMPLE 5-7 Siphoning Out Gasoline from a Fuel Tank

—Z During a trip to the beach (P, = 1 atm = 101.3 kPa), a car runs out of
gasoline, and it becomes necessary to siphon gas out of the car of a Good
Samaritan (Fig. 5-40). The siphon is a small-diameter hose, and to start the
siphon it is necessary to insert one siphon end in the full gas tank, fill the
hose with gasoline via suction, and then place the other end in a gas can
below the level of the gas tank. The difference in pressure between point 1
(at the free surface of the gasoline in the tank) and point 2 (at the outlet of
the tube) causes the liquid to flow from the higher to the lower elevation.
Point 2 is located 0.75 m below point 1 in this case, and point 3 is located
2 m above point 1. The siphon diameter is 4 mm, and frictional losses in
the siphon are to be disregarded. Determine (a) the minimum time to with-
075m draw 4 L of gasoline from the tank to the can and (b) the pressure at point
S\o 3. The density of gasoline is 750 kg/m3.

Gasoline
siphoning
tube

—24

.J —2

// 0 SOLUTION Gasoline is to be siphoned from a tank. The minimum time it

Gas can takes to withdraw 4 L of gasoline and the pressure at the highest point in
the system are to be determined.

FIGURE 5-40 Assumptions 1 The flow is steady and incompressible. 2 Even though the

Schematic for Example 5-7. Bernoulli equation is not valid through the pipe because of frictional losses,

we employ the Bernoulli equation anyway in order to obtain a best-case esti-

mate. 3 The change in the gasoline surface level inside the tank is negligible

compared to elevations z; and z, during the siphoning period.

Properties The density of gasoline is given to be 750 kg/m3.

Analysis (a) We take point 1 to be at the free surface of gasoline in the

tank so that P, = P, (open to the atmosphere), V; = O (the tank is large

relative to the tube diameter), and z, = O (point 2 is taken as the reference

level). Also, P, = P, (gasoline discharges into the atmosphere). Then the

Bernoulli equation simplifies to

0 0
P[ Vi P{ V3 e V3
+— +z1= +—+2 — 1=
g 28 g 28 2g
Solving for V, and substituting,

V, = V2gz, = V2(9.81 m/s?)(0.75 m) = 3.84 m/s
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The cross-sectional area of the tube and the flow rate of gasoline are
A=aD4=m(5X 10"  m)¥/4 = 1.96 X 10’ m*
V=V,A = (3.84 m/s)(1.96 X 105 m? = 7.53 X 105 m%s = 0.0753 L/s
Then the time needed to siphon 4 L of gasoline becomes

v 4L
Af=—=—"-—"=
v 0.0753 L/s
(b) The pressure at point 3 can be determined by writing the Bernoulli equa-
tion between points 2 and 3. Noting that V, = V3 (conservation of mass), z,
=0, and P, = P,

0
P,V PV, P, P
2 2+z2/'=3+2/f3+z3 s

53.1s

P8 8 P8
Solving for P; and substituting,

Py = P — 823

IN 1 kPa
= 101.3 kPa — (750 kg/m*)(9.81 m/s>)(2.75 ( )( )
8 = (750 kg/m)( DT T sz \ 1000 N2

= 81.1 kPa

Discussion The siphoning time is determined by neglecting frictional
effects, and thus this is the minimum time required. In reality, the time will
be longer than 53.1 s because of friction between the gasoline and the tube
surface. Also, the pressure at point 3 is below the atmospheric pressure. If
the elevation difference between points 1 and 3 is too high, the pressure at
point 3 may drop below the vapor pressure of gasoline at the gasoline tem-
perature, and some gasoline may evaporate (cavitate). The vapor then may
form a pocket at the top and halt the flow of gasoline.

EXAMPLE 5-8 Velocity Measurement by a Pitot Tube

A piezometer and a Pitot tube are tapped into a horizontal water pipe, as
shown in Fig. 5-41, to measure static and stagnation (static + dynamic)
pressures. For the indicated water column heights, determine the velocity at
the center of the pipe.

SOLUTION The static and stagnation pressures in a horizontal pipe are
measured. The velocity at the center of the pipe is to be determined.
Assumptions 1 The flow is steady and incompressible. 2 Points 1 and 2 are
close enough together that the irreversible energy loss between these two
points is negligible, and thus we can use the Bernoulli equation.

Analysis We take points 1 and 2 along the centerline of the pipe, with point
1 directly under the piezometer and point 2 at the tip of the Pitot tube. This
is a steady flow with straight and parallel streamlines, and the gage pres-
sures at points 1 and 2 can be expressed as

Py = pg(h, + hy)
P, = pg(hy + h, + hy)
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hy=12cm
hy=T7cm
hy=3cm
Water_e ) —V
)
Stagnation
point
FIGURE 5-41

Schematic for Example 5-8.
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Noting that point 2 is a stagnation point and thus vV, = O and z; = z,, the
application of the Bernoulli equation between points 1 and 2 gives

Py, V3

P,
_|_
pg 2g

V2
7+7I+z|:
Pg 28

Vi _P,—P

L =_-%Z ~ 1
f2 2 26 pg

Substituting the P, and P, expressions gives

Vi:PZ_Pl:Pg(hl+hz+ha)—pg(h1+hz):h

2g pg pg ?

Solving for V; and substituting,

V, = V2ghy = V/2(9.81 m/s3)(0.12 m) = 1.53 m/s

Discussion Note that to determine the flow velocity, all we need is to mea-
sure the height of the excess fluid column in the Pitot tube.

EXAMPLE 5-9 The Rise of the Ocean Due to a Hurricane

( Eye ‘) A hurricane is a tropical storm formed over the ocean by low atmospheric
Hurricane pressures. As a hurricane approaches land, inordinate ocean swells (very
high tides) accompany the hurricane. A Class-5 hurricane features winds in
é} B excess of 155 mph, although the wind velocity at the center “eye” is very
low.
ch;:r‘l T C? Figure 5-42 depicts a hurricane hovering over the ocean swell below. The
level hy I atmospheric pressure 200 mi from the eye is 30.0 in Hg (at point 1, gener-
CP l | ally normal for the ocean) and the winds are calm. The hurricane atmo-
Ocean spheric pressure at the eye of the storm is 22.0 in Hg. Estimate the ocean
swell at (a) the eye of the hurricane at point 3 and (b) point 2, where the
wind velocity is 155 mph. Take the density of seawater and mercury to be
64 Ibm/ft3 and 848 Ibm/ft3, respectively, and the density of air at normal
sea-level temperature and pressure to be 0.076 Ibm/ft3.
FIGURE 5-42
Schematic for Example 5-9. The SOLUTION A hurricane is moving over the ocean. The amount of ocean

swell at the eye and at active regions of the hurricane are to be determined.
Assumptions 1 The airflow within the hurricane is steady, incompressible,
and irrotational (so that the Bernoulli equation is applicable). (This is cer-
tainly a very questionable assumption for a highly turbulent flow, but it is jus-
tified in the solution.) 2 The effect of water drifted into the air is negligible.
Properties The densities of air at normal conditions, seawater, and mercury
are given to be 0.076 Ibm/ft3, 64 |bm/ft3, and 848 Ibm/ft3, respectively.
Analysis (a) Reduced atmospheric pressure over the water causes the water
to rise. Thus, decreased pressure at point 2 relative to point 1 causes the
ocean water to rise at point 2. The same is true at point 3, where the storm air
velocity is negligible. The pressure difference given in terms of the mercury
column height can be expressed in terms of the seawater column height by

vertical scale is greatly exaggerated.

pHg
AP = (pgh)l-[g = (pgh)sw - hsw = ThHg

SW
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Then the pressure difference between points 1 and 3 in terms of the seawa-
ter column height becomes

_ Pug <848 Ibm/ft?
12in

1 ft
o = = 30 — 22) in He|| —— | = 8.83 ft
' e e Ut Tom/ie )K )in g]< >

which is equivalent to the storm surge at the eye of the hurricane since the
wind velocity there is negligible and there are no dynamic effects.

(b) To determine the additional rise of ocean water at point 2 due to the high
winds at that point, we write the Bernoulli equation between points A and B,
which are on top of the points 2 and 3, respectively. Noting that Vg = O (the
eye region of the hurricane is relatively calm) and z, = zz (both points are
on the same horizontal line), the Bernoulli equation simplifies to

P,— P, V?
= et
P8 2g

Substituting,

Py— P, Vi (155mph)’ (14667 ft/s)> _
A = 803 ft
P8 2¢  2(32.2ft/s*) \ 1 mph

where p is the density of air in the hurricane. Noting that the density of an
ideal gas at constant temperature is proportional to absolute pressure and
the density of air at the normal atmospheric pressure of 14.7 psia = 30 in
Hg is 0.076 Ibm/ft3, the density of air in the hurricane is

T = (22 in Hg) 0.076 Ibm/ft®) = 0.056 Ibm/ft’
Pair — P Patm air — 301HHg ( . ) - Y.

atm air

Using the relation developed above in part (a), the seawater column height
equivalent to 803 ft of air column height is determined to be

air 0.056 lbII]/ftS
=L oy = (m)(f%% ft) = 0.70 ft

hdynamic -
SW

Therefore, the pressure at point 2 is 0.70 ft seawater column lower than the
pressure at point 3 due to the high wind velocities, causing the ocean to rise
an additional 0.70 ft. Then the total storm surge at point 2 becomes

hy = hy + Ryynamic = 8.83 + 0.70 = 9.53 ft

Discussion This problem involves highly turbulent flow and the intense
breakdown of the streamlines, and thus the applicability of the Bernoulli
equation in part (b) is questionable. Furthermore, the flow in the eye of the
storm is not irrotational, and the Bernoulli equation constant changes across
streamlines (see Chap. 10). The Bernoulli analysis can be thought of as the
limiting, ideal case, and shows that the rise of seawater due to high-velocity
winds cannot be more than 0.70 ft.

The wind power of hurricanes is not the only cause of damage to coastal
areas. Ocean flooding and erosion from excessive tides is just as serious, as
are high waves generated by the storm turbulence and energy.
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EXAMPLE 5-10 Bernoulli Equation for Compressible Flow

Derive the Bernoulli equation when the compressibility effects are not negli-
gible for an ideal gas undergoing (a) an isothermal process and (b) an isen-
tropic process.

SOLUTION The Bernoulli equation for compressible flow is to be obtained
for an ideal gas for isothermal and isentropic processes.

