
33Numerical Data

O b j e c t i v e s

After you have read and studied this
chapter, you should be able to

• Select proper types for numerical
data.

• Write arithmetic expressions in
Java.

• Evaluate arithmetic expressions
using the precedence rules.

• Describe how the memory alloca-
tion works for objects and primitive
data values.

• Write mathematical expressions
using methods in the Math class.

• Use the GregorianCalendar class
in manipulating date information
such as year, month, and day.

• Convert input string values to
numerical data.

• Apply the incremental develop-
ment technique in writing pro-
grams.

• (Optional) Describe how the
integers and real numbers are rep-
resented in memory.

wu18847_ch3smp.qxd 12/6/02 5:17 PM Page 1

hen we review the Ch2Monogram sample program, we can visualize three tasks:
input, computation, and output. We view computer programs as getting input, per-
forming computation on the input data, and outputting the results of the computa-

tions. The type of computation we performed in Chapter 2 is string processing. In this
chapter, we will study another type of computation, the one that deals with numerical
data. Consider, for example, a metric converter program that accepts measurements in
U.S. units (input), converts the measurements (computation), and displays their metric
equivalents (output). The three tasks are not limited to numerical or string values,
though. An input could be a mouse movement. A drawing program may accept mouse
dragging (input), remember the points of mouse positions (computation), and draw lines
connecting the points (output). Selecting a menu item is yet another form of input. For
beginners, however, it is easiest to start writing programs that accept numerical or string
values as input and display the result of computation as output.

We will also introduce more standard classes to reinforce the object-oriented style
of programming. In addition to the standard classes, we will introduce two author-
written classes that provide convenient input and output routines. The use of these
classes illustrate some of the important aspects of object-oriented programming, but
their use in the actual programs is strictly optional. We will learn how to implement a
simplified version of these classes in the next chapter.

Finally, we will continue to employ the incremental development technique intro-
duced in Chapter 2 in developing the sample application, a loan calculator program. As
the sample program gets more complex, a well planned development steps will smooth
the development effort.

3.1 Variables
Suppose we want to compute the sum and difference of two numbers. Let’s call the two
numbers x and y. In mathematics, we say

x + y

and

x - y

To compute the sum and the difference of x and y in a program, we must first declare
what kind of data will be assigned to them. After we assign values to them, we finally
can compute their sum and difference.

Let’s say x and y are integers. To declare that the type of data assigned to them is
an integer, we write

int x, y;

When this declaration is made, memory locations to store data values for x and y are
allocated. These memory locations are called variables, and x and y are the names we

2 Chapter 3 Numerical Data

I n t r o d u c t i o n

W

variable

wu18847_ch3smp.qxd 12/6/02 5:17 PM Page 2

associate with the memory locations. Any valid identifier can be used as a variable
name. After the declaration is made, we can assign only integers to x and y. We cannot,
for example, assign real numbers to them.

3.1 Variables 3

A variable has three properties: a memory location to store the value, the type of data
stored in the memory location, and the name used to refer to the memory location.

Helpful Reminder

Although we must say “x and y are variable names” to be precise, we will use abbreviated
forms “x and y are variables” or “x and y are integer variables” whenever appropriate.

The general syntax for declaring variables is

<data type> <variables> ;

where <variables> is a sequence of identifiers separated by commas. Every variable
you use in a program must be declared. We may have as many declarations as we wish.
For example, we can declare x and y separately as

int x;
int y;

However, you cannot declare the same variable more than once; therefore, the second
declaration below is invalid because y is declared twice:

int x, y, z;
int y;

There are six numerical data types in Java: byte, short, int, long, float, and
double. The data types byte, short, int, and long are for integers, and the data types
float and double are for real numbers. The data type names byte, short, and others are
all reserved words. The difference among these six numerical data types is in the range
of values they can represent, as shown in Table 3.1.

variable
declaration
syntax

six numerical
data types

Ta
b

le

Table 3.1 Java numerical data types and their precisions.

Data Default Minimum Maximum
Type Content Value† Value Value

byte Integer 0 �128 127
short Integer 0 �32768 32767
int Integer 0 �2147483648 2147483647
long Integer 0 �9223372036854775808 9223372036854775807
float Real 0.0 �3.40282347E+38†† 3.40282347E+38
double Real 0.0 �1.79769313486231570E+308 1.79769313486231570E+308

† No default value is assigned to a local variable. A local variable is explained on page 181.
†† The character E indicates a number is expressed in scientific notation. This notation is explained on page 107.

wu18847_ch3smp.qxd 12/6/02 5:17 PM Page 3

A data type with a larger range of values is said to have a higher precision. For
example, the data type double has a higher precision than the data type float. The
trade-off for higher precision is memory space—to store a number with higher preci-
sion, you need more space. A variable of type short requires 2 bytes and a variable of
type int requires 4 bytes, for example. If your program does not use many integers, then
whether you declare them as short or int is really not that critical. The difference in
memory usage is very small and not a deciding factor in the program design. The
storage difference becomes significant only when your program uses thousands of inte-
gers. Therefore, we will almost always use the data type int for integers. We use long
when we need to process very large integers that are outside the range of values int can
represent. For real numbers, it is more common to use double. Although it requires
more memory space than float, we prefer double because of its higher precision in
representing real numbers. We will describe how the numbers are stored in memory in
Section 3.10.

Here is an example of declaring variables of different data types:

int i, j, k;
float numberOne, numberTwo;
long bigInteger;
double bigNumber;

At the time a variable is declared, it also can be initialized. For example, we may
initialize the integer variables count and height to 10 and 34 as

int count = 10, height = 34;

4 Chapter 3 Numerical Data

Take my

Advice

In the same way that you can initialize variables at the time you declare them, you
can declare and create an object at the same time. For example, the declaration

Date today = new Date();

is equivalent to

Date today;
today = new Date();

We assign a value to a variable using an assignment statement. To assign the value
234 to the variable named firstNumber, for example, we write

firstNumber = 234;

Be careful not to confuse mathematical equality and assignment. For example, the
following are not valid Java code:

4 + 5 = x;
x + y = y + x;

assignment
statement

wu18847_ch3smp.qxd 12/6/02 5:17 PM Page 4

The syntax for the assignment statement is

<variable> = <expression> ;

where <expression> is an arithmetic expression, and the value of <expression> is
assigned to the <variable>. The following are sample assignment statements:

sum = firstNumber + secondNumber;
solution = x * x - 2 * x + 1;
average = (x + y + z) / 3.0;

We will present a detailed discussion of arithmetic expressions in Section 3.2. One key
point you need to remember about variables is

3.1 Variables 5

Before using a variable, you must first declare and assign a value to it.

