Chapter 21: Cardiovascular System: Peripheral Circulation and Regulation

I. General Features of Blood Vessel Structure

A.	Ge	eneral Pattern of Circulation
	1.	Ventricles pump blood into
	2.	These arteries branch repeatedly to form
	3.	The arteries undergo a gradual transition with decreased size:
		a. From
		b. To
	4.	Arteries are classified as:
		a
		b
		C
	5.	Blood flows from arterioles into
	6.	Why does most material exchange occur across capillary walls?
		a
		b
		c
	7.	Blood flows from the capillaries into
	8.	Compared to arteries the walls of veins are:
		a
		b. Contain
		c. Fewer
	9.	As veins project toward the heart they:
		a. Increase
		b. Decrease
		c. Walls
1	0.	Veins are classified as:
		a
		b

S
,

1.	W	hat	is the endothelium?	
	a.	W	hat is it continuous with?	
2.	Th	ес	apillary wall consists of	
3.	Οι	utsio	de the basement membrane is	
4.	Ве	twe	een the basement membrane and the e	ndothelial cells are scattered
	се	lls d	called	
5.	W	hat	is the average diameter of a capillary?	
6.	Нс	w c	do red blood cells flow through capillarie	es?
7.	Ту	pes	s of Capillaries	
	a.	Cla	assification is based on	&
	b.	Co	ontinuous capillaries	
		1.	Have a diameter of approximately	
		2.	Walls exhibit	endothelial cells
		3.	permeable to	 _
	C.	Fe	enestrated capillaries	
		1.	Endothelial cells have	
		2.	What are the fenestrae?	
		3.	Fenestrated capillaries are	permeable
	d.	Sii	nusoidal capillaries	
		1.	diameter tha	in the other two types
		2.	Basement membrane is	
		3.	Fenestrae are	than fenestrated capillaries
		4.	Occur where	cross their walls
	e.	Sii	nusoids are	
		1.	Basement membrane is	& often
		2.	Their structure suggests that	
		3.	What are closely associated with the s	sinusoid endothelium in the liver?
	f.	Ve	enous sinuses are even	than

		Occur primarily in
		2. Have endothelial cells
	g.	Substances cross the capillary walls by
		1. Through
		2. Through
		3. Between
		a. Lipid-soluble substances readily
		b. Larger water-soluble substances must
		or
	h.	Why are capillaries effective permeability barriers?
8.	Ca	apillary Network
	a.	Blood is supplied to a capillary network by
	b.	Blood is drained from a capillary network by
	C.	What is an arterial capillary?
	d.	What is a venous capillary?
	e.	Blood flows from an arteriole through
	f.	A thoroughfare channel connects the to a
		Blood flow through a thoroughfare channel is
	g.	Capillaries branch from the
		Blood flow in these branches is
		2. Blood flow is regulated by which
		consist of located at
St	ruct	ure of Arteries and Veins
1.	Ge	eneral Features
	a.	Consist of three layers, which are most apparent in the
		and least apparent in
	b.	Which layer is in direct contact with the blood?
	C.	What is the name of the outer layer?

C.

d.	Tu	nica	a In	tima	
	1.	Th	is la	ayer consists of:	
		a.			
		b.			· · · · · · · · · · · · · · · · · · ·
		C.			· · · · · · · · · · · · · · · · · · ·
		d.			· · · · · · · · · · · · · · · · · · ·
	2.	WI	hat	separates the tunica intin	na from the tunica media?
e.	Tu	nica	a M	ledia	
	1.	Co	nsi	sts of:	
		a.			
		b.	Als	so contains variable amo	unts of:
			1.		
			2.		
	2.	Fu	nct	ionally the smooth muscle	e regulates
		a.	Va	asoconstriction	
			1.	Is the result of muscle _	
			2.		_ the diameter of the vessel
			3.	Results in	blood flow
		b.	Va	asodilation	
			1.	Is the result of muscle _	
			2.		_ the diameter of the vessel
			3.	Results in	blood flow
	3.	WI	hat	is the external elastic me	mbrane?
f.	Tu	nica	a A	dventitia	
	1.	Сс	mp	oosed of	that varies from:
		a.			near the tunica media to
					that
g.	Th	e re	elat	ive thickness of each laye	er varies with