Assumptions 1 The flow is steady and frictional effects are negligible. 2 The
fluid is an ideal gas, so the relation P = pRT is applicable. 3 The specific
heats are constant so that P/pk = constant during an isentropic process.
Analysis (a) When the compressibility effects are significant and the flow
cannot be assumed to be incompressible, the Bernoulli equation is given by
Eq. 5-40 as

2
J L%P + V? + gz = constant (along a streamline) (1)
The compressibility effects can be properly accounted for by expressing p in
terms of pressure, and then performing the integration [dP/p in Eq. 1. But
this requires a relation between P and p for the process. For the isothermal
expansion or compression of an ideal gas, the integral in Eq. 1 can be per-
formed easily by noting that T = constant and substituting p = P/RT. It

gives
dP _ P
J i J PIRT — RTIn P

Substituting into Eq. 1 gives the desired relation,
2

Isothermal process: RTInP + L

2 + gz = constant (2)

(b) A more practical case of compressible flow is the isentropic flow of ideal
gases through equipment that involves high-speed fluid flow such as nozzles,
diffusers, and the passages between turbine blades. Isentropic (i.e.,
reversible and adiabatic) flow is closely approximated by these devices, and
it is characterized by the relation P/p¥ = C = constant, where k is the spe-
cific heat ratio of the gas. Solving for p from Plpk = C gives p = C~VkPYk,
Performing the integration,

dipz U _ W P—]/k+l :LWC P—l/k+l _ k B
Jp JC PP = e = k1 k=1 @

Substituting, the Bernoulli equation for steady, isentropic, compressible flow
of an ideal gas becomes

. flow: _k \P VL
Isentropic flow: (k — l)p + 2 + gz = constant (4a)
or
_k &+ﬁ+ = (< &+ﬁ+ 4b
k—1)p, T 2 T8 T \g-1)5, T2 T8 L

A common practical situation involves the acceleration of a gas from rest
(stagnation conditions at state 1) with negligible change in elevation. In
that case we have z; = z, and V; = 0. Noting that p = P/RT for ideal
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gases, Plpk = constant for isentropic flow, and the Mach number is defined
as Ma = V/c where ¢ = VKRT is the local speed of sound for ideal gases,
Eq. 4b simplifies to

P1 3 k —1 . kl/(k—1)
SNCI

where state 1 is the stagnation state and state 2 is any state along the flow.
Discussion It can be shown that the results obtained using the compress-
ible and incompressible equations deviate no more than 2 percent when the
Mach number is less than 0.3. Therefore, the flow of an ideal gas can be
considered to be incompressible when Ma =< 0.3. For atmospheric air at
normal conditions, this corresponds to a flow speed of about 100 m/s or
360 km/h, which covers our range of interest.

5-6 = GENERAL ENERGY EQUATION m

One of the most fundamental laws in nature is the first law of thermody- —
namics, also known as the conservation of energy principle, which pro-
vides a sound basis for studying the relationships among the various forms
of energy and energy interactions. It states that energy can be neither cre-
ated nor destroyed during a process; it can only change forms. Therefore,
every bit of energy must be accounted for during a process.

PE, = 10KJ
KE, =0

H PE,=7kJ

A rock falling off a cliff, for example, picks up speed as a result of its
potential energy being converted to kinetic energy (Fig. 5-43). Experimen- B m KE, =3 kJ
tal data show that the decrease in potential energy equals the increase in
kinetic energy when the air resistance is negligible, thus confirming the con-
servation of energy principle. The conservation of energy principle also
forms the backbone of the diet industry: a person who has a greater energy FIGURE 543
input (food) than energy output (exercise) will gain weight (store energy in Energy cannot be created or
the form of fat), and a person who has a smaller energy input than output destroyed during a process;
will lose weight. The change in the energy content of a system is equal to it can only change forms.
the difference between the energy input and the energy output, and the
conservation of energy principle for any system can be expressed simply as 0 =3K
Ein - Eout = AE. -
The transfer of any quantity (such as mass, momentum, and energy) is j&
recognized at the boundary as the quantity crosses the boundary. A quantity | |
is said to enter a system if it crosses the boundary from the outside to the | AE=(15-3)+6 |
inside, and to exit the system if it moves in the reverse direction. A quantity ) =18K |
that moves from one location to another within a system is not considered | | Wehatt, in = 0 kJ
as a transferred quantity in an analysis since it does not enter or exit the sys- | 8‘::‘:#
tem. Therefore, it is important to specify the system and thus clearly iden- | |
tify its boundaries before an engineering analysis is performed. =~ = t ””” -
The energy content of a fixed quantity of mass (a closed system) can be 0, =15k
changed by two mechanisms: heat transfer Q and work transfer W. Then the
conservation of energy for a fixed quantity of mass can be expressed in rate FIGURE 544
form as (Fig. 5-44) The energy change of a system
. . dE } ) d during a process is equal to the net
Oretin T Woetin = 7 or Oretin T Wietin = & J pedV  (5-49) work and heat transfer between the
sys system and its surroundings.
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where Qi = Qi — Qout is the net rate of heat transfer to the system (neg-
ative, if from the system), W,..;, = Wi, — W, is the net power input to the

et in 1 3

system in all forms (negative, if power output) and dE /dt is the rate of
change of the total energy content of the system. The overdot stands for
time rate. For simple compressible systems, total energy consists of internal,
kinetic, and potential energies, and it is expressed on a unit-mass basis as

(see Chap. 2)

V2
e=u+ke+pe=u+7+gz (5-50)

Note that total energy is a property, and its value does not change unless the
state of the system changes.

Energy Transfer by Heat, @
In daily life, we frequently refer to the sensible and latent forms of internal
energy as heat, and talk about the heat content of bodies. Scientifically the
more correct name for these forms of energy is thermal energy. For single-
phase substances, a change in the thermal energy of a given mass results in
Room air a change in temperature, and thus temperature is a good representative of
25°C thermal energy. Thermal energy tends to move naturally in the direction of
decreasing temperature, and the transfer of thermal energy from one system
to another as a result of a temperature difference is called heat transfer.
Therefore, an energy interaction is heat transfer only if it takes place
because of a temperature difference. The warming up of a canned drink in a
warmer room, for example, is due to heat transfer (Fig. 5-45). The time rate
of heat transfer is called heat transfer rate and is denoted by Q.

The direction of heat transfer is always from the higher-temperature body
to the lower-temperature one. Once temperature equality is established, heat
transfer stops. There cannot be any heat transfer between two systems (or a
system and its surroundings) that are at the same temperature.

A process during which there is no heat transfer is called an adiabatic
FIGURE 5-45 process. There are two ways a process can be adiabatic: Either the system is
well insulated so that only a negligible amount of heat can pass through the
force for heat transfer. The larger the system boundary, or both the sy.stem an.d.the surroundings are at 'the same
temperature difference, the higher is temperature and therefore there is no driving force (temperature difference)
the rate of heat transfer. for heat transfer. An adiabatic process should not be confused with an

isothermal process. Even though there is no heat transfer during an adia-
batic process, the energy content and thus the temperature of a system can
still be changed by other means such as work transfer.

No heat 8J/s
transfer

Temperature difference is the driving

Energy Transfer by Work, W

An energy interaction is work if it is associated with a force acting through
a distance. A rising piston, a rotating shaft, and an electric wire crossing the
system boundary are all associated with work interactions. The time rate of
doing work is called power and is denoted by W. Car engines and hydraulic,
steam, and gas turbines produce work; compressors, pumps, fans, and mix-
ers consume work.

Work-consuming devices transfer energy to the fluid, and thus increase
the energy of the fluid. A fan in a room, for example, mobilizes the air and
increases its kinetic energy. The electric energy a fan consumes is first con-
verted to mechanical energy by its motor that forces the shaft of the blades

o
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to rotate. This mechanical energy is then transferred to the air, as evidenced
by the increase in air velocity. This energy transfer to air has nothing to do
with a temperature difference, so it cannot be heat transfer. Therefore, it
must be work. Air discharged by the fan eventually comes to a stop and thus
loses its mechanical energy as a result of friction between air particles of
different velocities. But this is not a “loss” in the real sense; it is simply the
conversion of mechanical energy to an equivalent amount of thermal energy
(which is of limited value, and thus the term loss) in accordance with the
conservation of energy principle. If a fan runs a long time in a sealed room,
we can sense the buildup of this thermal energy by a rise in air temperature.

A system may involve numerous forms of work, and the total work can be
expressed as

VVtotal = Wshaft + Wpressure + inscous + Wother (5-51)

where W, is the work transmitted by a rotating shaft, W, is the work

ressure
done by the pressure forces on the control surface, W ;s is the work done
by the normal and shear components of viscous forces on the control sur-
face, and W, is the work done by other forces such as electric, magnetic,
and surface tension, which are insignificant for simple compressible systems
and are not considered in this text. We do not consider W, €ither since it
is usually small relative to other terms in control volume analysis. But it
should be kept in mind that the work done by shear forces as the blades
shear through the fluid may need to be considered in a refined analysis of

turbomachinery.

Shaft Work

Many flow systems involve a machine such as a pump, a turbine, a fan, or a
compressor whose shaft protrudes through the control surface, and the work
transfer associated with all such devices is simply referred to as shaft work
W gai- The power transmitted via a rotating shaft is proportional to the shaft
torque T, and is expressed as

Wit = ©T g = 20T (5-52)
where w is the angular speed of the shaft in rad/s and 7 is defined as the
number of revolutions of the shaft per unit time, often expressed in rev/min
or rpm.

Work Done by Pressure Forces

Consider a gas being compressed in the piston-cylinder device shown in
Fig. 5-46a. When the piston moves down a differential distance ds under
the influence of the pressure force PA, where A is the cross-sectional area of
the piston, the boundary work done on the system is W, nqay = PA ds.
Dividing both sides of this relation by the differential time interval dt gives
the time rate of boundary work (i.e., power),

SWpressure = 8Wb0undary =P Avpiston

where Vi, = ds/dt is the piston velocity, which is the velocity of the mov-
ing boundary at the piston face.