Helpful Reminder

The diagram in Figure 3.2 illustrates the effect of variable declaration and assign-
ment. Notice the similarity with this and memory allocation for object declaration and
creation illustrated in Figure 2.4 on page 44. Figure 3.1 compares the two. What we
have been calling object names are really variables. The only difference between a vari-
able for numbers and a variable for objects is the contents in the memory locations. For
numbers, a variable contains the numerical value itself, and for objects, a variable con-
tains an address where the object is stored. We use an arrow in the diagram to indicate
that the content is an address, not the value itself.

Object names are synonymous to variables whose contents are references to objects
(i.e., memory addresses).

Helpful Reminder

Figure 3.3 contrasts the effect of assigning the content of one variable to another
variable for numerical data values and for objects. Because the content of a variable for
objects is an address, assigning the content of a variable to another makes two variables
that refer to the same object. Assignment does not create a new object. Without execut-
ing the new command, no new object is created. You can view the situation where two
variables refer to the same object as the object having two distinct names.

For numbers, the amount of memory space required is fixed. The values for data
type int require 4 bytes, for example, and this won’t change. However, with objects, the
amount of memory space required is not constant. One instance of the Account class
may require 120 bytes, while another instance of the same class may require 140 bytes,
for example. The difference in space usage for the account objects would occur if we
have to keep track of checks written against the accounts. If one account has 15 checks

assignment
statement syntax

wu18847_ch3smp.qxd 12/6/02 5:17 PM Page 5

written and the second account has 25 checks written, then we need more memory space
for the second account than the first account.

We use the new command to actually create an object. Remember that declar-
ing an object only allocates the variable whose content will be an address. On the
other hand, we don’t “create” an integer because the space to store the value is already
allocated at the time the integer variable is declared. Because the contents are ad-
dresses that refer to memory locations where the objects are actually stored, objects
are called reference data types. In contrast, numerical data types are called primitive
data types.

6 Chapter 3 Numerical Data

customer = new Customer();
customer = new Customer();

number = 237;
number = 35;

Numerical Data Object

int number; Customer customer;

int number;

number = 35;

number = 237;

Customer customer;

customer = new Customer();

customer = new Customer();

number customer

customer

customer

number 237

number 35

:Customer

:Customer :Customer

int number;

number = 237;

number = 35;

Customer customer;

customer = new Customer();

customer = new Customer();

Figure 3.1 A difference between object declaration and numerical data declaration.

reference vs.
primitive data
types

wu18847_ch3smp.qxd 12/6/02 5:17 PM Page 6

3.2 Arithmetic Expressions 7

operator

integer
division

1. Why are the following declarations all invalid?

int a, b, a;
float x, int;
float w, int x;
bigNumber double;

2. Assuming the following declarations are executed in sequence, why are the
second and third declarations invalid?

int a, b;
int a;
float b;

3. Name six data types for numerical values.

4. Which of the following are valid assignment statements (assuming the variables
are properly declared)?

x = 12;
12 = x;
y + y = x;
y = x + 12;

5. Draw the state-of-memory diagram for the following code:

Account latteAcct, espressoAcct;

latteAcct = new Account();
espressoAcct = new Account();
latteAcct = espressoAcct;

QuickCHECK

3.2 Arithmetic Expressions
An expression involving numerical values such as

23 + 45

is called an arithmetic expression, because it consists of arithmetic operators and
operands. An arithmetic operator, such as + in the example, designates numerical
computation. Table 3.2 summarizes the arithmetic operators available in Java.

Notice how the division operator works in Java. When both numbers are integers,
the result is an integer quotient. That is, any fractional part is truncated. Division be-
tween two integers is called integer division. When either or both numbers are float or
double, the result is a real number. Here are some division examples:

Division Operation Result

23 / 5 4
23 / 5.0 4.6
25.0 / 5.0 5.0

wu18847_ch3smp.qxd 12/6/02 5:17 PM Page 7

8 Chapter 3 Numerical Data

State of Memory

int firstNumber, secondNumber;

firstNumber = 234;
secondNumber = 87;

firstNumber = 234;
secondNumber = 87;

The variables firstNumber and secondNumber
are declared and set in memory.

A

B

int firstNumber, secondNumber; after is executed A

firstNumber

secondNumber

Values are assigned to the variables firstNumber
and secondNumber.

after is executed B

firstNumber

secondNumber

234

87

Figure 3.2 A diagram showing how two memory locations (variables) with names firstNumber and
secondNumber are declared, and values are assigned to them.

The modulo operator returns the remainder of a division. Although real numbers
can be used with the modulo operator, the most common use of the modulo operator
involves only integers. Here are some examples:

Modulo Operation Result

23 % 5 3
23 % 25 23
16 % 2 0

An operand in arithmetic expressions can be a constant, a variable, a method call,
or another arithmetic expression, possibly surrounded by parentheses. Let’s look at
examples. In the expression

x + 4

we have one addition operator and two operands, a variable x and a constant 4. The
addition operator is called a binary operator because it operates on two operands. All
other arithmetic operators, except the minus, are also binary. The minus and plus oper-
ators can be both binary and unary. A unary operator operates on one operand as in

�x

operand

binary
operator

wu18847_ch3smp.qxd 12/6/02 5:17 PM Page 8

3.2 Arithmetic Expressions 9

Numerical Data Object

number1 = 237;
number2 = number1;

int number1, number2;

alan = new Professor();
turing = alan;

Professor alan, turing;

number2

number1

turing

alan

number2

number1

turing

alan

number1 = 237;

int number1, number2;

alan = new Professor();

Professor alan, turing;

number2 = number1; turing = alan;

:Professor

:Professor

number2

number1

turing

alan

number1 = 237;

int number1, number2;

alan = new Professor();

Professor alan, turing;

number2 = number1; turing = alan;

237

237

237

Figure 3.3 An effect of assigning the content of one variable to another.

In the expression

x + 3 * y

the addition operator acts on operands x and 3 * y. The right operand for the addition
operator is itself an expression. Often a nested expression is called a subexpression. Thesubexpression

wu18847_ch3smp.qxd 12/6/02 5:17 PM Page 9

10 Chapter 3 Numerical Data

subexpression 3 * y has operands 3 and y. The following diagram illustrates this
relationship:

Ta
b

le
Table 3.2 Arithmetic operators.

