Chapter 25: Nutrition, Metabolism, and Temperature Regulation

I. Nutrition

A.	Nutrients							
	1.	What are nutrients?						
	2.	List the six major classes of nutrients:						
		a d						
		b e						
		c f						
	3.	Which of these are the major organic nutrients?			,			
		, &						
	4.	Enzymes break organic nutrients into subunits that are	:					
		a. Broken down						
		b. Used as building						
	5.	What are "essential nutrients"?						
В.	Kilocalories							
	1.	Energy used by the body is stored within						
	2.	. Define the term calorie:						
	3.	A kilocalorie is equal to						
	4.	How many kilocalories in one gram of carbohydrate? _						
	5.	How many kilocalories in one gram of fat?						
C.	Ca	Carbohydrates						
	1.	Sources in the Diet						
		a. Carbohydrates include,	, & _					
		b. The most common monosaccharides in the diet are			_ &			
		c. Table sugar is a disaccharide called		_ and is				
		composed of a and			_			
		d. Maltose is a disaccharide composed of						

	e.	Lactose is a disaccharide composed of	&					
	f.	The complex carbohydrates are the polysaccharides:	,					
		, &						
	g.	Which is the energy storage molecule used in plants?						
	h.	Which is the energy storage molecule used in animals?						
	i.	Which polysaccharide forms cell walls in plants?						
2.	Us	es in the Body						
	a.	What form of carbohydrate is absorbed into the blood?						
	b.	Which polysaccharide are humans unable to digest?						
	C.	The liver converts all monosaccharides to						
	d.	Most cells use glucose to produce						
	e.	Excess glucose is converted to	_ for storage					
		Additional glucose may be converted to	and stored in					
	f.	Other uses of sugar in the body include:						
		1. Form part of &						
		2. Combine with proteins to form						
3.	Re	Recommended Amounts						
	a.	The daily kilocalorie intake from carbohydrates should be						
	b.	Why are complex carbohydrates recommended?						
Lip	ids							
1.	So	Sources in the Diet						
	a.	Triglycerides make up about of the lipids in	the human diet					
	b.	Triglycerides are also known as						
	C.	A triglyceride molecule consists of						
		attached to a						
	d.	Saturated fats have only						
		Unsaturated fats have						
	f.	The remaining lipids in the diet include	&					

D.

	2.	Us	es in the Body
		a.	Triglycerides are an important source of used to produce
			What type of cell gets most of its energy from triglycerides?
		b.	Excess triglycerides are stored in or the
		C.	Functionally adipose tissue:
			1. Stores
			2. Surrounds and
			3. Under the skin
		d.	Functionally cholesterol is a:
			1. Component
			2. Modified to form &
	3.	Re	commended Amounts
		a.	The daily kilocalorie intake from lipids should be
		b.	Which fatty acids must be ingested in the diet? &
Ε.	Pr	otei	าร
	1.	Sc	urces in the Diet
		a.	Proteins are chains of
		b.	How many amino acids are in human proteins?
		C.	How many amino acids are essential amino acids?
		d.	A complete protein food contains
	2.	Us	es in the Body
		a.	Amino acids are used to
		b.	Proteins are also used as a
		C.	Excess proteins can be stored by converting amino acids to
			or
	3.	Re	commended Amounts
		a.	The daily kilocalorie intake from protein should be

F.	Vit	Vitamins					
	1.	What are vitamins?					
	2.	Essential vitamins must be in the diet because					
	3.	What does the body do with provitamins?					
	4.	Vitamins are used by the body in					
	5.	Many vitamins function as					
	6.	Fat-soluble vitamins dissolve in					
		a. Absorbed from the intestine along with					
		b. Some of them can be stored for a					
	7.	Water-soluble vitamins dissolve in					
		a. Absorbed from the					
		b. Remain in the body					
	8.	What does RDA stand for?					
	9.	The RDA's for vitamins and minerals establish a minimum that should protect					
		in a given group					
G.	Mi	Minerals					
	1.	What are minerals?					
	2.	Functionally minerals are involved in:					
		a. Establishing					
		b. Generating					
		c. Adding mechanical					
		d. Combining with					
		e. Acting as,, or					
	3.	Minerals are ingested					
Н.	Da	aily Values					
	1.	What are daily values?					
	2.	Reference Daily Intakes are based on					
		a. RDIs are set for four groups:,,					

_____, and _

	3.	The Daily Reference Values (DRVs) are set for:
		a e
		b f
		c g
		d h
	4.	The Daily Values are a combination of and
	5.	The Daily Value for some nutrients is the uppermost limit considered
		desirable because of
I.	Metak	oolism
		efinitions
	1.	What is metabolism?
	2.	What is anabolism?
	3.	What is catabolism?
	4.	The cellular metabolic processes are often referred to as
	_	Or
	5.	The food molecules taken into cells are catabolized and the released energy
	6	is used to
		What molecule is the "energy currency" of the cell? Transferring energy from food molecules to ATP molecules involve
	7.	reactions
		a. A molecule is reduced when
		b. A molecule is oxidized when
	8	Nutrient molecules have many hydrogen atoms covalently bonded to the
	0.	carbon atoms and is therefore highly
		a. When a hydrogen ion and associated electron are lost from the nutrient
		molecule, the molecule and
		b. The energy in the electron is used to

III. Carbohydrate Metabolism

A.