Now consider a material chunk of fluid (a system) of arbitrary shape,
which moves with the flow and is free to deform under the influence of

pressure, as shown in Fig. 5-46b. Pressure always acts inward and normal

o
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The pressure force acting on (a) the
moving boundary of a system in
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(b) the differential surface area

of a system of arbitrary shape.
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to the surface, and the pressure force acting on a differential area dA is
P dA. Again noting that work is force times distance and distance traveled
per unit time is velocity, the time rate at which work is done by pressure
forces on this differential part of the system is

SWpressure = —PdA Vn =—-P dA(\7 . 71) (5-53)

since the normal component of velocity through the differential area dA is
V,=Vcost=1V- 7. Note that 77 is the outer normal of dA, and thus the
quantity V - 7 is positive for expansion and negative for compression. The
negative sign in Eq. 5-53 ensures that work done by pressure forces is posi-
tive when it is done on the system, and negative when it is done by the sys-
tem, which agrees with our sign convention. The total rate of work done by
pressure forces is obtained by integrating SV%ressure over the entire surface A,
) S P o
W pressure, netin = — J P(V-n)dA= — J L PV dA (5-54)
A A

In light of these discussions, the net power transfer can be expressed as

Wnel in — Wshaft, net in + Wpressure, netin Wshaft, netin J P(V : ﬁ) dA (5_55)
A

O Then the rate form of the conservation of energy relation for a closed sys-
o tem becomes
. . . dE sys
Qnet in + Wshafl, net in + Wpressure, netin — (5_56)
dB,,, d dt
sys N
—:—J bp dV + I bp(V,+ n)dA . . .
dt ], cs To obtain a relation for the conservation of energy for a control volume,
we apply the Reynolds transport theorem by replacing B with total energy
o E, and b with total energy per unit mass e, whichis ¢ = u + ke + pe = u
B=FE b=e bee + V%2 + gz (Fig. 5-47). This yields
=— J epdV + J ep(V, - n)A (5-57)
. J dt dr )., s
LI — ep dV + ep(‘_/;-?l)dA S . .
dt dt Substituting the left-hand side of Eq. 5-56 into Eq. 5-57, the general form
cv CS . . . .
of the energy equation that applies to fixed, moving, or deforming control
volumes becomes
. ) . d oo
Qnel in + Wshaft, net in + Wpressure, netin E ep dV + ep(Vr ) I’l) dA (5_58)
FIGURE 5-47 < <
The conservation of energy equation which can be stated as

is obtained by replacing B in the

The net rate of energy The time rate of The net flow rate of
Reynolds transport theorem by )
energy E and b by e. transfer into a CV by | = | change of the energy | + [ energy out of the control
heat and work transfer content of the CV surface by mass flow

Here \7r =V = Vcs is the fluid velocity relative to the control surface, and
the product p(V, - 1) dA represents the mass flow rate through area element
dA into or out of the control volume. Again noting that 7 is the outer normal
of dA, the quantity V, - 7 and thus mass flow is positive for outflow and
negative for inflow.
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Substituting the surface integral for the rate of pressure work from Eq. 5-54
into Eq. 5-58 and combining it with the surface integral on the right give

Oretin + Wttt netin = % J ep dV + J (% + e)pa?. (WA (5-59)
Ccv CsS
This is a very convenient form for the energy equation since pressure work
is now combined with the energy of the fluid crossing the control surface
and we no longer have to deal with pressure work.

The term P/p = PV = wy,,, is the flow work, which is the work associ-
ated with pushing a fluid into or out of a control volume per unit mass. Note
that the fluid velocity at a solid surface is equal to the velocity of the solid
surface because of the no-slip condition and is zero for nonmoving surfaces.
As a result, the pressure work along the portions of the control surface that
coincide with nonmoving solid surfaces is zero. Therefore, pressure work
for fixed control volumes can exist only along the imaginary part of the
control surface where the fluid enters and leaves the control volume, i.e.,
inlets and outlets.

_, For a fixed control volume (no motion or deformation of control volume),
V, = V and the energy equation Eq. 5-59 becomes

Fixed CV:  Qpetin + Wipate netin = 4 j epdV + j (B + e)p(\7- Ry dA  (5-60)
dt Ccv CS p

This equation is not in a convenient form for solving practical engineering

problems because of the integrals, and thus it is desirable to rewrite it in

terms of average velocities and mass flow rates through inlets and outlets. If

Plp + e is nearly uniform across an inlet or outlet, we can simply take it

outside the integral. Noting that m = J p(‘7~ n) dA, is the mass flow rate
A

across an inlet or outlet, the rate of inflow or outflow of energy through the

inlet or outlet can be approximated as m(P/p + e). Then the energy equa-

tion becomes (Fig. 5-48)
) Em( e> (5-61)

where e = u + V22 + gz (Eq. 5-50) is the total energy per unit mass for
both the control volume and flow streams. Then,

out

. . d (P
Qnet in T Wshaft, netin — E LV ep av + E m(;

out
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In a typical engineering problem, the
control volume may contain many
inlets and outlets; energy flows in at
each inlet, and energy flows out at
each outlet. Energy also enters the
control volume through net heat
transfer and net shaft work.

. . d 1% V?
Qnelin"‘Wshuﬂnenn:*j epdV + Em( +u+f+gz) Ern( +u+—+g>
’ dt v p 2 2

(5-62)

or

VZ
> m(h ot gz)

in

Qnel in + WshalL netin —

d , V2
ar «[7\, epdV + Em(h + B + gz) -

out

(5-63)

where we used the definition of enthalpy 7 = u + Pv = u + P/p. The last
two equations are fairly general expressions of conservation of energy, but
their use is still limited to fixed control volumes, uniform flow at inlets and
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FIGURE 5-49
A control volume with only one inlet
and one outlet and energy interactions.
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0.70
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FIGURE 5-50

The lost mechanical energy in a fluid
flow system results in an increase in
the internal energy of the fluid and
thus in a rise of fluid temperature.

outlets, and negligible work due to viscous forces and other effects. Also,
the subscript “net in” stands for “net input,” and thus any heat or work
transfer is positive if fo the system and negative if from the system.

5-7 = ENERGY ANALYSIS OF STEADY FLOWS

For steady flows, the time rate of change of the energy content of the con-
trol volume is zero, and Eq. 5-63 simplifies to

V2
rh(h-i-?-f—gz)— 2

in

Qnel in + Wshaft, netin — 2

V2
m(h e gz> (5-64)

out
It states that the net rate of energy transfer to a control volume by heat and
work transfers during steady flow is equal to the difference between the
rates of outgoing and incoming energy flows with mass.

Many practical problems involve just one inlet and one outlet (Fig. 5-49).
The mass flow rate for such single-stream devices remains constant, and
Eq. 5-64 reduces to

2 2

. - . V- Wi
Qnelin + Wshaft,nelin =m h2 - hl + T + g(ZZ - Zl) (5_65)
where subscripts 1 and 2 stand for inlet and outlet, respectively. The steady-
flow energy equation on a unit-mass basis is obtained by dividing Eq. 5-65
by the mass flow rate m1,
2 2

-V
: S+ gz — 7))

qnel in + Wshafl, netin h2 - hl + (5—66)
= 'Q'net ./m 1s the net heat transfer to the fluid per unit mass and
Wenatt, net in = Wehatt, net i/ 18 the net shaft work input to the fluid per unit
mass. Using the definition of enthalpy # = u + P/p and rearranging, the
steady-flow energy equation can also be expressed as
P Vi P, V3
Wehatt, netin + +7+821 =—+tgntU—u
pr 2 py 2

where et in

| = Gnetin)  (5-6T7)
where u is the internal energy, Plp is the flow energy, V?/2 is the kinetic
energy, and gz is the potential energy of the fluid, all per unit mass. These
relations are valid for both compressible and incompressible flows.

The left side of Eq. 5-67 represents the mechanical energy input, while
the first three terms on the right side represent the mechanical energy out-
put. If the flow is ideal with no irreversibilities such as friction, the total
mechanical energy must be conserved, and the term in parentheses (1, — u,
— et in) Must equal zero. That is,

Ideal flow (no mechanical energy loss): Gretin = Uy — U, (5-68)

Any increase in u, — u; above ¢, ;, is due to the irreversible conversion of
mechanical energy to thermal energy, and thus u, — u;, — g, ;, represents
the mechanical energy loss (Fig. 5-50). That is,

(5-69)
u = c(T, — Ty)

Mechanical energy loss: Crmech. loss = U2 — U] ~ Guerin

For single-phase fluids (a gas or a liquid), we have u, —
where c, is the constant-volume specific heat.

o
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The steady-flow energy equation on a unit-mass basis can be written con-
veniently as a mechanical energy balance as

emech, in — emech, out + emech, loss (5_70)
or
P Vi P, V3
Wihaft, net in =+ =+ 821 = +——+ 82, + €mech, loss (5-71)
P 2 P2 2

NOtll’lg that Wshaft, netin Wshaft: in Wshaft, out : .Wpump ~ Wiurbines the mechan-
ical energy balance can be written more explicitly as

P Vi P, V3

—+t - tgyt Wpump = + "+ 825 + Wurbine T €mech, loss (5-72)
pr 2 py 2 ‘

where w,,,, is the mechanical work input (due to the presence of a pump,
fan, compressor, etc.) and w4 is the mechanical work output. When the

flow is incompressible, either absolute or gage pressure can be used for P
since P,,./p would appear on both sides and would cancel out.
Multiplying Eq. 5-72 by the mass flow rate m gives

2

(P V3 : (P V) : -
m + + 821 + Wpump =m + + 822 + erhine + Emcch‘ loss (5-73)
P 2 P2 2

where Vl{mmp is the shaft power input through the pump’s shaft, W, is the

shaft power output through the turbine’s shaft, and E,_ .., s i the fotal
mechanical power loss, which consists of pump and turbine losses as well as
the frictional losses in the piping network. That is,

Emech, loss Emech loss, pump + Emech loss, turbine + Emech loss, piping

By convention, irreversible pump and turbine losses are treated separately
from irreversible losses due to other components of the piping system. Thus

the energy equation can be expressed in its most common form in terms of
heads as (Fig. 5-51).

P, Vi P, V3
o tath = o Tath + Iy (5-74)

pump, u

P18 8 P28 8

turbine, e

where Ry = < = g g

ered to the fluid by the pump. Because of irreversible losses in the pump,
h is less than W /mg by the factor Similarly,

Woumpt Woumpu TpumpW.
pump, u pump, u _ Pump' pump is the useful head deliv-

pump, u pump npump'

Wiurbine, e Wturbine, e Wturbine .
Neurbine, e = = = — is the extracted head removed

8 mg M turbine/8
from the fluid by the turbine. Because of irreversible losses in the turbine,
h is greater than W, /mg by the factor =, Finally,

turbine, e

€mech loss, piping Emech loss, piping

8 mg
I and 2 due to all components of the piping system other than the pump or
turbine. Note that the head loss &, represents the frictional losses associated
with fluid flow in piping, and it does not include the losses that occur within
the pump or turbine due to the inefficiencies of these devices—these losses
are taken into account by 7y, and M. Equation 5-74 is illustrated
schematically in Fig. 5-51.

h;, = is the irreversible head loss between
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FIGURE 5-51

Mechanical energy flow chart for
a fluid flow system that involves

a pump and a turbine. Vertical
dimensions show each energy term
expressed as an equivalent column
height of fluid, i.e., head,
corresponding to each term

of Eq. 5-74.
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W Control volume Wiarbine

] / T

Emech loss, pump Emech loss,
turbine

W,

turbine, e

. Pl V2 V 2 Emech fluid, out
Emechﬂud,in _+2_1+Z1 E‘FE‘FZ
p8 <8 pg  2g 2

hiT
—V Emech loss, piping

The pump head is zero if the piping system does not involve a pump, a
fan, or a compressor, and the turbine head is zero if the system does not
involve a turbine. Also, the head loss h; can sometimes be ignored when the
frictional losses in the piping system are negligibly small compared to the
other terms in Eq. 5-74.

Special Case: Incompressible Flow with No
Mechanical Work Devices and Negligible Friction

When piping losses are negligible, there is negligible dissipation of mechan-
ical energy into thermal energy, and thus /i, = €, 1055, piping/€ = 0, as shown
later in Example 5-11. Also, hyyn , = Ayine,, = 0 when there are no
mechanical work devices such as fans, pumps, or turbines. Then Eq. 5-74
reduces to
P, Vi P, V3 PV
—F+—tz=—+—+2 or — + — + z = constant  (5-75)
pg  2g pg  2g pg  2g
which is the Bernoulli equation derived earlier using Newton’s second law
of motion.