Java Value
Operation Operator Example (x = 10, y = 7, z = 2.5)

Addition + x + y 17
Subtraction - x - y 3
Multiplication * x * y 70
Division / x / y 1

x / z 4.0
Modulo division
(remainder) % x % y 3

y3

x

When two or more operators are present in an expression, we determine the order
of evaluation by following the precedence rules. For example, multiplication has a
higher precedence than addition. Therefore, in the expression x + 3 * y, the multiplica-
tion operation is evaluated first, and the addition operation is evaluated next. Table 3.3
summarizes the precedence rules for arithmetic operators.

The following example illustrates the precedence rules applied to a complex arith-
metic expression:

a * (b + -(c / d) / e) * (f - g % h)
1 5

6
2

3

4

7

8

precedence
rules

wu18847_ch3smp.qxd 12/6/02 5:17 PM Page 10

3.2 Arithmetic Expressions 11

Ta
b

le
Table 3.3 Precedence rules for arithmetic operators and parentheses.

Order Group Operator Rule

Subexpressions are evaluated first. If
parentheses are nested, the innermost
subexpression is evaluated first. If two
or more pairs of parentheses are on the
same level, then they are evaluated
from left to right.

Unary minuses and pluses are evalu-
ated second.

Multiplicative operators are evaluated
third. If two or more multiplicative oper-
ators are in an expression, then they are
evaluated from left to right.

Additive operators are evaluated last. If
two or more additive operators are in
an expression, then they are evaluated
from left to right.

High subexpression ()

unary -, +
operator

multiplicative *, /, %
operator

additive +, -
Low operator

When an arithmetic expression consists of variables and constants of the same
data type, then the result of the expression will be that data type also. For example, if the
data type of a and b is int, then the result of the expression

a * b + 23

is also an int. When the data types of variables and constants in an arithmetic expression
are of different data types, then a casting conversion will take place. A casting conver-
sion, or type casting, is a process that converts a value of one data type to another data
type. Two types of casting conversions in Java are implicit and explicit. An implicit con-
version called numeric promotion is applied to the operands of an arithmetic operator.
The promotion is based on the rules stated in Table 3.4. This conversion is called pro-
motion because the operand is converted from a lower to a higher precision.

Instead of relying on implicit conversion, we can use explicit conversion to con-
vert an operand from one data type to another. Explicit conversion is applied to an
operand by using a type cast operator. For example, to convert the int variable x in the
expression

x / 3

to float so the result will not be truncated, we apply the type cast operator (float) as

(float) x / 3

type casting

numeric
promotion

type cast
operator

wu18847_ch3smp.qxd 12/6/02 5:17 PM Page 11

The syntax is

(<data type>) <expression>

The type cast operator is a unary operator and has a precedence higher than any binary
operator. You must use parentheses to type cast a subexpression; for example, the
expression

a + (double) (x + y * z)

will result in the subexpression x + y * z type casted to double.
Assuming the variable x is an int, then the assignment statement

x = 2 * (14343 / 2344);

will assign the integer result of the expression to the variable x. However, if the data
type of x is other than int, then an implicit conversion will occur so the data type of the
expression becomes the same as the data type of the variable. An assignment conver-
sion is another implicit conversion that occurs when the variable and the value of an ex-
pression in an assignment statement are not of the same data type. An assignment con-
version occurs only if the data type of the variable has a higher precision than the data
type of the expression’s value. For example,

double number;
number = 25;

is valid, but

int number;
number = 234.56;

is not.

12 Chapter 3 Numerical Data

Ta
b

le
Table 3.4 Rules for arithmetic promotion.

Operator Type Promotion Rule

1. If the operand is of type byte or short, then it is converted
to int.

2. Otherwise, the operand remains the same type.

1. If either operand is of type double, then the other
operand is converted to double.

2. Otherwise, if either operand is of type float, then the
other operand is converted to float.

3. Otherwise, if either operand is of type long, then the
other operand is converted to long.

4. Otherwise, both operands are converted to int.

Unary

Binary

type casting
syntax

assignment
conversion

wu18847_ch3smp.qxd 12/6/02 5:17 PM Page 12

3.3 Constants 13

Take my

Advice

If we wish to assign a value to multiple variables, we can cascade the assignment
operations as

x = y = 1;

which is equivalent to saying

y = 1;
x = 1;

The assignment symbol = is actually an operator and its precedence order is lower
than any other operators. Assignment operators are evaluated right to left.

1. Evaluate the following expressions:

a. 3 + 5 / 7
b. 3 * 3 + 3 % 2
c. 3 + 2 / 5 + -2 * 4
d. 2 * (1 + -(3/4) / 2) * (2 - 6 % 3)

2. What is the data type of the result of the following expressions?

a. (3 + 5) / 7
b. (3 + 5) / (float) 7
c. (float) ((3 + 5) / 7)

3. Which of the following expressions is equivalent to ?

a. -b * (c + 34) / 2 * a

b. -b * (c + 34) / (2 * a)

c. -b * c + 34 / (2 * a)

�b(c � 34)
��

2a

QuickCHECK

3.3 Constants
While running a program, different values may be assigned to a variable at different
times (thus the name variable, since the values it contains can vary), but in some cases
we do not want this to happen. In other words, we want to “lock” the assigned value so
that no changes can take place. If we want a value to remain fixed, then we use a
constant. A constant is declared in a manner similar to a variable but with the additional
reserved word final. A constant must be assigned a value at the time of its declaration.

constant

wu18847_ch3smp.qxd 12/6/02 5:17 PM Page 13

Here’s an example declaring four constants:

final double PI = 3.14159;
final short FARADAY_CONSTANT = 23060; // unit is cal/volt
final double CM_PER_INCH = 2.54;
final int MONTHS_IN_YEAR = 12;

We use the standard Java convention to name a constant using only capital letters
and underscores. Judicious use of constants makes programs more readable. You will be
seeing many uses of constants later in the book, beginning with the sample program in
this chapter.