2.	La	rge Elastic Arteries		
	a.	Have the		
		Are also called		
	C.	Pressure is relatively	_ and fluctuates between	
		&	values	
	d.	Have a greater amount of	and a smaller amou	nt
		of		
	e.	The elastic fibers are responsible	for	_
3.	Mι	uscular Arteries		
	a.	Are often called		
	b.	Their walls are	compared to	
		1. This is due to		
	C.	Frequently called	because	
	d.	Small muscular arteries are adap	ted for	
4.	Ar	terioles		
	a.	Transport blood from	to	_
	b.	The smallest artery in which		
	C.	What is their diameter range?		
	d.	The arterioles are capable of		_
5.	Ve	enules and Small Veins		
	a.	Venules have a diameter of		
	b.	Structure is similar to		
	C.	Venules have a few	outside the endothelium	m
	d.	The vessels are called small veir	s when:	
		1. Diameter		
		2. Smooth muscle		
		3. Have a tunica adventitia com	posed of	
	e.	Venules collect blood from	and pass it to	
		that pa	ss it to	

	6.	Me	ediu	um and Large Vei	ns			
		a.	Me	edium veins colle	ct blood from		and	pass it to
		b.	— Th	ne large veins trar	nsport blood to _			
		C.	W	hat layer is predo	minant in large	veins?		
	7.	Va	lve	s				
		a.	Va	alves are found in	veins having a	diameter larger	than	
			1.		toward	d the heart		
			2.		away	from the heart		
		b.	Va	alves consist of:				
			1.	Folds				
			2.	Form two	that are	& _		like the
						of the hea	art	
		C.	Th	ne two folds				_ so that
			_			the valves _		
D.	Va	asa	Vas	sorum				
	1.	Fo	uno	d in vessels large	r than		in diameter	
	2.	Pe	enet	trate from the		to for	m a capillar	y network in
		a.				<u></u>		
		b.				<u>—</u>		
Ε.	Ar	terio	ove	nous Anastomos	es			
	1.	All	ow	blood to flow from	n	to		
		wit	tho	ut passing				
	2.	W	hat	is a glomus?				
	3.	Na	atur	ally occurring arte	eriovenous anas	tomoses functio	n in	
F.	Ne	erve	s					
	1.	Th	ie w	valls of most blood	d vessels are ric	hly innervated b	у	
		— а.		& _		 _ are innervated	d to the grea	atest extent
	2.	Sy	mp	athetic stimulation	n causes			

	3.	Smooth muscle cells of blood ve	ssels act as a	
		a. This is due to frequent		
	4.	Stimulation of a few smooth mus	cle cells results in	
G.	Ag	ging of the Arteries		
	1.	The most significant age related	changes occur in the:	
		a		
		b		
		C		
	2.	What is arteriosclerosis?		
	3.	What is atherosclerosis?		
		a. The material is		
		b. Later it can be replaced with		
	4.	In arteriosclerosis:		
		a. Tunica intima	 	
		b. Tunica media	because of	
		c. Fat	between the	
		1. Produces a	that can bulge	e
		d. In advanced arteriosclerosis	· · · · · · · · · · · · · · · · · · ·	accumulate
	5.	Arteriosclerosis greatly increases	S	
Pu	lme	onary Circulation		
A.	Th	ne right ventricle pumps blood into	the	
B.	Th	is vessel divides into the	&	
	1.	One to each		
C.	Aft	ter gas exchange occurs:		
	1.		exit each lung	
	2	Enter the		

II.