Gl	yco	lysi	S				
Glycolysis is a series of chemical reactions in the							
	tha	that results in the breakdown of into					
2.	Gl	Glycolysis is divided into:					
	a.	Inp	out of ATP				
		1.	Phosphate group is transferred from ATP to glucose forming				
			a. What is this process called?				
		2.	The atoms are rearranged to form				
		3.	Another phosphate group is transferred from a second ATP forming				
	b.	Su	igar Cleavage				
		1.	Fructose-1,6-biphsophate is cleaved into two molecules each having				
			three carbons:				
			a				
			b				
		2.	Dihydroxyacetone phosphate is rearranged to form				
		3.	So the end product is 2 molecules of				
	C.	N/	ADH Production				
		1.	Each glyceraldehyde-3-phosphate molecule is oxidized to form				
			and				
			is reduced to				
		2.	Functionally NADH is a carrier molecule with				
			that				
	d.	ΑТ	P and Pyruvic Acid Production				
		1.	Each 1,3-bisphosphoglyceric acid molecule forms				
			a. Two b. One				
3.	Su	ımn	nary of Glycolysis				
	ch glucose molecule that starts glycolysis forms four,						

			tw	o, and two	· · · · · · · · · · · · · · · · · · ·
		b.	Th	e start of glycolysis required the input of	
		C.	Th	erefore the final yield for each glucose molecule is tw	/O
			tw	o, and two	
В.	An	naer	robi	c Respiration	
	1.	Ar	naer	obic respiration is the breakdown of glucose in the al	osence of
				to produce two & tw	/0
	2.	Ar	naer	obic respiration is divided into	:
		a.	Gl	ycolysis	
			1.	Glucose converted to two	& two
				a. Also a net gain of	
		b.	La	ctic Acid Formation	
			1.	Conversion of pyruvic acid to	
			2.	Requires input of energy from	· · · · · · · · · · · · · · · · · · ·
	3.	W	here	e does the lactic acid go from the cell?	
	4.	W	hat	is the Cori cycle?	
		a.	Re	equires the input of	
		b.	Th	e oxygen necessary is part of the	
C.	Ae	erob	oic F	Respiration	
	1.	Ae	erob	ic respiration is the breakdown of glucose in the pres	ence of
		to	pro	duce,, &	
		a.	Th	e four phases are:	
			1.	<u> </u>	
			2.		
			3.		
			4.		
	2.	Gl	yco	lysis is the first phase in	and
	3.	Ac	ety	l-CoA Formation	
		a.	Ρv	ruvic acid molecules move from the into	а

	b.	Within the inner compartment of the mitochondrion enzymes remove a					
		and two from the three-carbon pyruvic					
		acid molecule to form &					
		Energy is released in the process and is used					
		2. The acetyl group joins with coenzyme-A to form					
	C.	Summary					
		1. From each 2 pyruvic acid molecules from glycolysis (1 glucose) get:					
		a. Two					
		b. Two					
		c. Two					
4.	Cit	tric Acid Cycle					
	a.	Begins with a citric acid molecule that forms from the combination of					
		and					
	b.	Through a series of reactions another is formed					
		which can start the cycle again by joining with					
	C.	Three important events occur during the citric acid cycle:					
		ATP Production					
		a. Each citric acid molecule produces					
		2. NADH and FADH ₂ Production					
		a. For each citric acid molecule:					
		1. Three are converted to					
		2. One is converted to					
		3. Carbon Dioxide Production					
		a. Each six-carbon citric acid molecule becomes a					
		b. Two and four					
		from the citric acid molecule form					
	d.	Summary for each glucose that begins aerobic respiration, produce:					
		1. Two in glycolysis					
		2. Converted into two that enter Kreb's cycle					