Kinetic Energy Correction Factor, «
The average flow velocity V,,, was defined such that the relation pV,,A gives
the actual mass flow rate. Therefore, there is no such thing as a correction fac-
tor for mass flow rate. However, as Gaspard Coriolis (1792-1843) showed,
the kinetic energy of a fluid stream obtained from V?/2 is not the same as the
actual kinetic energy of the fluid stream since the square of a sum is not equal
to the sum of the squares of its components (Fig. 5-52). This error can be cor-
rected by replacing the kinetic energy terms V22 in the energy equation by
anVg/Z, where « is the kinetic energy correction factor. By using equations
for the variation of velocity with the radial distance, it can be shown that the
correction factor is 2.0 for fully developed laminar pipe flow, and it ranges
between 1.04 and 1.11 for fully developed turbulent flow in a round pipe.
The kinetic energy correction factors are often ignored (i.e., « is set equal
to 1) in an elementary analysis since (1) most flows encountered in practice

are turbulent, for which the correction factor is near unity, and (2) the

o
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kinetic energy terms are often small relative to the other terms in the energy
equation, and multiplying them by a factor less than 2.0 does not make
much difference. Besides, when the velocity and thus the kinetic energy are
high, the flow turns turbulent. However, you should keep in mind that you
may encounter some situations for which these factors are significant, espe-
cially when the flow is laminar. Therefore, we recommend that you always
include the kinetic energy correction factor when analyzing fluid flow prob-
lems. When the kinetic energy correction factors are included, the energy
equations for steady incompressible flow (Eqs. 5-73 and 5-74) become

(P Vi . (P> V3 . .
m ; + o, 7 + 871 + Wpump =m ; + 2%} 7 + 822 + ‘/Vlurbine + Emeclm, loss

(5-76)

P, 4 P, V3
—+a,—+z,+th =—+ta,—+tz,+th
28 pg 2g

pg pump, u + h[‘ (5-77)

turbine, e
If the flow at an inlet or outlet is fully developed turbulent pipe flow, we
recommend using « = 1.05 as a reasonable estimate of the correction fac-
tor. This leads to a more conservative estimate of head loss, and it does not
take much additional effort to include « in the equations.

EXAMPLE 5-11 Effect of Friction on Fluid Temperature
and Head Loss

Show that during steady and incompressible flow of a fluid in an adiabatic
flow section (a) the temperature remains constant and there is no head loss
when friction is ignored and (b) the temperature increases and some head
loss occurs when frictional effects are considered. Discuss if it is possible for
the fluid temperature to decrease during such flow (Fig. 5-53).

[

[

[

[

u

u

[

[

[

|
SOLUTION Steady and incompressible flow through an adiabatic section is
considered. The effects of friction on the temperature and the heat loss are

to be determined.

Assumptions 1 The flow is steady and incompressible. 2 The flow section is
adiabatic and thus there is no heat transfer, g, = O.

Analysis The density of a fluid remains constant during incompressible flow
and the entropy change is

b

As =c¢,In—

1
This relation represents the entropy change of the fluid per unit mass as it
flows through the flow section from state 1 at the inlet to state 2 at the
outlet. Entropy change is caused by two effects: (1) heat transfer and
(2) irreversibilities. Therefore, in the absence of heat transfer, entropy change

is due to irreversibilities only, whose effect is always to increase entropy.

(a) The entropy change of the fluid in an adiabatic flow section (g, i, = O)
is zero when the process does not involve any irreversibilities such as friction
and swirling, and thus for reversible flow we have

T
Temperature change: As =c¢, ln?2 =0 = =T
1
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m=pVy,,.A p = constant

avg

KE, =fke3m = IA % V2 (H[pV(r) dA]

V2= % pAV3

avg
KEqq .y VoY
KE,, AW\Y,

avg avg

FIGURE 5-52

The determination of the kinetic
energy correction factor using actual
velocity distribution V(r) and the
average velocity V,,, at a cross section.

o @

e p = Corftant B

W Uy
(adiabatic)

FIGURE 5-53

Schematic for Example 5-11.
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Mechanical energy loss:

€mech loss, piping = Uy = U} T YGretin T CV(TZ - T]) ~ Gnetin — 0

Head loss: iy, = @it pad g = ©

Thus we conclude that when heat transfer and frictional effects are negligi-
ble, (1) the temperature of the fluid remains constant, (2) no mechanical
energy is converted to thermal energy, and (3) there is no irreversible head
loss.

(b) When irreversibilities such as friction are taken into account, the entropy
change is positive and thus we have:

T
Temperature change: As =c¢, ln?2 >0 ->T1T>T
1

Mechanical energy l0SS:  €qech 1oss, piping = 2 — Ui — Gnerin = (T, — T}) >0
Head loss: by = Cauiss, pand @ = ©

Thus we conclude that when the flow is adiabatic and irreversible, (1) the
temperature of the fluid increases, (2) some mechanical energy is converted
to thermal energy, and (3) some irreversible head loss occurs.

Discussion It is impossible for the fluid temperature to decrease during
steady, incompressible, adiabatic flow since this would require the entropy of
an adiabatic system to decrease, which would be a violation of the second
law of thermodynamics.

Water
T50 L/s EXAMPLE 5-12 Pumping Power and Frictional Heating

in a Pump

300 kPa @ The pump of a water distribution system is powered by a 15-kW electric

motor whose efficiency is 90 percent (Fig. 5-54). The water flow rate
through the pump is 50 L/s. The diameters of the inlet and outlet pipes are
Motor the same, and the elevation difference across the pump is negligible. If the
. 15 kW pressures at the inlet and outlet of the pump are measured to be 100 kPa
pump and 300 kPa (absolute), respectively, determine (a) the mechanical effi-
3 ciency of the pump and (b) the temperature rise of water as it flows through
the pump due to the mechanical inefficiency.

nmmor =90%

100 kPa

T SOLUTION The pressures across a pump are measured. The mechanical
efficiency of the pump and the temperature rise of water are to be deter-

FIGURE 5-54 mined.

Schematic for Example 5-12. Assumptions 1 The flow is steady and incompressible. 2 The pump is driven
by an external motor so that the heat generated by the motor is dissipated to
the atmosphere. 3 The elevation difference between the inlet and outlet of
the pump is negligible, z; = z,. 4 The inlet and outlet diameters are the
same and thus the inlet and outlet velocities and kinetic energy correction
factors are equal, V; = V, and a; = a,.

Properties We take the density of water to be 1 kg/L = 1000 kg/m3 and its
specific heat to be 4.18 kJ/kg - °C.
Analysis (a) The mass flow rate of water through the pump is

m = pV = (1 kg/L)(50 L/s) = 50 kg/s
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The motor draws 15 kW of power and is 90 percent efficient. Thus the

mechanical (shaft) power it delivers to the pump is
Wpump, shaft — nmolorWelectric = (090)(15 kW) = 13.5kW

To determine the mechanical efficiency of the pump, we need to know the
increase in the mechanical energy of the fluid as it flows through the pump,
which is

AE peen nid = E meeh out — E mech. in = m(ﬁ + azv—% + gzz) = r'n<i + o vi + ng>
g g : p 2 P 2
Simplifying it for this case and substituting the given values,
= (251) - conp SR 0 )
Then the mechanical efficiency of the pump becomes
. Woump. u _ AE meeh, fluid 10 kKW

T’pump - 0 -
Wpumpq shaft Wpump, shaft 13.5kW

=0.741 or 74.1%

(b) Of the 13.5-kW mechanical power supplied by the pump, only 10 kW is
imparted to the fluid as mechanical energy. The remaining 3.5 kW is con-
verted to thermal energy due to frictional effects, and this “lost” mechanical
energy manifests itself as a heating effect in the fluid,

Emech, loss — Wpump, shaft — AE"mech, fluid — 135 - 10 = 35 kw

The temperature rise of water due to this mechanical inefficiency is deter-
mined from the thermal energy balance, E . oss = MUy — U7) = mcAT.
Solving for AT,

Emech, loss _ 35 kW

AT = =
me (50 kg/s)(4.18 kI/kg - °C)

= 0.017°C

Therefore, the water will experience a temperature rise of 0.017°C due to
mechanical inefficiency, which is very small, as it flows through the pump.
Discussion In an actual application, the temperature rise of water will prob-
ably be less since part of the heat generated will be transferred to the casing
of the pump and from the casing to the surrounding air. If the entire pump
motor were submerged in water, then the 1.5 kW dissipated to the air due to
motor inefficiency would also be transferred to the surrounding water as
heat. This would cause the water temperature to rise more.

EXAMPLE 5-13 Hydroelectric Power Generation from a Dam

In a hydroelectric power plant, 100 m3/s of water flows from an elevation of
120 m to a turbine, where electric power is generated (Fig. 5-55). The total
irreversible head loss in the piping system from point 1 to point 2 (excluding
the turbine unit) is determined to be 35 m. If the overall efficiency of the
turbine—generator is 80 percent, estimate the electric power output.

SOLUTION The available head, flow rate, head loss, and efficiency of a
hydroelectric turbine are given. The electric power output is to be determined.
Assumptions 1 The flow is steady and incompressible. 2 Water levels at the
reservoir and the discharge site remain constant.

Properties We take the density of water to be 1000 kg/m3.
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Generator
Thurbine—gen

=80%

FIGURE 5-55
Schematic for Example 5-13.
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Analysis The mass flow rate of water through the turbine is
m= pV = (1000 kg/m*)(100 m*/s) = 10° kg/s

We take point 2 as the reference level, and thus z, = 0. Also, both points 1
and 2 are open to the atmosphere (P, = P, = P,) and the flow velocities
are negligible at both points (V; = V, = 0). Then the energy equation for
steady, incompressible flow reduces to

B i
Zé + ay % + <1 + hpump u + a2 + Z2 + hturbme e + hL

lurbine,e =z —hy

Substituting, the extracted turbine head and the corresponding turbine

power are
hpine, e = 21 — by, = 120 — 35 = 85m
: . e , Ikikg \
W arsine. e = M&huummine. o = (10° kg/s)(9.81 m/s)(85 m)<m> = 83,400 kW

Therefore, a perfect turbine-generator would generate 83,400 kW of elec-
tricity from this resource. The electric power generated by the actual unit is

114 W = (0.80)(83.4 MW) = 66.7 MW

electric — nturbine—gen turbine, ¢

Discussion Note that the power generation would increase by almost 1 MW
for each percentage point improvement in the efficiency of the turbine—
generator unit.

ijl\ f”wmlme W EXAMPLE 5-14  Fan Selection for Air Cooling of a Computer .
~.l N elect
—l = —C?)——@— -7 A fan is to be selected to cool a computer case whose dimensions are 12 cm ®
— I — X 40 cm X 40 cm (Fig. 5-56). Half of the volume in the case is expected :
:;'@ : @:—>V2 to be filled with components and the other half to be air space. A 5-cm- g
— I — diameter hole is available at the back of the case for the installation of the m
—1 . . fan that is to replace the air in the void spaces of the case once every sec- B
;:l -7 Fan ond. Small low-power fan—-motor combined units are available in the market ®
/J/ and their efficiency is estimated to be 30 percent. Determine (a) the wattage n

of the fan—motor unit to be purchased and (b) the pressure difference across :
FIGURE 5-56 the fan. Take the air density to be 1.20 kg/m3. |
Schematic for Example 5-14.