The constant PI is called a named or symbolic constant. We refer to symbolic con-
stants with identifiers such as PI and FARADAY_CONSTANT. The second type of con-
stant is called a literal constant, and we refer to it using an actual value. For example,
the following statements contain three literal constants:

14 Chapter 3 Numerical Data

When we use the literal constant 2, the data type of the constant is set to int by default.
Then how can we specify a literal constant of type long?1 We append the constant with
an l (a lowercase letter L) or L as

2L * PI * 345.79

How about the literal constant 345.79? Since the literal constant contains a
decimal point, its data type can only be float or double. But which one? The answer is
double. If a literal constant contains a decimal point, then it is of type double by
default. To designate a literal constant of type float, we must append the letter f or F.
For example:

2 * PI * 345.79F

To represent a double literal constant, we may optionally append a d or D. So, the
following two constants are equivalent:

2 * PI * 345.79 is equivalent to 2 * PI * 345.79D

1. In most cases, it is not significant to distinguish the two because of automatic type conversion; see Sec-
tion 3.2.

named
constant

literal
constant

final double PI = 3.14159 ;
double area;
area = 2 * PI * 345.79 ;

Literal Constants

wu18847_ch3smp.qxd 12/6/02 5:17 PM Page 14

3.3 Constants 15

Take my

Advice

Since a numerical constant such as 345.79 represents a double value, the following
statements

float number;
number = 345.79;

for example, would result in a compilation error.The data types do not match, and
the variable (float) has lower precision than the constant (double). To correct this
error, we have to write the assignment statement as

number = 345.79f;

or

number = (float) 345.79;

This is one of the common errors people make in writing Java programs, especially
those with prior programming experience.

We also can express float and double literal constants in scientific notation

number � 10exponent

which in Java is expressed as

<number> E <exponent>

where <number> is a literal constant that may or may not contain a decimal point and
<exponent> is a signed or unsigned integer. Lowercase e may be substituted for the
exponent symbol E. The whole expression may be suffixed by f, F, d, or D. The
<number> itself cannot be suffixed with symbols f, F, d, or D. Here are some
examples:

12.40e+209
23E33
29.0098e-102
234e+5D
4.45e2

Here are some additional examples of constant declarations:

final double SPEED_OF_LIGHT = 3.0E+10D; //
unit is cm/sec

final short MAX_WGT_ALLOWED = 400;

exponential
notation in Java

wu18847_ch3smp.qxd 12/6/02 5:17 PM Page 15

3.4 Getting Numerical Input Values
In Chapter 2, we introduced the use of the showInputDialog method to get the string
input. So it is natural for us to consider writing the following statements to get a
numerical input value:

int age;

age = JOtionPane.showInputDialog(null, "Enter Age:");

This code will not work because of type mismatch. Notice that an assignment
such as

String num = 14;

or

int num = "14";

is invalid because of type mismatch. We cannot assign a value of imcompatible type to
a variable of another type. Incompatible types mean the values of one type are repre-
sented differently in computer memory than the values of the other type. The literal
constant "14", for example, is a String object and represented in computer memory dif-
ferently than the integer constant 14. This difference in representation makes the as-
signments such as those shown above invalid.

The showInputDialog method returns a String object, and therefore, we cannot
assign it directly to a variable of numerical data type. To input a numerical value, we
have to first input a String object and then convert it to a numerical representation. We
call such operation type conversion.

To perform the necessary type conversion in Java, we use different utility classes
called wrapper classes. The name “wrapper” derives from the fact that these classes sur-
round, or wrap, a primitive data with useful methods. Type conversion is one of the sev-
eral methods provided by these wrapper classes. To convert a string data to an integer
data, we use the parseInt class method of the Integer class. For example, to convert a
string "14" to an int value 14, we write

int num = Integer.parseInt("14");

To input an integer value, say, age, we can write the code as follows:

String str
= JOptionPane.showInputDialog(null, "Enter age:");

int age = Integer.parseInt(str);

If the user enters a string that cannot be converted to an int, for example, 12.34 or
abc123, an error will result. Table 3.5 lists common wrapper classes and their corre-
sponding conversion method.

16 Chapter 3 Numerical Data

type
mismatch

type
conversion

wrapper
classes

Integer

wu18847_ch3smp.qxd 12/6/02 5:17 PM Page 16

Let’s write a short program that inputs the radius of a circle and computes the cir-
cle’s area and circumference. Here’s the program:

3.4 Getting Numerical Values 17

Ta
b

le
Table 3.5 Common wrapper classes and thier conversion method.

Class Method Example

Integer parseInt Integer.parseInt("25") → 25
Integer.parseInt("25.3") → error

Long parseLong Long.parseLong("25") → 25L
Long.parseLong("25.3") → error

Float parseFloat Float.parseFloat("25.3") → 25.3F
Float.parseFloat("ab3") → error

Double parseDouble Double.parseDouble("25") → 25.0
Double.parseDouble("ab3") → error

/*
Chapter 3 Sample Program: Compute Area and Circumference

File: Ch3Circle.java

*/

import javax.swing.*;
import java.text.*;

class Ch3Circle {

public static void main(String[] args) {

final double PI = 3.14159;

String radiusStr;

double radius, area, circumference;

radiusStr = JOptionPane.showInputDialog(null, "Enter radius:");

radius = Double.parseDouble(radiusStr);

//compute area and circumference

wu18847_ch3smp.qxd 12/6/02 5:17 PM Page 17

Notice the long expression we pass as the second paramater for the show-
MessageDialog method. In Chapter 2, we use the plus symbol to concatenate strings.
We can use the same symbol to concatenate strings and numerical data. Numerical data
are automatically converted to string representation and then concatenated. We learned
in this chapter that the plus symbol is used for arithmetic addition also. A symbol that is
used to represent more than one operation is called an overloaded operator. When the
Java compiler encounters an overloaded operator, how does it know which operation the
symbol represents? The Java compiler determines the meaning of a symbol by its con-
text. If the left and the right operand of the plus symbol are numerical values, then the
compiler will treat the symbol as addition. Otherwise, it will treat the symbol as con-
catenation. The plus symbol operator is evaluated from left to right, and the result of
concatenation is a text, so the code

int x = 1;
int y = 2;
String output = "test" + x + y ;

will result in output being set to

test12

while the statement

String output = x + y + "test" ;

will result in output being set to

3test

Getting back to the program, when we run the program and enter 2.35, the dialog
shown in Figure 3.4 appears on the screen. Notice the precision of decimal places dis-
played for the results, especially the one for the circumference. We can specify the num-
ber of decimal places to display by using the DecimalFormat class from the java.text
package. The usage is similar to the one for the SimpleDateFormat class.