		3. In the citric acid cycle (Kreb's cycle) two turns of the cycle occur:
		a. Two
		b. Six
		c. Two &
		d. Four
5.	Ele	ectron-Transport Chain
	a.	The electron-transport chain is a series of electron carriers in the
	b.	Electrons from & are transferred to the electron
		transport carriers and released from NADH & FADH ₂
	C.	The now oxidized NAD ⁺ and FAD are reused to
	d.	The released electrons pass from one electron carrier to the next in a
		series of
	e.	Three of the electron carriers also function as proton pumps that move
		hydrogen ions from to the
		The proton pump accepts an
		2. Uses some of the electron's energy to
		3. Passes the electron to the
	f.	The last electron carrier in the series:
		1. Collects the
		2. Combines them with & to form
	g.	Without oxygen to accept the electrons
	h.	As the proton pumps move hydrogen ions into the outer compartment:
		1. The concentration of hydrogen ions in the outer compartment
		Hydrogen ions diffuse
		The hydrogen ions diffuse through channels called
		4. As each hydrogen ion diffuses through the channel it loses
		which is used to produce
		a. This is called the

(6. Sı	ummary of ATP Production			
	a.	For each glucose molecule, aerobic respiration produces a net gain of			
		1 from glycolysis			
		2 from the citric acid cycle			
		3 from the electron-transport chain			
		a. Each NADH molecule formed produces ATP molecules			
		b. Each FADH ₂ molecule formed produces ATP molecules			
	b.	The number of ATP molecules produced per glucose is also reported as a			
		net gain of			
		1. The two NADH molecules produced by glycolysis cannot cross the			
		a. They donate their electrons to a shuttle molecule that carries the			
		electrons to the			
		Depending on the shuttle molecule ATP's are made			
		2. In skeletal muscle and brain, molecules are produced for			
		each NADH from glycolysis for a net gain of			
		3. In liver, kidneys, and heart, molecules are produced for			
		each NADH from glycolysis for a net gain of			
	C.	How many carbon dioxide molecules are produced?			
	d.	In aerobic respiration water molecules are both &			
		1 water molecules are used, but are formed			
		for a net gain of water molecules			
	e.	Aerobic respiration for one glucose molecule is summarized chemically:			
		-			
IV. Lip	id Me	tabolism			
Α. :	Stora	ge			
	1. W	hat is the body's main energy-storage molecule?			
	2. Gl	ycogen accounts for about of energy-storage			

	3.	Lipids are stored primarily as	in						
	4.	Between meals, when blood nutrient levels	are low, adipose tissue						
	5.	What are "free fatty acids"?							
		a. What cells use them for energy?							
В.	Ве	Beta-oxidation							
	1.	Beta-oxidation refers to the metabolism of _							
		a. A series of reactions remove	_ carbon atoms at a time from the						
		end of a fatty acid chain to form							
	2.	Acetyl-CoA can then enter the	and be used to						
C.	Ke	etogenesis							
	1.	Two molecules of acetyl-CoA combine to fo	rm						
		which is converted mainly to	and						
		a. The three molecules formed are referred							
	2.	Ketone bodies are released in the blood and travel to other tissues where							
		they are converted back into	& enter the						
		to produce							
P	rote	ein Metabolism							
Α.	Sy	nthesis of Nonessential Amino Acids							
	1.	The process usually begins with							
	2.	How is a keto acid converted to an amino ac	cid?						
	3.	What is transamination?							
	4.	Most amino acids can undergo transamination to produce							
	5.	What is used as a source of an amine group to construct most of the							
		nonessential amino acids?							
В.	An	nino Acids as an Energy Source							
	1.	In oxidative deamination:							
		a. An amino group is							

٧.

		b. Leaving	and a		
		c. In the process	is reduced to		which
		can enter		_ to produce _	
	2.	Ammonia is toxic to cells:			
		a. The liver converts it to		_	
		b. Carried by the blood to the	w	here it is	· · · · · · · · · · · · · · · · · · ·
	3.	Keto acid can also enter the			cycle or be
		converted into	or		
VI. In	terc	conversion of Nutrient Molecules	;		
A.	Ca	arbohydrate Storage			
	1.	Blood glucose enters most cells b	у		
	2.	Inside the cell it is converted to			and
		used in cellular respiration to proc	luce		
	3.	When excess glucose is present i	t is converted to		
		a. The process is known as			
		b. Most of the body's glycogen is	in	&	·
B.	Lip	oid Synthesis			
	1.	When the limited glycogen stores	are filled, glucos	e and amino a	acids are
		used to synthesize			
		a. The process is known as			
		1. Glucose molecules form:			
		a	ar	nd	
		2. Amino acids are converted	to		
		3. Glyceraldehyde-3-phospha	ate is converted to	o	· · · · · · · · · · · · · · · · · · ·
		4. Fatty acid chains are forme	ed by joining toge	ther	
		5. Finally triglycerides are for	med by joining to	gether	
		&			
С	. Ca	arbohydrate Mobilization			
	1.	When glucose is needed glycoger	n is broken down	into	
		a. The process is called			