SOLUTION A fan is to cool a computer case by completely replacing the air

inside once every second. The power of the fan and the pressure difference

across it are to be determined.

Assumptions 1 The flow is steady and incompressible. 2 Losses other than

those due to the inefficiency of the fan-motor unit are negligible (h, = 0).

3 The flow at the outlet is fairly uniform except near the center (due to the

wake of the fan motor), and the kinetic energy correction factor at the outlet

is 1.10.

Properties The density of air is given to be 1.20 kg/m3.

Analysis (a) Noting that half of the volume of the case is occupied by the

components, the air volume in the computer case is

= (Void fraction)(Total case volume)
= 0.5(12 cm X 40 cm X 40 cm) = 9600 cm?®
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Therefore, the volume and mass flow rates of air through the case are
V9600 cm’

- At 1s
m= pV = (1.20 kg/m®)(9.6 X 10 ~* m%/s) = 0.0115 kg/s

The cross-sectional area of the opening in the case and the average air

velocity through the outlet are

_aD* _ @(0.05 my?
4 4
V96X 10 mYs

A 1.96 X 1073 m?

v = 9600 cm*/s = 9.6 X 1073 m%/s

A =1.96 X 10 3 m?

= 4.90 m/s

We draw the control volume around the fan such that both the inlet and the
outlet are at atmospheric pressure (P, = P, = P,.), as shown in Fig. 5-56,
and the inlet section 1 is large and far from the fan so that the flow velocity
at the inlet section is negligible (V; = 0). Noting that z; = z, and frictional
losses in flow are disregarded, the mechanical losses consist of fan losses
only and the energy equation (Eq. 5-76) simplifies to

(P 30 : (P V3 Y
m + a]? +% + Wfan =m + az? + 5/2 + Wturbine + Emech loss, fan

Solving for VI'/fan = Emech s, ) = VI'/famu and substituting,

. V3 (4.90 m/s)> IN
Wian o = 1, — = (0.0115 kg/s)(1.10) 5
’ 2 2 1 kg - m/s

Then the required electric power input to the fan is determined to be

> =0.152W

Winu 0152 W
7] fan-motor 0.3

Therefore, a fan—-motor rated at about a half watt is adequate for this job.
(b) To determine the pressure difference across the fan unit, we take points
3 and 4 to be on the two sides of the fan on a horizontal line. This time
again z; = z, and V3 = V, since the fan is a narrow cross section, and the
energy equation reduces to

Woee = = 0.506 W

.13 c . Py s . P,—P;
m— + Wfan =m—+ Emech loss, fan — Wfan,u =m
P p p
Solving for P, — P; and substituting,
Winw (1.2 kg/m®)(0.152 W) /1 Pa - m’®
p,— p, =Py (L2 kgm X )< 2 ) =158Pa
m 0.0115 kg/s 1 Ws

Therefore, the pressure rise across the fan is 15.8 Pa.

Discussion The efficiency of the fan-motor unit is given to be 30 percent,
which means 30 percent of the electric power W, consumed by the unit
is converted to useful mechanical energy while the rest (70 percent) is
“lost” and converted to thermal energy. Also, a more powerful fan is required
in an actual system to overcome frictional losses inside the computer case.
Note that if we had ignored the kinetic energy correction factor at the outlet,
the required electrical power and pressure rise would have been 10 percent
lower in this case (0.460 W and 14.4 Pa, respectively).
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EXAMPLE 5-15 Head and Power Loss During Water Pumping

Water is pumped from a lower reservoir to a higher reservoir by a pump that
provides 20 kW of useful mechanical power to the water (Fig. 5-57). The
free surface of the upper reservoir is 45 m higher than the surface of the
lower reservoir. If the flow rate of water is measured to be 0.03 m3/s, deter-
mine the irreversible head loss of the system and the lost mechanical power
during this process.

SOLUTION Water is pumped from a lower reservoir to a higher one. The
head and power loss associated with this process are to be determined.
Assumptions 1 The flow is steady and incompressible. 2 The elevation dif-
ference between the reservoirs is constant.

Properties We take the density of water to be 1000 kg/m3.

Analysis The mass flow rate of water through the system is

m = pV = (1000 kg/m*)(0.03 m*/s) = 30 kg/s

FIGURE 5-57
Schematic for Example 5-15.

We choose points 1 and 2 at the free surfaces of the lower and upper reser-
voirs, respectively, and take the surface of the lower reservoir as the refer-
ence level (z; = 0). Both points are open to the atmosphere (P, = P,
= P, and the velocities at both locations are negligible (V; = V, = 0).
Then the energy equation for steady incompressible flow for a control volume
between 1 and 2 reduces to

0
P vis 0 .
m<£ + o 71 aF ng' ) + Woump
0

P v/ .0
— <7)é + azf + g12> F Wturﬁ; + Emech,loss

Wpump = mgz, + Emech, loss - Emech, loss Wpump — mgz,

Substituting, the lost mechanical power and head loss are determined to be

; = _ 2 IN 1 kW
E ech 1oss = 20 kW — (30 kg/s)(9.81 m/s)(45 m)(1 kg - m/s?/\1000 N - m/s
= 6.76 kW
Noting that the entire mechanical losses are due to frictional losses in piping
and thus E e 10ss = E the irreversible head loss is determined
to be

Emech loss, piping 6.76 kW (1 kg . H1/32><1000 N - m/s
mg (30 kg/s)(9.81 m/s?) IN 1 kW

Discussion The 6.76 kW of power is used to overcome the friction in the
piping system. Note that the pump could raise the water an additional 23 m
if there were no irreversible head losses in the system. In this ideal case, the
pump would function as a turbine when the water is allowed to flow from the
upper reservoir to the lower reservoir and extract 20 kW of power from the
water.

mech, loss, piping’

h, = >=23.0m
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SUMMARY

This chapter deals with the mass, Bernoulli, and energy equa-
tions and their applications. The amount of mass flowing
through a cross section per unit time is called the mass flow
rate and is expressed as

m=pVAC=pV

where p is the density, V is the average velocity, V is the vol-
ume flow rate of the fluid, and A, is the cross-sectional area
normal to the flow direction. The conservation of mass rela-
tion for a control volume is expressed as

d -
*J pa’V-i-J p(V-n)dA =0 or
dt oy cs

dm

i 2= 2

out

It states that the time rate of change of the mass within the
control volume plus the net mass flow rate through the con-
trol surface is equal to zero.

For steady-flow devices, the conservation of mass principle
is expressed as

Steady flow: E m= E m
in out
Steady flow (single stream):

my =1, —  p VA = p, VA,

SU=Sv

out

Steady, incompressible flow:

Steady, incompressible flow (single stream):
Vl = \’/2% VlAl = V2A2

The mechanical energy is the form of energy associated with
the velocity, elevation, and pressure of the fluid, and it can be
converted to mechanical work completely and directly by an
ideal mechanical device. The efficiencies of various devices
are defined as

_ AEmech, fluid _ Wpump, u
Wshaﬂ, in W

T’pump
pump

Wshaﬂ, out _ Wturbine

MNturbine —

|AE mech, ﬂuid| Wlurbine, e

_ Mechanical power output Wihatt, out

Thmoer = " Blectric power input 114

elect, in

Electric power output Welect, out

n generator

Mechanical power input - Wshaft in

npump—motor = npumpnmotor -

AEmech, fluid o Wpump, u
W, 114

elect, in elect, in

Welect, out Welect, out

|AE mech, ﬂuid| Wturbinc, e

The Bernoulli equation is a relation between pressure, veloc-
ity, and elevation in steady, incompressible flow, and is
expressed along a streamline and in regions where net vis-
cous forces are negligible as
2

— + — + gz = constant

p 2 8
It can also be expressed between any two points on a stream-
line as

nturbine—gen = T]turbinengeneralor -

The Bernoulli equation is an expression of mechanical energy
balance and can be stated as: The sum of the kinetic, poten-
tial, and flow energies of a fluid particle is constant along a
streamline during steady flow when the compressibility and
frictional effects are negligible. Multiplying the Bernoulli
equation by density gives

V2

P+ p7 + pgz = constant

where P is the static pressure, which represents the actual
pressure of the fluid; pV?/2 is the dynamic pressure, which
represents the pressure rise when the fluid in motion is
brought to a stop; and pgz is the hydrostatic pressure, which
accounts for the effects of fluid weight on pressure. The sum
of the static, dynamic, and hydrostatic pressures is called the
total pressure. The Bernoulli equation states that the total
pressure along a streamline is constant. The sum of the static
and dynamic pressures is called the stagnation pressure,
which represents the pressure at a point where the fluid is
brought to a complete stop in a frictionless manner. The
Bernoulli equation can also be represented in terms of
“heads” by dividing each term by g,

PV

— + — + z = H = constant

ps  2g
where P/pg is the pressure head, which represents the height
of a fluid column that produces the static pressure P; V?/2g
is the velocity head, which represents the elevation needed
for a fluid to reach the velocity V during frictionless free fall;
and z is the elevation head, which represents the potential
energy of the fluid. Also, H is the fotal head for the flow.
The line that represents the sum of the static pressure and the
elevation heads, P/pg + z, is called the hydraulic grade line
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(HGL), and the line that represents the total head of the fluid,
Plpg + V*2g + z, is called the energy grade line (EGL).

The energy equation for steady, incompressible flow can
be expressed as

Py Vi +z,+h
- o) — Z
pg 1 2g 1 pump, u
Py V3
= & + aZ% + 22 + hturbine,e + hL
where
_ Woump, u _ Wpump,u _ npumprump
P =TT g T g
Wiurbine, e Wlurbine, e Wlurbine
hturbine, e ™ = . = .
4 mg MNturbine!?8

h €mech loss, piping Emech loss, piping
L= = .

4 mg
emech, loss — Uy = Uy 7 Gretin

The mass, Bernoulli, and energy equations are three of the
most fundamental relations in fluid mechanics, and they are
used extensively in the chapters that follow. In Chap. 6, either
the Bernoulli equation or the energy equation is used together
with the mass and momentum equations to determine the
forces and torques acting on fluid systems. In Chaps. 8 and
14, the mass and energy equations are used to determine the
pumping power requirements in fluid systems and in the
design and analysis of turbomachinery. In Chaps. 12 and 13,
the energy equation is also used to some extent in the analy-
sis of compressible flow and open-channel flow.
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PROBLEMS*

Conservation of Mass

5-1C Name four physical quantities that are conserved and
two quantities that are not conserved during a process.

5-2C Define mass and volume flow rates. How are they
related to each other?