III. Systemic Circulation: Arteries

Α.	Ac	orta	
	1.	The part of the aorta leaving the left ventricle is called	
		a. What 2 arteries branch off this part of the aorta?	&
	•		
	2.	The aorta then arches & to the as the	
		a. What three major branches originate here:	
		1	
		2	
		3	
	3.	The longest part of the aorta is called the	
		Which portion is the thoracic aorta?	
		b. Which portion is the abdominal aorta?	
	4.	At its termination the aorta divides into	
В.	Co	oronary Arteries	
	1.	Refer to Chapter 20.	
C.	Ar	teries to the Head and the Neck	
	1.	What is the first branch off the aortic arch?	
		a. It branches at the level of the clavicle to form:	
		1	
		a. Transports blood to	
		2	
		a. Transports blood to	
	2.	What is the second branch off the aortic arch?	
		a. Transports blood to	
	3.	What is the third branch off the aortic arch?	
		a. Transports blood to	
	4.	Each common carotid artery divides into:	
		a	
		b	
	5	What is the carotid sinus?	

	a.	Why is it important?
6.	Th	e external carotid arteries supply blood to
7.	Blo	ood Supply to the Brain
	a.	Left and right vertebral arteries are branches of the
		Enter the cranial cavity through the
		2. They join together to form the
	b.	The basilar artery:
		1. Gives off branches to the &
		2. Branches to form two
		a. That supply blood to
	C.	The internal carotids enter the cranial cavity through
		They terminate by forming
		a. That supply blood to
		2. Posterior branches are the
		a. These connect to
		Anterior branches are the
		a. That supply blood to
		b. These arteries are connected by
	d.	Forms a complete circle at the base of the brain around the pituitary calle
		or
D. Art	terie	es of the Upper Limb
1.	Or	ne continuous artery in the upper limb has three names based on location:
	a.	Deep to the clavicle it is called
	b.	In the axilla it is called
		Within the arm itself it is called
2.	Th	e brachial artery divides at the elbow to form:
	a.	on the ulna side of the forearm
		on the radial side of the forearm
3.	In	the palm of the hand:
	a.	The ulnar artery forms

		b. The radial artery forms
	4.	Extending from the two palmar arches are
		a. That supply blood to
E.	Th	oracic Aorta and Its Branches
	1.	Visceral branches supply blood to
	2.	Parietal branches supply blood to
		a. The walls of the thorax are supplied by
		b. What supplies blood to the diaphragm?
F.	Ab	odominal Aorta and Its Branches
	1.	The three major unpaired visceral branches are:
		a
		b
		C
		Each has branches supplying
	2.	Paired visceral branches supply the,, &
G.	Αrl	teries of the Pelvis
	1.	At the level of the fifth lumbar vertebrae the aorta divides into two
	2.	Each of these divide into a:
		a which supplies
		b which supplies
Н.	Ar	teries of the Lower Limb
	1.	Based on location the external iliac artery becomes the:
		a in the thigh which becomes the:
		b behind the knee
		Below the knee it gives off a branch called
		2. It continues down the back of the leg as the
	2.	At the foot the anterior tibial artery becomes the
	3.	The posterior tibial artery gives off branches called:
		a or
		b.

		C		
		1	The plantar arteries give off	to the
/. Sy	/ste	mic	Circulation: Veins	
A.	Th	ree N	Major Veins Return Blood to Right Atrium	
	1.	Fror	m the walls of the heart	
	2.	Fror	m the head, neck, thorax, & upper limbs	
	3.	Fror	m the abdomen, pelvis, & lower limbs	
В.	Ve	eins C	Draining the Heart	
	1.	Refe	er to Chapter 20.	
C.	Ve	eins o	of the Head and Neck	
	1.	Exte	ernal Jugular Veins	
		a. N	More of the two veins	3
		b. [Drain blood from	
		c. l	Usually drain into	
	2.	Inte	rnal Jugular Veins	
		a. [Drain blood from	
		b. (Outside the cranial cavity they receive tributarie	es that drain
		C. C	Join the subclavian veins to form the	
D.	Ve	eins o	of the Upper Limb	
	1.	Mos	st of the blood from the upper limb drains throu	gh the:
		a		
		b		
		C		
	2.	The	basilic vein becomes the	in the axilla
		a. 7	This vein then becomes the	at the first rib
	3.	The	cephalic vein drains into the	
	4.	Whe	ere is the median cubital vein?	