18 Chapter 3 Numerical Data

area = 2.0 * PI * radius;
circumference = PI * radius * radius;

JOptionPane.showMessageDialog(null,
"Given Radius: " + radius + "\n"

+ "Area: " + area+ "\n"
+ "Circumference: " + circumfer-

ence);
}

}

We are allowed to
concatenate String

and numerical data.

the + symbol
means addi-
tion or con-
catenation

operator over-
loading

"test" 1

"test1"

"test12"

2

1 2

3

"3test"

"test"

(add)

DecimalFormat

wu18847_ch3smp.qxd 12/6/02 5:17 PM Page 18

Although the full use of the DecimalFormat class can be fairly complicated, it is
very straightforward if all we are interested is to limit the number of decimal places to
be displayed. To limit the decimal places to three, we create a DecimalFormat object as

DecimalFormat df = new DecimalFormat("0.000");

and use it format the number as

double num = 234.5698709;

JOptionPane.showMessageDialog("Num: " + df.format(num));

When we add an instance of the DecimalFormat class named df and change the
output statement of the Ch3Circle class to

JOptionPane.showMessageDialog(null,
"Given Radius:"+radius+"\n"
+"Area:"+df.format(area)+"\n"
+"Circumference:"
+df.format(circumference));

the dialog shown in Figure 3.5 appears on the screen. The modified class is named
Ch3Circle2.

3.5 Standard Output 19

1. Write a code fragment to input the user’s height in inches and assign the value to
an int variable named height.

2. Write a code fragment to input the user’s weight in pounds and display the
weight in kilograms. 1 lb � 453.592 grams.

QuickCHECK

3.5 Standard Output
The showMessageDialog method of the JOptionPane class can be used to output
multiple lines of text by separating the lines with the special control characters \n. How-
ever, the use of showMessageDialog becomes cumbersome and inconvenient when
we have to output many lines of text, not at once, but through the course of program ex-
ecution. The showMessageDialog method is intended for displaying short one-line
messages, not for a general-purpose output mechanism.

Among different approaches, we will introduce the simplest technique to display
multiple lines of text in this section. When we execute the earlier sample programs, we
see a window with black ground, something similar to one shown in appears on the
screen. This window is called the standard output window, and we can output multiple
lines of text (we can output any numerical values by converting them to text) to this
window via System.out. The actual appearance of this standard ouput window will
differ depending on which Java compiler we use. Despite the difference in the actual ap-
pearance, its functionality of displaying multiplel lines of text is the same among
different Java compilers.

standard
outputwindow

System.out

wu18847_ch3smp.qxd 12/6/02 5:17 PM Page 19

20 Chapter 3 Numerical Data

System.out refers to a pre-created PrintStream object we use to ouput multiple lines
of text to the standard output window.The actual appearance of the standard output
window depends on which Java compiler we use.

Helpful Reminder

The System class includes a number of useful class data values. One of them is an
instance of the PrintStream class named out. Since this is a class data value, we refer to
it through the class name, as System.out, and this PrintStream object is tied to the stan-
dard output window. Every text we send to System.out will appear on the standard out-
put window.

We use the print method to output a value. For example, executing the code

System.out.print("Hello, Dr. Caffeine.");

will result in the standard output window shown in Figure 3.7.

Figure 3.7 Result of executing System.out.print("Hello, Dr. Caffeine.").

Hello, Dr. Caffeine

The print method will continue printing from the end of the currently displayed
output. Executing the following statements after the preceding print message will result
in the standard output window shown in Figure 3.8.

int x, y;
x = 123;
y = x + x;
System.out.print(" x = ");
System.out.print(x);
System.out.print(" x + x = ");
System.out.print(y);
System.out.print(" THE END");

Notice that in the statement

System.out.print(x);

we are sending a numerical value as the parameter, but we stated earlier that we use the
standard output window for displaying multiple lines of text, that is, string data. Actu-
ally, the statement

System.out.print(x);

is equivalent to

System.out.print(Integer.parseInt(x));

wu18847_ch3smp.qxd 12/6/02 5:17 PM Page 20

3.5 Standard Output 21

because the print method will do the necessary type conversion if we pass numerical
data. We can pass any primitive data value as the parameter to the print method.

We can print an argument and skip to the next line so that subsequent output will
start on the next line by using println instead of print. The standard output window of
Figure 3.9 will result if we use println instead of print in the preceding example; that
is,

int x, y;
x = 123;
y = x + x;
System.out.println("Hello, Dr. Caffeine.");
System.out.print(" x = ");
System.out.println(x);
System.out.print(" x + x = ");
System.out.println(y);
System.out.println(" THE END");

Figure 3.8 Result of sending five print messages to System.out of Figure 3.7.

Hello, Dr. Caffeine. x = 123 x + x = 246 THE END

Figure 3.9 Result of mixing print with four println messages to System.out.

Hello, Dr. Caffeine.
x = 123
x + x = 246
THE END

1. Using the standard output, write a Java statement to display a message dialog
with the text I Love Java.

2. Using the standard output, write statements to display the following shopping
list:

Shopping List:
Apple
Banana
Lowfat Milk

QuickCHECK

wu18847_ch3smp.qxd 12/6/02 5:17 PM Page 21

3.6 (Optional) Standard Input
For programs that require simple input routines, the use of showInputDialog would
suffice. As an alternative, we will introduce an approach that works nicely with
System.out. Some people may prefer this approach because of the tighter integration
with System.out.

Analogous to System.out for output, we have System.in for input. However,
using System.in for input is slightly more complicated than using System.out for
output. System.in is an instance of the InputStream class that provides a facility for
inputting bytes. A byte consits of 8 bits, and it is the basic unit of organizing the mem-
ory. For more explanation of bytes and bits, please refer to Chapter 0. We cannot use
System.in directly because it allows us to read only a single byte with its read method.
But multiple bytes are used to represent primitive data types and strings. For example,
the primitive data types int and float require 4 bytes and string data of N characters
requires 2N bytes (note: a Unicode-based Java character requires 2 bytes).