5-3C Does the amount of mass entering a control volume
have to be equal to the amount of mass leaving during an
unsteady-flow process?

5-4C When is the flow through a control volume steady?

5-5C Consider a device with one inlet and one outlet. If the
volume flow rates at the inlet and at the outlet are the same,
is the flow through this device necessarily steady? Why?

* Problems designated by a “C” are concept questions, and
students are encouraged to answer them all. Problems designated
by an “E” are in English units, and the S| users can ignore them.
Problems with the @ icon are solved using EES, and complete
solutions together with parametric studies are included on the
enclosed DVD. Problems with the icon are comprehensive in
nature and are intended to be solved with a computer, preferably
using the EES software that accompanies this text.

5-6E A garden hose attached with a nozzle is used to fill a
20-gal bucket. The inner diameter of the hose is 1 in and it
reduces to 0.5 in at the nozzle exit. If the average velocity in
the hose is 8 ft/s, determine (a) the volume and mass flow
rates of water through the hose, (b) how long it will take to
fill the bucket with water, and (c) the average velocity of
water at the nozzle exit.

5-7 Air enters a nozzle steadily at 2.21 kg/m? and 30 m/s
and leaves at 0.762 kg/m? and 180 m/s. If the inlet area of the
nozzle is 80 cm?, determine (a) the mass flow rate through
the nozzle, and (b) the exit area of the nozzle. Answers:
(a) 0.530 kg/s, (b) 38.7 cm?

5-8 A hair dryer is basically a duct of constant diameter in
which a few layers of electric resistors are placed. A small

-~

1.05 kg/m? ’_\/\/\/\_‘

FIGURE P5-8

1.20 kg/m?
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fan pulls the air in and forces it through the resistors where it
is heated. If the density of air is 1.20 kg/m? at the inlet and
1.05 kg/m? at the exit, determine the percent increase in the
velocity of air as it flows through the dryer.

5-9E Air whose density is 0.078 lbm/ft? enters the duct of
an air-conditioning system at a volume flow rate of 450
ft3/min. If the diameter of the duct is 10 in, determine the
velocity of the air at the duct inlet and the mass flow rate of
air.

5-10 A 1-m’ rigid tank initially contains air whose density
is 1.18 kg/m>. The tank is connected to a high-pressure sup-
ply line through a valve. The valve is opened, and air is
allowed to enter the tank until the density in the tank rises to
7.20 kg/m®. Determine the mass of air that has entered the
tank. Answer: 6.02 kg

5-11 The ventilating fan of the bathroom of a building has
a volume flow rate of 30 L/s and runs continuously. If the
density of air inside is 1.20 kg/m?, determine the mass of air
vented out in one day.

A

Bathroom
22°C

FIGURE P5-11

5-12 A desktop computer is to be cooled by a fan whose
flow rate is 0.34 m*min. Determine the mass flow rate of air
through the fan at an elevation of 3400 m where the air den-
sity is 0.7 kg/m3. Also, if the average velocity of air is not to
exceed 110 m/min, determine the diameter of the casing of
the fan. Answers: 0.238 kg/min, 0.063 m

—p—

Air <
outlet |
Air

inlet
I~

Exhaust
fan

FIGURE P5-12

5-13 A smoking lounge is to accommodate 15 heavy
smokers. The minimum fresh air requirement for smoking
lounges is specified to be 30 L/s per person (ASHRAE, Stan-
dard 62, 1989). Determine the minimum required flow rate of
fresh air that needs to be supplied to the lounge, and the
diameter of the duct if the air velocity is not to exceed 8 m/s.

Smoking
lounge

15 smokers

FIGURE P5-13

5-14 The minimum fresh air requirement of a residential
building is specified to be 0.35 air change per hour
(ASHRAE, Standard 62, 1989). That is, 35 percent of the
entire air contained in a residence should be replaced by
fresh outdoor air every hour. If the ventilation requirement of
a 2.7-m-high, 200-m? residence is to be met entirely by a fan,
determine the flow capacity in L/min of the fan that needs to
be installed. Also determine the diameter of the duct if the air
velocity is not to exceed 6 m/s.
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Mechanical Energy and Efficiency

5-15C What is mechanical energy? How does it differ from
thermal energy? What are the forms of mechanical energy of
a fluid stream?

5-16C What is mechanical efficiency? What does a mechan-
ical efficiency of 100 percent mean for a hydraulic turbine?

5-17C How is the combined pump-motor efficiency of a
pump and motor system defined? Can the combined pump-—
motor efficiency be greater than either the pump or the motor
efficiency?

5-18C Define turbine efficiency, generator efficiency, and
combined turbine—generator efficiency.

5-19 Consider a river flowing toward a lake at an average
velocity of 3 m/s at a rate of 500 m?s at a location 90 m
above the lake surface. Determine the total mechanical energy
of the river water per unit mass and the power generation
potential of the entire river at that location. Answer: 444 MW

River == 3 m/s

90 m

FIGURE P5-19

5-20 Electric power is to be generated by installing a
hydraulic turbine—generator at a site 70 m below the free sur-
face of a large water reservoir that can supply water at a rate
of 1500 kg/s steadily. If the mechanical power output of the
turbine is 800 kW and the electric power generation is 750 kW,
determine the turbine efficiency and the combined
turbine—generator efficiency of this plant. Neglect losses in
the pipes.

5-21 At a certain location, wind is blowing steadily at
12 m/s. Determine the mechanical energy of air per unit mass
and the power generation potential of a wind turbine with 50-
m-diameter blades at that location. Also determine the actual
electric power generation assuming an overall efficiency of
30 percent. Take the air density to be 1.25 kg/m?.

5-22 Reconsider Prob. 5-21. Using EES (or other)

== software, investigate the effect of wind velocity
and the blade span diameter on wind power generation. Let
the velocity vary from 5 to 20 m/s in increments of 5 m/s,
and the diameter to vary from 20 to 80 m in increments of 20
m. Tabulate the results, and discuss their significance.

5-23E A differential thermocouple with sensors at the inlet
and exit of a pump indicates that the temperature of water rises
0.072°F as it flows through the pump at a rate of 1.5 ft¥/s. If
the shaft power input to the pump is 27 hp, determine the
mechanical efficiency of the pump. Answer: 64.7 percent

AT =0.072°F
—

Pump

FIGURE P5-23E

5-24 Water is pumped from a lake to a storage tank 20 m
above at a rate of 70 L/s while consuming 20.4 kW of elec-
tric power. Disregarding any frictional losses in the pipes and
any changes in kinetic energy, determine (a) the overall effi-
ciency of the pump—motor unit and (b) the pressure differ-
ence between the inlet and the exit of the pump.

Storage tank

—
20 m
Pump
]
FIGURE P5-24

Bernoulli Equation

5-25C What is streamwise acceleration? How does it differ
from normal acceleration? Can a fluid particle accelerate in
steady flow?

5-26C Express the Bernoulli equation in three different
ways using (a) energies, (b) pressures, and (c) heads.

5-27C What are the three major assumptions used in the
derivation of the Bernoulli equation?

5-28C Define static, dynamic, and hydrostatic pressure.
Under what conditions is their sum constant for a flow
stream?

5-29C What is stagnation pressure? Explain how it can be
measured.

5-30C Define pressure head, velocity head, and elevation
head for a fluid stream and express them for a fluid stream
whose pressure is P, velocity is V, and elevation is z.

5-31C What is the hydraulic grade line? How does it differ
from the energy grade line? Under what conditions do both
lines coincide with the free surface of a liquid?

5-32C How is the location of the hydraulic grade line deter-
mined for open-channel flow? How is it determined at the
outlet of a pipe discharging to the atmosphere?
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5-33C The water level of a tank on a building roof is 20 m
above the ground. A hose leads from the tank bottom to the
ground. The end of the hose has a nozzle, which is pointed
straight up. What is the maximum height to which the water
could rise? What factors would reduce this height?

5-34C 1In a certain application, a siphon must go over a
high wall. Can water or oil with a specific gravity of 0.8 go
over a higher wall? Why?

5-35C Explain how and why a siphon works. Someone
proposes siphoning cold water over a 7-m-high wall. Is this
feasible? Explain.

5-36C A student siphons water over a 8.5-m-high wall at
sea level. She then climbs to the summit of Mount Shasta
(elevation 4390 m, P,, = 58.5 kPa) and attempts the same
experiment. Comment on her prospects for success.

5-37C A glass manometer with oil as the working fluid is
connected to an air duct as shown in Fig. P5-37C. Will the
oil in the manometer move as in Fig. P5-37Ca or b? Explain.
What would your response be if the flow direction is
reversed?

Flow Flow

(a) ()
FIGURE P5-37C

5-38C The velocity of a fluid flowing in a pipe is to be
measured by two different Pitot-type mercury manometers
shown in Fig. P5-38C. Would you expect both manometers
to predict the same velocity for flowing water? If not, which
would be more accurate? Explain. What would your response
be if air were flowing in the pipe instead of water?

FIGURE P5-38C

5-39 In cold climates, water pipes may freeze and burst if
proper precautions are not taken. In such an occurrence, the
exposed part of a pipe on the ground ruptures, and water

shoots up to 34 m. Estimate the gage pressure of water in the
pipe. State your assumptions and discuss if the actual pres-
sure is more or less than the value you predicted.

5-40 A Pitot-static probe is used to measure the velocity of
an aircraft flying at 3000 m. If the differential pressure read-
ing is 3 kPa, determine the velocity of the aircraft.

5-41 While traveling on a dirt road, the bottom of a car hits
a sharp rock and a small hole develops at the bottom of its
gas tank. If the height of the gasoline in the tank is 30 cm,
determine the initial velocity of the gasoline at the hole. Dis-
cuss how the velocity will change with time and how the
flow will be affected if the lid of the tank is closed tightly.
Answer: 2.43 m/s

5-42E The drinking water needs of an office are met

by large water bottles. One end of a 0.25-in-
diameter plastic hose is inserted into the bottle placed on a
high stand, while the other end with an on/off valve is main-
tained 2 ft below the bottom of the bottle. If the water level
in the bottle is 1.5 ft when it is full, determine how long it
will take at the minimum to fill an 8-o0z glass (= 0.00835 ft?)
(a) when the bottle is first opened and (b) when the bottle is
almost empty.

H 1.5 ft

Water

2 ft

U

FIGURE P5-42E

5-43 A piezometer and a Pitot tube are tapped into a 3-cm-
diameter horizontal water pipe, and the height of the water
columns are measured to be 20 cm in the piezometer and 35
cm in the Pitot tube (both measured from the top surface of
the pipe). Determine the velocity at the center of the pipe.

5-44 The diameter of a cylindrical water tank is D, and its
height is H. The tank is filled with water, which is open to
the atmosphere. An orifice of diameter D, with a smooth
entrance (i.e., no losses) is open at the bottom. Develop a
relation for the time required for the tank (a) to empty
halfway and (b) to empty completely.



cen72367_ch05.gxd 10/29/04 2:25 PM Page 220

—p—

Printed from PDF by LPS

FLUID MECHANICS

5-45 A pressurized tank of water has a 10-cm-diameter ori-
fice at the bottom, where water discharges to the atmosphere.
The water level is 3 m above the outlet. The tank air pressure
above the water level is 300 kPa (absolute) while the atmos-
pheric pressure is 100 kPa. Neglecting frictional effects,
determine the initial discharge rate of water from the tank.