	5.	Dra	raining the forearm are:	
		a.	on th	e radial side of the forearm
		b.	on th	e ulnar side of the forearm
			These veins drain into the	
E.	Ve	ins	s of the Thorax	
	1.	Th	he superior vena cava receives blood from th	ree veins:
		a.	. Right	_
			. Left	
		C.	·	
	2.	Bra	rachiocephalic veins receive blood from the a	nterior thoracic wall from:
		a.	·	
			They receive blood from	
	3.	Th	he azygos vein receives blood from the poste	rior thoracic wall from:
		a.	on th	e right
		b.	or	on the left
F.	Ve	ins	s of the Abdomen and Pelvis	
	1.	Blo	lood from the posterior abdominal wall drains	into
		a.	. These empty into the superior vena cava vi	a the:
			1 on the right	
			2 on the left	
			he internal iliac veins drain the	
	3.	Th	he external iliac veins drain the	
			he internal iliac vein and external iliac vein joi	
			which join to for	m
	5.	He	epatic Portal System	
		a.	. What is a portal system?	
	6.	Th	he hepatic portal vein is formed by the union	of:
		a.	drain	ing
		b.	drain	ing
			1d	raining
			2d	raining

		c. Also receives	before entering the liver
	7.	The hepatic portal vein empties blood	d into the liver sinusoids, which collect
		into,	which empty into
	8.	The hepatic veins also receive blood	from:
		a	draining the
!	9.	Hepatic veins empty into the	
			?
11	1.	What happens to toxins in the liver?	
G.	Ve	eins of the Lower Limb	
	1.	The deep veins of the leg are the:	
		a. Anterior	
		b. Posterior	_
		1. These veins unite just inferior	to the knee forming
	2.	The popliteal vein becomes the	as it passes through
		the thigh and then become the	
;	3.	or	empty into the posterior tibial veins
	4.	The great saphenous vein:	
		a. Originates	
		b. Ascends	
		c. Empties into	
,	5.	The small saphenous vein:	
		a. Begins	
		b. Ascends	
		c. Empties into	
Dyr	naı	mics of Blood Circulation	
A.	La	aminar and Turbulent Flow in Vessels	
	1.	What is laminar flow?	
		Which layer moves slowest?	
		b. Which layer moves fastest?	

٧.

	2.	W	What causes turbulent flow?						
В.	Blood Pressure								
	1.	Define blood pressure:							
	2.	W	hat	is a mercury manometer?					
		a.	Pr	ressure of 100 mm Hg. means					
	3.	W	hy i	is the auscultatory method used to measure blood pressure	?				
	4.	W	hat	is a sphygmomanometer?					
	5.	W	hat	are Korotkoff sounds?					
	6.	Th	ер	process of measuring the blood pressure involves:					
		a.	Inf	flating blood pressure cuff until					
		b.	De	eflating cuff until the first Korotkoff sound is heard:					
			1.	Blood is flowing through the constricted area during					
			2.	The pressure that this occurs at is recorded as					
		C.	Co	ontinuing to deflate cuff until no sound is heard:					
			1.	Continuous has been reestablish	ned				
			2.	The pressure that this occurs at is recorded as					
C.	Blo	ood	Flo	ow					
	1.	Blo	ood	d flow is usually reported in					
	2.	Blo	ood	d flow in a vessel is proportional to					
		a.	lf t	the pressure at point 1 and point 2 are the same					
		b.	Th	ne greater the pressure difference					
		c.	Fl	ow always occurs from a to a	pressure				
	3.	W	hat	is resistance?					
		a.	As	s resistance increases	_				
		b.	As	s resistance decreases	_				
	4.	W	hat	is the mathematical formula for blood flow?					
D.	Ро	ise	uille	e's Law					
	1.	W	hat	does Poiseuille's Law express?					
	2.	Re	sis	stance to flow dramatically decreases when					