The most common way of using System.in for input is to associate a Buffered-
Reader object to the System.in object. This BufferedReader object will allow us to
read a single line of text just as the showInputDialog method of JOptionPane. Once
the string data is read, we can then convert it to a data of primitive data type using the
type conversion techniques mentioned earlier in the chapter. To associate a Buffered-
Reader object to System.in, we write

BufferedReader bufReader;

bufReader = new BufferedReader(
new InputStreamReader(System.in));

Notice that we create an intermediate InputStreamReader object. An InputStream-
Reader object allows us to read a single character at a time, and a BufferedReader
object allows us to read a single line of text, that consists of multiple characters, at a
time. In other words, a succession of three objects incrementally add more reading
capability as illustrated in Figure 3.10.

Once the BufferedReader object is established, we use its readLine method to
read a single line of text as a String. We designate the end of a line by pressing the Enter
(or Return) key. Here’s an example:

String name;

try {
name = bufReader.readLine();

} catch (IOException e) { }

Calling the readLine method can result in an error condition called an exception.
We will defer the full explanation of exceptions and how to process them until Chap-
ter 8. For now, it suffices just to remember that we have to surround the statement that
calls the readLine method with the following try-catch block:

try {
...

} catch (IOException e) { }

22 Chapter 3 Numerical Data

No Semicolon
Notice there’s no
semicolon here.

System.in

BufferReader

exception

try-catch

InputStream-
Reader

wu18847_ch3smp.qxd 12/6/02 5:17 PM Page 22

3.6 (Optional) Standard Input 23

Figure 3.10 How the sequence of I/O objects incrementally add more capabilities.

BufferedReader

InputStreamReader

InputStream
(System.in)

Stream of strings

Stream of characters

Stream of bytes

Provides the capability
to read lines of text

(one line = N characters)

Provides the capability
to read characters

(one character = two bytes)

Provides the capability
to read bytes

To input a primitive data, say, int, we employ the same type conversion technique
we used in conjuction with the showInputDialog. For example, to input an age, we
write

String inputStr;
int age;

try {
inputStr = bufReader.readLine();

} catch (IOException e) { }

age = Integer.parseInt(inputStr);

When we use the showInputDialog method of JOptionPane, we see a dialog
appears on the screen, and the characters we enter are displayed in the dialog. With
System.in, we see what we enter on the standard output window. When an input dialog
appears on the screen, it serves as a visual clue that the program is waiting for our input.
With System.in, there will no such dialog, so we have to display some form of prompt
on the standard output window in the following manner:

System.out.print("Enter your age: ");

try {
inputStr = bufReader.readLine();

} catch (IOException e) { }

age = Integer.parseInt(inputStr);

wu18847_ch3smp.qxd 12/6/02 5:17 PM Page 23

24 Chapter 3 Numerical Data

1. Using the standard input, write a code fragment to input the user’s height in
inches and assign the value to an int variable named height.

2. Using the standard input and output, write a code fragment to input the user’s
weight in pounds and display the weight in kilograms. 1 lb � 453.592 grams.

QuickCHECK

Finally, if we need to input multiple data values, it is more convenient to include
all input routines in a single try-catch block instead of using multiple try-catch blocks,
one for each readLine method. Here’s an example:

try {
System.out.print("Enter your age: ");
inputStr = bufReader.readLine();
age = Integer.parseInt(inputStr);

System.out.print("Enter your weight: ");
inputStr = bufReader.readLine();
wgt = Double.parseDouble(inputStr);

} catch (IOException e) { }

3.7 The Math Class
Using only the arithmetic operators to express numerical computations is very limiting.
Many computations require the use of mathematical functions. For example, to express
the mathematical formula

sin�x � �
we need the trigonometric sine and square root functions. The Math class in the
java.lang package contains class methods for commonly used mathematical functions.
Table 3.6 is a partial list of class methods available in the Math class. The class also has
two class constants PI and E for � and the natural number e, respectively. Using the
Math class constant and methods, we can express the preceding formula as

(1.0 /2.0) * Math.sin(x - Math.PI / Math.sqrt(y))

Notice how the class methods and class constants are referred to in the expression.
The syntax is

<class name> . <method name> (<arguments>)

or

<class name> . <class constant>

�
�
�y�

1
�
2

wu18847_ch3smp.qxd 12/6/02 5:17 PM Page 24

3.7 The Math Class 25

Ta
b

le
Table 3.6 Math class methods for commonly used mathematical functions.

Class Argument Result
Method Type Type Description Example

abs(a) int int Returns the absolute int abs(10) → 10
value of a. abs(�5) → 5

long long Returns the absolute
long value of a.

float float Returns the absolute
float value of a.

acos(a)† double double Returns the arc cosine acos(�1)
of a. → 3.14159

asin(a)† double double Returns the arc sine asin(1)
of a. → 1.57079

atan(a)† double double Returns the arc tangent atan(1)
of a. → 0.785398

ceil(a) double double Returns the smallest ceil(5.6) → 6.0
whole number greater ceil(5.0) → 5.0
than or equal to a. ceil(�5.6)

→ �5.0

cos(a)† double double Returns the trigonometric cos(�/2) → 0.0
cosine of a.

exp(a) double double Returns the natural exp(2)
number e (2.718...) → 7.389056099
raised to the power of a.

floor(a) double double Returns the largest floor(5.6) → 5.0
whole number less than floor(5.0) → 5.0
or equal to a. floor(�5.6)

→ �6.0

log(a) double double Returns the natural log(2.7183)
logarithm (base e) of a. → 1.0

max(a, b) int int Returns the larger of a max(10, 20)
and b. → 20

long long Same as above.

float float Same as above.

wu18847_ch3smp.qxd 12/6/02 5:17 PM Page 25

26 Chapter 3 Numerical Data

Ta
b

le
Table 3.6 Math class methods for commonly used mathematical functions.—continued

Class Argument Result
Method Type Type Description Example

min(a, b) int int Returns the smaller of min(10, 20)
a and b. → 10

long long Same as above.

float float Same as above.

pow(a, b) double double Returns the number a pow(2.0, 3.0)
raised to the power of b. → 8.0

random() <none> double Generates a random Examples given
number greater than or in Chapter 5.
equal to 0.0 and less
than 1.0

round(a) float int Returns the int value of round(5.6) → 6
a rounded to the round(5.4) → 5
nearest whole number. round(�5.6)

→ �6

double long Returns the float value
of a rounded to the
nearest whole number.

sin(a)† double double Returns the sin(�/2)
trigonometric sine of a. → 1.0

sqrt(a) double double Returns the square root sqrt(9.0) → 3.0
of a.

tan(a)† double double Returns the trigono- tan(��4)
metric tangent of a. → 1.0

toDegrees double double Converts the given toDegrees(��4)
angle in radians to → 45.0
degrees

toRadians double double Reverse of toDegrees toRadians(90.0)
→ 1.5707963

† All trigonometric functions are computed in radians.