Answer: 0.168 m3/s
Air
300 kPa

3m

10 cm

\_/%;

FIGURE P5-45

5-46 Reconsider Prob. 5-45. Using EES (or other)

== software, investigate the effect of water height in
the tank on the discharge velocity. Let the water height vary
from O to 5 m in increments of 0.5 m. Tabulate and plot the
results.

5-47E A siphon pumps water from a large reservoir to a
lower tank that is initially empty. The tank also has a rounded
orifice 15 ft below the reservoir surface where the water
leaves the tank. Both the siphon and the orifice diameters are
2 in. Ignoring frictional losses, determine to what height the
water will rise in the tank at equilibrium.

5-48 Water enters a tank of diameter D, steadily at a mass
flow rate of m,,. An orifice at the bottom with diameter D,
allows water to escape. The orifice has a rounded entrance, so

FIGURE P5-48

the frictional losses are negligible. If the tank is initially
empty, (a) determine the maximum height that the water will
reach in the tank and (b) obtain a relation for water height z
as a function of time.

5-49E Water flows through a horizontal pipe at a rate of 1
gal/s. The pipe consists of two sections of diameters 4 in and
2 in with a smooth reducing section. The pressure difference
between the two pipe sections is measured by a mercury
manometer. Neglecting frictional effects, determine the dif-
ferential height of mercury between the two pipe sections.
Answer: 0.52 in

FIGURE P5-49E

5-50 An airplane is flying at an altitude of 12,000 m.
Determine the gage pressure at the stagnation point on the
nose of the plane if the speed of the plane is 200 km/h. How
would you solve this problem if the speed were 1050 km/h?
Explain.

5-51 The air velocity in the duct of a heating system is to
be measured by a Pitot-static probe inserted into the duct par-
allel to flow. If the differential height between the water
columns connected to the two outlets of the probe is 2.4 cm,
determine (a) the flow velocity and () the pressure rise at
the tip of the probe. The air temperature and pressure in the
duct are 45°C and 98 kPa, respectively.

5-52 The water in a 10-m-diameter, 2-m-high aboveground
swimming pool is to be emptied by unplugging a 3-cm-
diameter, 25-m-long horizontal pipe attached to the bottom of
the pool. Determine the maximum discharge rate of water
through the pipe. Also, explain why the actual flow rate will
be less.

5-53 Reconsider Prob. 5-52. Determine how long it will
take to empty the swimming pool completely. Answer: 19.7 h

5-54 Reconsider Prob. 5-53. Using EES (or other)

=== software, investigate the effect of the discharge
pipe diameter on the time required to empty the pool com-
pletely. Let the diameter vary from 1 to 10 cm in increments
of 1 cm. Tabulate and plot the results.

5-55 Air at 110 kPa and 50°C flows upward through a
6-cm-diameter inclined duct at a rate of 45 L/s. The duct
diameter is then reduced to 4 cm through a reducer. The
pressure change across the reducer is measured by a water
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manometer. The elevation difference between the two points
on the pipe where the two arms of the manometer are
attached is 0.20 m. Determine the differential height between
the fluid levels of the two arms of the manometer.

FIGURE P5-55

5-56E Air is flowing through a venturi meter whose diame-
ter is 2.6 in at the entrance part (location 1) and 1.8 in at the
throat (location 2). The gage pressure is measured to be 12.2
psia at the entrance and 11.8 psia at the throat. Neglecting
frictional effects, show that the volume flow rate can be

expressed as
. [ 2(P, — P
v :A2 ( 1 . 2)2
p(1 — A/AY)

and determine the flow rate of air. Take the air density to be
0.075 1bm/ft3.

12.2 psia

11.8 psia

FIGURE P5-56E

5-57 The water pressure in the mains of a city at a particu-
lar location is 400 kPa gage. Determine if this main can serve
water to neighborhoods that are 50 m above this location.

5-58 A handheld bicycle pump can be used as an atomizer
to generate a fine mist of paint or pesticide by forcing air at a
high velocity through a small hole and placing a short tube
between the liquid reservoir and the high-speed air jet whose
low pressure drives the liquid up through the tube. In such an
atomizer, the hole diameter is 0.3 cm, the vertical distance
between the liquid level in the tube and the hole is 10 cm,
and the bore (diameter) and the stroke of the air pump are 5
cm and 20 cm, respectively. If the atmospheric conditions are
20°C and 95 kPa, determine the minimum speed that the pis-
ton must be moved in the cylinder during pumping to initiate
the atomizing effect. The liquid reservoir is open to the atmo-
sphere.

} 20 cm

|
‘I/O.S cm

I%LI Scm  Air = .
1 Liquid

rising

N

10 cm

FIGURE P5-58

5-59 The water level in a tank is 20 m above the ground. A
hose is connected to the bottom of the tank, and the nozzle at
the end of the hose is pointed straight up. The tank cover is
airtight, and the air pressure above the water surface is 2 atm
gage. The system is at sea level. Determine the maximum
height to which the water stream could rise. Answer: 40.7 m

2 atm

20 m

fu

FIGURE P5-59

5-60 A Pitot-static probe connected to a water manometer
is used to measure the velocity of air. If the deflection (the
vertical distance between the fluid levels in the two arms) is
7.3 cm, determine the air velocity. Take the density of air to
be 1.25 kg/m>.

Pitot-static

Air probe
—_—

—

—_—
Manometer

FIGURE P5-60

5-61E The air velocity in a duct is measured by a Pitot-static
probe connected to a differential pressure gage. If the air is at
13.4 psia absolute and 70°F and the reading of the differen-
tial pressure gage is 0.15 psi, determine the air velocity.
Answer: 143 ft/s
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5-62 In a hydroelectric power plant, water enters the tur-
bine nozzles at 700 kPa absolute with a low velocity. If the
nozzle outlets are exposed to atmospheric pressure of 100 kPa,
determine the maximum velocity to which water can be
accelerated by the nozzles before striking the turbine blades.

Energy Equation

5-63C Consider the steady adiabatic flow of an incom-
pressible fluid. Can the temperature of the fluid decrease dur-
ing flow? Explain.

5-64C Consider the steady adiabatic flow of an incom-
pressible fluid. If the temperature of the fluid remains con-
stant during flow, is it accurate to say that the frictional
effects are negligible?

5-65C What is irreversible head loss? How is it related to
the mechanical energy loss?

5-66C What is useful pump head? How is it related to the
power input to the pump?

5-67C What is the kinetic energy correction factor? Is it
significant?

5-68C The water level in a tank is 20 m above the ground.
A hose is connected to the bottom of the tank, and the nozzle
at the end of the hose is pointed straight up. The water stream
from the nozzle is observed to rise 25 m above the ground.
Explain what may cause the water from the hose to rise
above the tank level.

5-69 Underground water is to be pumped by a 70 percent
efficient 3-kW submerged pump to a pool whose free surface
is 30 m above the underground water level. The diameter of
the pipe is 7 cm on the intake side and 5 cm on the discharge
side. Determine (a) the maximum flow rate of water and
(b) the pressure difference across the pump. Assume the eleva-
tion difference between the pump inlet and the outlet and the
effect of the kinetic energy correction factors to be negligible.

Pool

30 m

\

FIGURE P5-69

5-70 Reconsider Prob. 5-69. Determine the flow rate of
water and the pressure difference across the pump if the irre-
versible head loss of the piping system is 5 m.

5-71E In a hydroelectric power plant, water flows from an
elevation of 240 ft to a turbine, where electric power is gen-
erated. For an overall turbine—generator efficiency of 83 per-
cent, determine the minimum flow rate required to generate
100 kW of electricity. Answer: 370 Ibm/s

5-72E Reconsider Prob. 5-71E. Determine the flow rate of
water if the irreversible head loss of the piping system between
the free surfaces of the source and the sink is 36 ft.

5-73 %;’ A fan is to be selected to ventilate a bathroom

whose dimensions are 2 m X 3 m X 3 m. The
air velocity is not to exceed 8 m/s to minimize vibration and
noise. The combined efficiency of the fan—motor unit to be
used can be taken to be 50 percent. If the fan is to replace the
entire volume of air in 10 min, determine (a) the wattage of
the fan—motor unit to be purchased, (b) the diameter of the
fan casing, and (c) the pressure difference across the fan.
Take the air density to be 1.25 kg/m? and disregard the effect
of the kinetic energy correction factors.

8 m/s
- Exhaust

- fan
Air —

FIGURE P5-73

5-74 Water is being pumped from a large lake to a reser-
voir 25 m above at a rate of 25 L/s by a 10-kW (shaft) pump.
If the irreversible head loss of the piping system is 7 m,
determine the mechanical efficiency of the pump. Answer:
78.5 percent

5-75 Reconsider Prob. 5-74. Using EES (or other)

== software, investigate the effect of irreversible
head loss on the mechanical efficiency of the pump. Let the
head loss vary from O to 15 m in increments of 1 m. Plot the
results, and discuss them.

5-76 A 7-hp (shaft) pump is used to raise water to a 15-m
higher elevation. If the mechanical efficiency of the pump is
82 percent, determine the maximum volume flow rate of
walter.

5-77 Water flows at a rate of 0.035 m?/s in a horizontal pipe
whose diameter is reduced from 15 cm to 8 cm by a reducer.
If the pressure at the centerline is measured to be 470 kPa
and 440 kPa before and after the reducer, respectively, deter-
mine the irreversible head loss in the reducer. Take the
kinetic energy correction factors to be 1.05. Answer: 0.68 m

5-78 The water level in a tank is 20 m above the ground. A
hose is connected to the bottom of the tank, and the nozzle at
the end of the hose is pointed straight up. The tank is at sea



cen72367_ch05.gxd 10/29/04 2:25 PM Page 223

—p—

Printed from PDF by LPS

CHAPTER 5

level, and the water surface is open to the atmosphere. In the
line leading from the tank to the nozzle is a pump, which
increases the pressure of water. If the water jet rises to a
height of 27 m from the ground, determine the minimum
pressure rise supplied by the pump to the water line.

27 m
20 m

FIGURE P5-78

5-79 A hydraulic turbine has 85 m of head available at a
flow rate of 0.25 m?/s, and its overall turbine—generator effi-
ciency is 78 percent. Determine the electric power output of
this turbine.

5-80 The demand for electric power is usually much higher
during the day than it is at night, and utility companies often
sell power at night at much lower prices to encourage con-
sumers to use the available power generation capacity and to
avoid building new expensive power plants that will be used
only a short time during peak periods. Utilities are also will-
ing to purchase power produced during the day from private
parties at a high price.