		a.	Be	cause flow is proportional to						
	3.	W	hat	effect does increased viscosity have on flow?						
	4.	What effect does increased vessel length have on flow?								
E.	Viscosity									
	1.	W	hat	does viscosity measure?						
				e viscosity of a liquid increases						
	3.	Co	mp	ared to distilled water blood has a viscosity of						
	4.	W	hat	is the hematocrit?						
	5.	Нс	w c	loes hematocrit effect the viscosity of the blood?						
F.	. Critical Closing Pressure and Laplace's Law									
	1.	W	hat	is critical closing pressure?						
	2.	La	pla	ce's Law						
		a.	Sta	ates that						
		b.	He	elps explain						
			1.	As the pressure in a vessel decreases						
			2.	If the pressure decreases below the minimum requirement _						
			3.	As the pressure in a vessel increases						
		C.	Th	e formula is						
		d.	As	the diameter of a vessel increases						
			1.	Why is this important in aneurysms?						
G.	Va	ISCL	ılar	Compliance						
	1.	W	hat	is compliance?						
	2.	The more easily a vessel wall stretches								
	3.	. If the pressure increases a small amount:								
		a.	Ve	ssels with a large compliance						
		b.	Ve	ssels with a small compliance						
	4.	W	hich	human blood vessels have the greatest compliance?						
		a.	Th	ese vessels can act as	_ for blood					

VI. Physiology of Systemic Circulation

Α.	Cross-Sectional Area of Blood Vessels							
	1.	Total cross-sectional area is the result of determining						
		multiplied by						
	2.	The aorta has a cross-sectional area of						
	3.	Although capillaries are minute there are millions of them so there total						
		cross-sectional area is						
	4.	When cross-sectional area is small, blood flow is						
	5.	When cross-sectional area is large, blood flow is						
В.	Pr	essure and Resistance						
	1.	What causes the decrease in arterial pressure?						
C.	Pu	ulse Pressure						
	1.	What is pulse pressure?						
	2.	What two major factors influence pulse pressure?						
		a						
		b						
	3.	How does a change in stroke volume effect pulse pressure?						
	4.	As arteries age they become						
		a. This results in systolic pressure & pulse pressure						
	5.	The pulse pressure caused by left ventricular ejection produces a						
		a. This can be felt in peripheral arteries and used to determine						
	6.	Dampening of the pulse results in capillaries receiving blood at a steady						
D.	Ca	apillary Exchange and Regulation of Interstitial Fluid Volume						
	1.	What is capillary exchange?						
	2.	The most important process for capillary exchange is						
	3.	Net filtration pressure (NFP) is						
		a. Mathematically it is NFP =						

	4.	Net hydrostatic pressure is the difference
		a. Blood pressure results from
		b. Interstitial fluid pressure is
	5.	Net osmotic pressure is the difference
		a. Blood colloid osmotic pressure is
		b. Interstitial colloid osmotic pressure is
	6.	At the arterial end of capillaries fluid moves out of the capillary because
	7.	At the venous end of capillaries fluid moves into the capillary because
	8.	The volume of interstitial fluid is kept within a narrow range by: a. Exchange
		b. Movement
E.	Fu	nctional Characteristics of Veins
	1.	What is venous tone?
	2.	Increased sympathetic stimulation causes:
		a. Increases by
		b. Increases return and causing
	3.	Decreased sympathetic stimulation causes:
		a. Decreases allowing
		b. Decreases,, and
	4.	Contraction of skeletal muscle the veins
		a. Forces blood
F.	Blo	ood Pressure and the Effect of Gravity
	1.	What effect does standing have on pressure in the venules of the feet?
	2.	The major effect of prolonged standing without movement is

A.