Let’s conclude this section with a sample program. Our Zen master Koan has
thrown us the riddle of a day. Across the river we see a giant statue of Buddha.The Mas-
ter wants us to determine the height of the statue using our mind’s eye. Since our mind’s
eye is still very much in need of further polishing, we decided to use some trignometry
instead. If we can find the distance d to the statue, then we can use the tangent of angle

wu18847_ch3smp.qxd 12/6/02 5:17 PM Page 26

3.7 The Math Class 27

h

h � d � tan �

�

d

Unfortunately, there’s no means for us to go across the river. Thus, the riddle.
After a moment of deep meditation, it hit upon us that there’s no need to go across the
river. We can determine the statue’s height by measuring angles from two points on this
side of the river bank as shown below:

h

d

A

B

	

�

And the equation to compute the height h is

h �

Once we have this equation, all that’s left is to put together a Java program. Here’s the
program:

d sin � sin �
���
�sin(� �� �) sin�(� � ��)�

/*
Chapter 3 Sample Program: Estimate the Tower Height

File: Ch3BuddhaHeight.java

*/

import javax.swing.*;
import java.text.*;

to determine the statue’s height h as follows:

wu18847_ch3smp.qxd 12/6/02 5:17 PM Page 27

28 Chapter 3 Numerical Data

class Ch3BuddhaHeight {

public static void main(String[] args) {

double height; //height of the clock tower
double distance; //distance between points A and B
double alpha; //angle measured at point A
double beta; //angle measured at point B
double alphaRad; //angle alpha in radians
double betaRad; //angle beta in radians

String inputStr;

//Get three input values
inputStr = JOptionPane.showInputDialog(null,

"Angle alpha (in degree):");
alpha = Double.parseDouble(inputStr);
inputStr = JOptionPane.showInputDialog(null,

"Angle beta (in degree):");
beta = Double.parseDouble(inputStr);

inputStr = JOptionPane.showInputDialog(null,
"Distance between points A and B (ft):");

distance = Double.parseDouble(inputStr);

//compute the height of the tower
alphaRad = Math.toRadians(alpha);
betaRad = Math.toRadians(beta);

height = (distance * Math.sin(alphaRad) * Math.sin(betaRad))
/

(Math.sqrt(Math.sin(alphaRad + betaRad) *
Math.sin(alphaRad + betaRad)));

DecimalFormat df = new DecimalFormat("0.000");

System.out.println("Estimating the height of the clock tower");
System.out.println("");
System.out.println("Angle at point A (degree): "

+ df.format(alpha));
System.out.println("Angle at point B (degree): "

+ df.format(beta));
System.out.println("Distance between A and B (ft): "

+ df.format(distance));
System.out.println("");
System.out.println("Estimated tower height (ft): "

+ df.format(height));

}
}

wu18847_ch3smp.qxd 12/6/02 5:17 PM Page 28

3.8 The GregorianCalendar Class 29

1. What’s wrong with the following?

a. y = (1/2) * Math.sqrt(X) ;
b. y = sqrt(38.0);
c. y = Math.exp(2, 3);
d. y = math.sqrt(b*b - 4*a*c) / (2 * a);

2. If another programmer writes the following statements, do you suspect any
misunderstanding on the part of this programmer? What will be the value of y?

a. y = Math.sin(360) ;
b. y = Math.cos(45);

QuickCHECK

3.8 The GregorianCalendar Class
In Chapter 2, we introduced the java.util.Date class to represent a specific instant in
time. Notice that we are using here a more concise expression “the java.util.Date
class” to refer to a class from a specific package instead of the longer expression “the
Date class from the java.util package.” This shorter version is our preferred way of
notation when we need or want to identify the package which the class belongs to.

When we need to identify the specific package which a class belongs, we will
commonly use the concise expression with the full pathname, such as java.util.Date
instead of writing “the Date class from the java.util package.”

Helpful Reminder

In addition to this class, we have a very useful class named java.util.Gregorian-
Calendar in manipulatiing calendar information such as year, month, and day. We can
create a new GregorianCalendar object that represents today as

GregorianCalendar today = new GregorianCalendar();

or a specific day, say, July 4, 1776 by passing year, month, and day as the parameters
as

GregorainCalendar independenceDay =
new GregorianCalendar(1776, 6, 4);

No, the value of 6 as the second parameter is not an error. The first month of a year,
January, is represented by 0, the second month by 1, and so forth. To avoid confusion, we
can use constants defined for months in the superclass Calendar (GregorianCalendar

Gregorian-
Calender

The Value of 6
means July.

wu18847_ch3smp.qxd 12/6/02 5:17 PM Page 29

is a subclass of Calendar). Instead of remembering that the value 6 represents July, we
can use the defined constant Calendar.JULY as

GregorainCalendar independenceDay =

new GregorianCalendar(1776, Calendar.JULY, 4);

Table 3.7 explains the use of some of the more common constants defined in the
Calendar class.

30 Chapter 3 Numerical Data

Ta
b

le

Table 3.7 Constants defined in the Calendar class for retrieved different pieces of
calendar/time information.

Constant Description

YEAR The year portion of the calendar date

MONTH The month portion of the calendar date

DATE The day of the month

DAY_OF_MONTH Same as DATE

DAY_OF_YEAR The day number within the year

DAY_OF_MONTH The day number within the month

DAY_OF_WEEK The day of the week (Sun — 1, Mon — 2, etc.)

WEEK_OF_YEAR The week number within the year

WEEK_OF_MONTH The week number within the month

AM_PM The indicator for AM or PM (AM — 0 and PM — 1)

HOUR The hour in 12-hr notation

HOUR_OF_DAY The hour in 24-hr notation

MINUTE The minute within the hour

When the date and time is April 29, 2002 2:45 PM, and we run the Ch3Test-
Calendar program, we will see the result shown in Figure 3.11.