Suppose a utility company is selling electric power for
$0.03/kWh at night and is willing to pay $0.08/kWh for
power produced during the day. To take advantage of this
opportunity, an entrepreneur is considering building a large
reservoir 40 m above the lake level, pumping water from the

Reservoir

40 m

Pump-
turbine

Lake

FIGURE P5-80

lake to the reservoir at night using cheap power, and letting
the water flow from the reservoir back to the lake during the
day, producing power as the pump—motor operates as a tur-
bine—generator during reverse flow. Preliminary analysis
shows that a water flow rate of 2 m?/s can be used in either
direction, and the irreversible head loss of the piping system
is 4 m. The combined pump-motor and turbine—generator
efficiencies are expected to be 75 percent each. Assuming the
system operates for 10 h each in the pump and turbine modes
during a typical day, determine the potential revenue this
pump—turbine system can generate per year.

5-81 Water flows at a rate of 20 L/s through a horizontal
pipe whose diameter is constant at 3 cm. The pressure drop
across a valve in the pipe is measured to be 2 kPa. Determine
the irreversible head loss of the valve, and the useful pump-
ing power needed to overcome the resulting pressure drop.
Answers: 0.204 m, 40 W

Water

— E—
20 L/s é ‘:\

AP =2 kPa

FIGURE P5-81

5-82E The water level in a tank is 66 ft above the ground.
A hose is connected to the bottom of the tank at the ground
level and the nozzle at the end of the hose is pointed straight
up. The tank cover is airtight, but the pressure over the water
surface is unknown. Determine the minimum tank air pres-
sure (gage) that will cause a water stream from the nozzle to
rise 90 ft from the ground.

5-83 A large tank is initially filled with water 2 m above
the center of a sharp-edged 10-cm-diameter orifice. The tank
water surface is open to the atmosphere, and the orifice
drains to the atmosphere. If the total irreversible head loss in
the system is 0.3 m, determine the initial discharge velocity
of water from the tank. Take the kinetic energy correction
factor at the orifice to be 1.2.

5-84 Water enters a hydraulic turbine through a 30-cm-
diameter pipe at a rate of 0.6 m%/s and exits through a 25-cm-
diameter pipe. The pressure drop in the turbine is measured
by a mercury manometer to be 1.2 m. For a combined turbine—
generator efficiency of 83 percent, determine the net electric
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power output. Disregard the effect of the kinetic energy cor-
rection factors.

1 %
-

FIGURE P5-84

5-85 The velocity profile for turbulent flow in a circular
pipe is usually approximated as u(r) = u,, (1 — r/R)'",
where n = 7. Determine the kinetic energy correction factor
for this flow. Answer: 1.06

5-86 An oil pump is drawing 35 kW of electric power
while pumping oil with p = 860 kg/m? at a rate of 0.1 m%/s.
The inlet and outlet diameters of the pipe are 8§ cm and 12 cm,
respectively. If the pressure rise of oil in the pump is mea-
sured to be 400 kPa and the motor efficiency is 90 percent,
determine the mechanical efficiency of the pump. Take the
kinetic energy correction factor to be 1.05.

Oil AP =400 kPa
0.1 m¥s

FIGURE P5-86

5-87E A 73-percent efficient 12-hp pump is pumping water
from a lake to a nearby pool at a rate of 1.2 ft’/s through a
constant-diameter pipe. The free surface of the pool is 35 ft
above that of the lake. Determine the irreversible head loss of
the piping system, in ft, and the mechanical power used to
overcome it.

5-88 A fireboat is to fight fires at coastal areas by drawing
seawater with a density of 1030 kg/m? through a 20-cm-diam-
eter pipe at a rate of 0.1 m%s and discharging it through a
hose nozzle with an exit diameter of 5 cm. The total irre-
versible head loss of the system is 3 m, and the position of the
nozzle is 4 m above sea level. For a pump efficiency of 70

—p—

percent, determine the required shaft power input to the pump
and the water discharge velocity. Answers: 200 kW, 50.9 m/s

FIGURE P5-88

Review Prohlems

5-89 A D, = 10-m-diameter tank is initially filled with
water 2 m above the center of a D = 10-cm-diameter valve
near the bottom. The tank surface is open to the atmosphere,
and the tank drains through a L = 100-m-long pipe con-
nected to the valve. The friction factor of the pipe is given to
be f = 0.015, and the discharge velocity is expressed as

28z
V=4 /ﬁ where z is the water height above the center

of the valve. Determine (a) the initial discharge velocity from
the tank and () the time required to empty the tank. The tank
can be considered to be empty when the water level drops to
the center of the valve.

5-90 Underground water is being pumped into a pool
whose cross section is 3 m X 4 m while water is discharged
through a 5-cm-diameter orifice at a constant average veloc-
ity of 5 m/s. If the water level in the pool rises at a rate of 1.5
cm/min, determine the rate at which water is supplied to the
pool, in m?/s.

5-91 The velocity of a liquid flowing in a circular pipe of
radius R varies from zero at the wall to a maximum at the
pipe center. The velocity distribution in the pipe can be repre-
sented as V(r), where r is the radial distance from the pipe
center. Based on the definition of mass flow rate m, obtain a
relation for the average velocity in terms of V(r), R, and r.

5-92  Air at 4.18 kg/m? enters a nozzle that has an inlet-to-
exit area ratio of 2:1 with a velocity of 120 m/s and leaves
with a velocity of 380 m/s. Determine the density of air at the
exit. Answer: 2.64 kg/m3

5-93 The air in a 6-m X 5-m X 4-m hospital room is to be
completely replaced by conditioned air every 20 min. If the
average air velocity in the circular air duct leading to the
room is not to exceed 5 m/s, determine the minimum diame-
ter of the duct.

5-94 A pressurized 2-m-diameter tank of water has a 10-
cm-diameter orifice at the bottom, where water discharges to
the atmosphere. The water level initially is 3 m above the
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outlet. The tank air pressure above the water level is main-
tained at 450 kPa absolute and the atmospheric pressure is
100 kPa. Neglecting frictional effects, determine (a) how
long it will take for half of the water in the tank to be dis-
charged and () the water level in the tank after 10 s.

5-95 Air flows through a pipe at a rate of 200 L/s. The pipe
consists of two sections of diameters 20 cm and 10 cm with a
smooth reducing section that connects them. The pressure
difference between the two pipe sections is measured by a
water manometer. Neglecting frictional effects, determine the
differential height of water between the two pipe sections.
Take the air density to be 1.20 kg/m>.  Answer: 3.7 cm

Air
200 L/s

FIGURE P5-95

5-96 Air at 100 kPa and 25°C flows in a horizontal
o) . .

duct of variable cross section. The water column
in the manometer that measures the difference between two
sections has a vertical displacement of 8 cm. If the velocity
in the first section is low and the friction is negligible, deter-
mine the velocity at the second section. Also, if the manome-
ter reading has a possible error of =2 mm, conduct an error
analysis to estimate the range of validity for the velocity
found.

5-97 A very large tank contains air at 102 kPa at a location
where the atmospheric air is at 100 kPa and 20°C. Now a 2-
cm-diameter tap is opened. Determine the maximum flow rate
of air through the hole. What would your response be if air is
discharged through a 2-m-long, 4-cm-diameter tube with a 2-
cm-diameter nozzle? Would you solve the problem the same
way if the pressure in the storage tank were 300 kPa?

100 kPa
20°C

&
&

Air >
102 kPa

— e
FIGURE P5-97

5-98 Water is flowing through a Venturi meter whose diam-
eter is 7 cm at the entrance part and 4 cm at the throat. The
pressure is measured to be 430 kPa at the entrance and 120
kPa at the throat. Neglecting frictional effects, determine the
flow rate of water. Answer: 0.538 m3/s

5-99E The water level in a tank is 80 ft above the ground.
A hose is connected to the bottom of the tank, and the nozzle
at the end of the hose is pointed straight up. The tank is at
sea level, and the water surface is open to the atmosphere. In
the line leading from the tank to the nozzle is a pump, which
increases the water pressure by 10 psia. Determine the maxi-
mum height to which the water stream could rise.

5-100 A wind tunnel draws atmospheric air at 20°C and
101.3 kPa by a large fan located near the exit of the tunnel. If
the air velocity in the tunnel is 80 m/s, determine the pressure
in the tunnel.

— 20°C
101.3 kPa
_—
Wind tunnel
—_—

—_—

— — 80 m/s

FIGURE P5-100

5-101 Water flows at a rate of 0.025 m%/s in a horizontal
pipe whose diameter increases from 6 to 11 cm by an
enlargement section. If the head loss across the enlargement
section is 0.45 m and the kinetic energy correction factor at
both the inlet and the outlet is 1.05, determine the pressure
change.

5-102 A 2-m-high large tank is initially filled with water.
The tank water surface is open to the atmosphere, and a
sharp-edged 10-cm-diameter orifice at the bottom drains to
the atmosphere through a horizontal 100-m-long pipe. If the
total irreversible head loss of the system is determined to be
1.5 m, determine the initial velocity of the water from the
tank. Disregard the effect of the kinetic energy correction fac-
tors. Answer: 3.13 m/s

eum——

Water 2m

10 cm
| 100 m

FIGURE P5-102
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5-103 Reconsider Prob. 5-102. Using EES (or other)

== software, investigate the effect of the tank
height on the initial discharge velocity of water from the
completely filled tank. Let the tank height vary from 2 to 15
m in increments of 1 m, and assume the irreversible head loss
to remain constant. Tabulate and plot the results.

5-104 Reconsider Prob. 5-102. In order to drain the tank
faster, a pump is installed near the tank exit. Determine the
pump head input necessary to establish an average water
velocity of 6 m/s when the tank is full.

Design and Essay Problems

5-105 Using a large bucket whose volume is known and
measuring the time it takes to fill the bucket with water from
a garden hose, determine the mass flow rate and the average
velocity of water through the hose.

5-106 Your company is setting up an experiment that
involves the measurement of airflow rate in a duct, and you
are to come up with proper instrumentation. Research the
available techniques and devices for airflow rate measure-
ment, discuss the advantages and disadvantages of each tech-
nique, and make a recommendation.

5-107 Computer-aided designs, the use of better materials,
and better manufacturing techniques have resulted in a
tremendous increase in the efficiency of pumps, turbines, and
electric motors. Contact several pump, turbine, and motor
manufacturers and obtain information about the efficiency of
their products. In general, how does efficiency vary with
rated power of these devices?

5-108 Using a handheld bicycle pump to generate an air
jet, a soda can as the water reservoir, and a straw as the tube,
design and build an atomizer. Study the effects of various
parameters such as the tube length, the diameter of the exit
hole, and the pumping speed on performance.

5-109 Using a flexible drinking straw and a ruler, explain
how you would measure the water flow velocity in a river.

5-110 The power generated by a wind turbine is propor-
tional to the cube of the wind velocity. Inspired by the accel-
eration of a fluid in a nozzle, someone proposes to install a
reducer casing to capture the wind energy from a larger area
and accelerate it before the wind strikes the turbine blades, as
shown in Fig. P5-110. Evaluate if the proposed modification
should be given a consideration in the design of new wind
turbines.
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FIGURE P5-110