	2.	. What happens to glucose-6-phosphate in skeletal muscle?	
	3.	. What happens to glucose-6-phosphate in the liver?	
		a. This is necessary to maintain between m	neals
		b. For what organ is this most important?	
	4.	. Amino acids and glycerol can be used to produce	_
		a. The process is called	
		Amino acids are converted to or or	
		These molecules are then converted to	
		2. Glycerol is converted to which	ch
		then enters	
VII. N	/leta	abolic States	
Α	. Al	bsorptive State	
	1.	. Period immediately after a meal when	
		. Most of the glucose that enters circulation is used	
	3.	. Remainder of the glucose is converted to or or	
		. Most of the absorbed fats are deposited in	
		. Many of the absorbed amino acids are used	
		a. Some are used for	
		b. Others enter the liver and are converted into	or
В	. Po	ostabsorptive State	
	1.	. Blood glucose levels are maintained by conversion of	_
		to	
		a. The first source is stored in the liver	
		b. Next fats are used as an energy source:	
		Glycerol from triglycerides can be converted to	
		Fatty acids from triglycerides can be converted to	
		a. Moves into the & used	

		b. In the liver they are used to produce	
		that other tissues use for energy	
	2.	2. The use of fatty acids as an energy source:	
		a. Partly eliminates	
		b. Resulting in	
		c. Maintenance of	
	3.	3. What other molecule can be used as a source of glucose or for end	
		production?	
VIII. N	/leta	etabolic Rate	
A.	Ме	Metabolic Rate	
	1.	I. Metabolic rate is the total produced and ι	used by the
		body	
	2.	2. Metabolic rate is usually estimated by measuring	
	3.	3. One liter of oxygen consumed by the body is assumed to produce	
В.	Ва	Basal Metabolic Rate (BMR)	
	1.	The basal metabolic rate is the metabolic rate calculated in	
		per per	
	2.	2. How is BMR determined?	
	3.	B. BMR is the energy needed to	
	4.	Basal metabolism accounts for about of energy exper	nditure
	5.	5. Factors that affect the BMR include:	
		a. Muscle tissue is	
		b. Younger people	
		c. Fever	
		d. Reduced kilocaloric input	
		e. Thyroid hormones	
		f. Epinephrine	
		g. Males	

		h. During pregnancy
C.	Th	nermic Effect of Food
	1.	Assimilating ingested food consumes energy when:
		Accessory digestive organs and the intestinal lining
		b. Motility of the digestive tract
		c. Liver is involved in
	2.	The energy cost of these activities is called the
		a. They account for about of the body's energy expenditure
D.	Μι	uscular Activity
	1.	Muscular activity consumes about of the body's energy
	2.	Increased physical activity using skeletal muscle requires more energy for:
		a. Skeletal muscle
		b. Increased contraction of the &
	3.	Energy loss through muscular activity is the only component of energy
		expenditure that
IX. Bo	ody	Temperature Regulation
A.	Н	omeotherms
	1.	What does the term homeotherm or being warm-blooded animals mean for
		humans?
	2.	Maintenance of a constant body temperature is important to
	3.	Most enzymes are very temperature sensitive and only function
		a. Environmental temperatures
		b. Heat produced by metabolism
		2. Trode produced by metabolism
B.	Fr	ee Energy
	1.	Define the term "free energy":
		a. Usually expressed in terms of per
	2.	How much of the energy released by catabolism is used to do work?

	3.	What happens to the rest of the energy?		
C.	He	Heat Exchange		
	1.	What is radiation?		
	2.	What is conduction?		
	3.	What is convection?		
	4.	What is evaporation?		
	5.	Body temperature is maintained by		
		a. If heat gain exceeds heat loss		
		b. If heat loss exceeds heat gain		
	6.	Heat gain occurs through &		
	7.	Heat loss occurs through		
	8.	Radiation, conduction, and convection can result in heat gain or loss		
		depending on		
	9.	What determines the amount of heat exchanged between the environment		
		and the body?		
		a. The greater the temperature difference		
1	0.	Temperature difference can be controlled physiologically through		
		in the skin		
		a. Warm blood is brought to the surface by		
		b. Skin temperature is lowered by		
1	1.	When environmental temperature is greater than body temperature:		
		a. Vasodilation		
		b. Causing that		
		c. Decreases		
		d. Evaporation		
1	2.	Regulation of body temperature is an example of a		
		controlled by a		

a.	Increases in blood temperature are detected by
	
	Activates mechanisms that
b.	Decreases in blood temperature are detected by
	Initiate heat gain by
C.	Under what conditions can the set point of the hypothalamus be changed?