VII. Control of Blood Flow in Tissues

Lo	cal Co	ontrol of Blood Flow by the Tissues	
1.	In mo	est tissues, blood flow is proportional to	
	a. In	creases in response to	oxygen demand
	b. In	creases in response to	_ metabolic end products
2.	Blood	flow does serve other purposes:	
	a. In	the skin	
	b. In	the kidney	
	c. In	the liver	
3.	Func	tional Characteristics of the Capillary Bed	
	a. In	nervation of the metarterioles and precapillary s	phincters is
	b. V	asodilator Substances	
	1.	Produced as	
	2.	Diffuse to,,	, &
		a. Cause these structures to	
	3.	Vasodilator substances include:	
	4.	How does lack of nutrients cause vasodilation	?
	5.	What is vasomotion?	
		utoregulation of Blood Flow	
	1.	What is autoregulation?	
	2.	Increased blood flow occurs when:	
		a. Need for & buildup of	cause
		b	
	d. Lo	ong-Term Local Blood Flow	
	1.	If the metabolic activity of a tissue remains ele	vated for a long period:
		a. Diameter	
	2.	If oxygen levels remain elevated in a tissue	
Ne	rvous	and Hormonal Regulation of Local Circulation	
1.	Nervo	ous control of arterial blood pressure is importan	t

В.

2	Blood pressure must be adequate to move blood through capillaries:	
	a. While	
	b. During	
	c. In response	
3	Nervous regulation shunts blood	
4	Which part of the autonomic nervous system is most important in controllin	g
	blood flow?	
5	Where is the vasomotor center?	
6	Peripheral blood vessels are partially constricted at all times due to:	
	a. This condition of the vessels is referred to as	
7	Vasoconstriction results from	
8	Vasodilation results from	
9	What areas of the brain can effect the vasomotor center?	
10.	Norepinephrine binds to receptors and causes	
11.	Epinephrine binds to receptors and causes	
I. Reç	lation of Mean Arterial Pressure	
A. N	an Arterial Pressure (MAP)	
1.	MAP is slightly less than	
2	What is peripheral resistance?	
3	MAP is proportional to times	
4	Mathematically MAP is represented as	
	a. Increasing any of these factors blood pressure	
	b. Decreasing any of these factors blood pressu	re
B. S	ort-Term Regulation of Blood Pressure	
1.	Baroreceptor Reflexes	
	a. Important in regulating blood pressure on	
	1. Detect even	

VIII.

	2. Respond	
b.	What are baroreceptors sensitive to?	
	Where are they located?	
C.	The carotid sinus reflex is activated by	
d.	The aortic arch reflex is activated by	
e.	Normal blood pressure	the arterial wall so that
f.	In response to a sudden increase in blood pressu	ure:
	Frequency of action potentials	
	Action potentials influence the	&
	centers of the	
	3. The vasomotor center responds by:	
	a	
	b. Which causes peripheral vessels to	
	4. The cardioregulatory center responds by:	
	a	
	b. Heart rate & block	
g.	In response to a sudden decrease in blood press	ure:
	Frequency of action potentials	
	Action potentials influence the	&
	centers of the	
	3. The vasomotor center responds by:	
	a	
	b. Which causes peripheral vessels to	
	4. The cardioregulatory center responds by:	
	a	and
	b. Is accompanied by	
	c. Heart rate & stroke vol	ume
	5. Blood pressure	

	h.	Ho	ow I	ong does it take for the barorece	eptors to adapt to any new sustained
		blo	ood	pressure?	
2.	Ac	Iren	al N	Medullary Mechanism	
	a.	Th	e n	nechanism is activated when	
		_ 1	Fx	camples are:	
		••		Large	
				Sudden	
				Other	
	b.	Th			sults from stimulation
				•	
		1.	Th	ne adrenal medulla releases	& smaller amounts of
				causing:	
			a.	Increased	
			b.	Increased	
			C.		in blood vessels to skin and viscera
			d.	Epinephrine can	
	C.	Th	e n	nechanism is	&
3.	Cł	nem	ore	ceptor Reflexes	
	a.	W	her	e are the carotid bodies?	
	b.	W	her	e are the aortic bodies?	
	C.	W	hen	oxygen availability decreases i	n the chemoreceptor cells:
		1.	Fr	equency	
		2.	St	imulates	
		3.	Re	esulting in	
				ormally don't respond	
	d.			hemoreceptor cells are also stin	-
				creased	
				creased	
	e.			ased vasomotor tone:	
		1.	Ind	creases	

			Increases blood flow through tissues in which	
4	4.	Ce	entral Nervous System Ischemic Response	
		a.	What is the central nervous system ischemic response?	
		b.	Reduced blood flow to the medulla results in:	
			1. Reduced	
			2. Increased	
			3. Reduced	
			This strongly stimulates the	
			b. Which causes	
			c. Systemic blood pressure	
			d. Increases	
		C.	If severe ischemia lasts longer than a few minutes	
			Vasomotor center becomes inactive &	
		d.	Prolonged ischemia of the medulla oblongata leads to	
C. I	Ιο	na-	Term Regulation of Blood Pressure	
		•	enin-Angiotensin-Aldosterone Mechanism	
	••		This mechanism helps regulate	
			Can also influence	
			The kidneys release an enzyme called	
			What structure releases renin?	
			Where is angiotensinogen synthesized?	
		f.	What does renin do to angiotensinogen?	
		g.	The fragment is called	
		•	What enzyme is found in the lungs?	
			This enzyme converts	
			or	
		i.	Angiotensin II causes vasoconstriction in & _	
			1. Increasing &	

	J.	Angiotensin II also stimulates the adrenal cortex to release	
	k.	. Aldosterone acts on the kidneys to:	
		1. Increase	
		2. Increase	
		If ADH is present increase	
		a. This conserves water to	
	l.	Angiotensin II also increases the,, &	
	m.	n. Renin secretion is stimulated by	
	n.	. Renin secretion decreases in response to	
2.	Va	asopressin (ADH) Mechanism	
	a.	. Baroreceptors detect decreases in blood pressure and stimulate r	elease
		from	
	b.	. ADH acts directly on blood vessels to cause	
	C.	. ADH also acts on the kidneys to decrease	
		This helps to maintain	
	d.	. ADH is also released in response to in solute conce	entration
3.	Atı	trial Natriuretic Mechanism	
	a.	. Where does atrial natriuretic hormone come from?	
	b.	. What causes its release?	
	C.	. Functionally atrial natriuretic hormone:	
		Acts on the kidneys to:	
		a. Increase	
		b loss in the urine	
		Causes the blood volume tov	vhich
		venous return	
		2. Also arteries and veins	
		a. Results in a decrease in	
		Both effects cause a	
4.		luid Shift Mechanism	
	a.	. The fluid shift mechanism occurs in response to	

b. As blood pressure increases				
		1.	Helps prevent development of	-
	C.	As	blood pressure falls	
	1. Resists			
	d. Blood pressure is because interstitial			
5.	St	Stress-Relaxation Response		
	a. When blood volume suddenly declines:			
		1.	Blood pressure	-
		2.	Causing	
		3.	In response the smooth muscle cells	_ reducing the
			& resisting	
	b. When blood volume increases rapidly:			
		1.	Blood pressure	-
		2.	In response smooth muscle cells	
		3.	Resulting in	