/*
Chapter 3 Sample Program: Display Calendar Info

File: Ch3TestCalendar.java

*/

import java.util.*;

class Ch3TestCalendar {

wu18847_ch3smp.qxd 12/6/02 5:17 PM Page 30

3.8 The GregorianCalendar Class 31

public static void main(String[] args) {

GregorianCalendar cal = new GregorianCalendar();

System.out.println(cal.getTime());
System.out.println("");

System.out.println("YEAR: " + cal.get(Calendar.YEAR));
System.out.println("MONTH: " + cal.get(Calendar.MONTH));
System.out.println("DATE: " + cal.get(Calendar.DATE));
System.out.println("DAY_OF_YEAR: "

+ cal.get(Calendar.DAY_OF_YEAR));
System.out.println("DAY_OF_MONTH: "

+ cal.get(Calendar.DAY_OF_MONTH));
System.out.println("DAY_OF_WEEK: "

+ cal.get(Calendar.DAY_OF_WEEK));

System.out.println("WEEK_OF_YEAR: "
+ cal.get(Calendar.WEEK_OF_YEAR));

System.out.println("WEEK_OF_MONTH:"
+ cal.get(Calendar.WEEK_OF_MONTH));

System.out.println("AM_PM: " + cal.get(Calendar.AM_PM));
System.out.println("HOUR: " + cal.get(Calendar.HOUR));
System.out.println("HOUR_OF_DAY: "

+ cal.get(Calendar.HOUR_OF_DAY));
System.out.println("MINUTE: " + cal.get(Calendar.MINUTE));

}
}

Figure 3.11 Result of running the Ch3TestCalendar program at April 29, 2002 2:45 PM.

Mon Apr 29 14:45:06 PDT 2002

YEAR: 2002
MONTH: 3
DATE: 29
DAY_OF_YEAR: 119
DAY_OF_MONTH: 29
DAY_OF_WEEK: 2
WEEK_OF_YEAR: 18
WEEK_OF_MONTH: 5
AM_PM: 1
HOUR: 2
HOUR_OF_DAY: 14
MINUTE: 45

wu18847_ch3smp.qxd 12/6/02 5:17 PM Page 31

Notice that the first line in the output shows the full date and time information.
The full date and time information can be accessed by calling the calendar object’s
getTime method. This method returns the same information as a Date object.

Notice also that we get only the numerical values when we retrieve the day of the
week or month information. We can spell out the information by using the Simple-
DateFormat class. Since the constructor of the SimpleDateFormat class accepts only
the Date object, we need to first convert a GregorianCalendar object to an equivalent
Date object by calling its getTime method. For example, here’s how we can display the
day of the week which our Declaration of Independence was signed in Philadelphia
(Ch3IndependenceDay.java):

GregorianCalendar independenceDay =
new GregorianCalendar(1776, Calendar.JULY, 4);

SimpleDateFormat sdf = new SimpleDateFormat("EEEE");

JOptionPane.showMessageDialog("It’s signed on "
+ sdf.format(independenceDay.getTime()));

32 Chapter 3 Numerical Data

getTime

www

The Gregorian calendar system was adopted by England and its colonies, including the
colonial United States, in 1752. So the technique shown here works only after this adop-
tion. For a fascinating story about calendars, visit
http://webexhibits.org/calendars/year-countries.html

www

Running Ch3IndpendenceDay will tell you that our venerable document was signed on
Thursday. History textbooks will say something like “the document was formally adopted
July 4, 1776 on a bright, but cool Philadelphia day” but never the day of the week.Well,
now you know. See how useful Java is? By the way, the document was adopted by the
Second Continental Congress on July 4th, but the actual signing did not place until
August 2 (it was Friday—what a great reason for a TGIF party) after the approval of all
13 colonies. For more stories behind the Declaration of Independence, visit
http://www.nara.gov/exhall/charters/declaration/dechist.html
or
http://www.ushistory.org/declaration/

Let’s finish the section with a sample program that extends the Ch3Indepen-
denceDay program. We will allow the user to enter the year, month, and day, and we
will reply with the day of the week of the given date (our birthday, grandparent’s wed-
ding day, and so on). We will use JOptionPane for both input and output. Here’s the
program:

wu18847_ch3smp.qxd 12/6/02 5:17 PM Page 32

3.9 Sample Development 33

/*
Chapter 3 Sample Program: Find the Day of Week of Given Date
File: Ch3FindDayOfWeek.java

*/

import java.util.*;
import java.text.*;
import javax.swing.*;

class Ch3FindDayOfWeek {

public static void main(String[] args) {

String inputStr;
int year, month, day;

GregorianCalendar cal;
SimpleDateFormat sdf;

inputStr = JOptionPane.showInputDialog(null, "Year:");
year = Integer.parseInt(inputStr);

inputStr = JOptionPane.showInputDialog(null, "Month (0-11):");
month = Integer.parseInt(inputStr);

inputStr = JOptionPane.showInputDialog(null, "Day:");
day = Integer.parseInt(inputStr);

cal = new GregorianCalendar(year, month, day);
sdf = new SimpleDateFormat("EEEE");

JOptionPane.showMessageDialog(null, "It was "
+ sdf.format(cal.getTime()));

}
}

Sample Program3.9 Sample Development

Loan Calculator

In this section, we will develop a simple loan calculator program. We will develop this
program using an incremental development technique, which will develop the
program in small incremental steps.We start out with a barebones program and grad-
ually build up the program by adding more and more code to it. At each incremental
step, we design, code, and test the program before moving on to the next step. This

wu18847_ch3smp.qxd 12/6/02 5:17 PM Page 33

34 Chapter 3 Numerical Data

3.9 Sample Development—continued

methodical development of a program allows us to focus our attention on a single task
at each step, and this reduces the chance of introducing errors into the program.

Problem Statement

Next time you buy a new TV or a stereo, watch out for those “0% down, 0% interest till
next July”deals.Read the fine print,and you’ll notice that if you don’t make the full pay-
ment by the end of a certain date, a hefty interest will start accruing. You may be bet-
ter off to get an ordinary loan from the beginning with a cheaper interest rate. What
matters most is the total payment (loan amount + total interest) you’ll have to make.
To compare different loan deals, let’s develop a loan calculator. Here’s the problem
statement:

Write a loan calculator program that computes both monthly and total
payments for a given loan amount, annual interest rate, and loan period.

Overall Plan

Our first task is to map out the overall plan for development. We will identify classes
necessary for the program and the steps we will follow to implement the program.We
begin with the outline of program logic. For a simple program such as this one, it is
kind of obvious, but to practice the incremental development, let’s put down the out-
line of program flow explicitly.We can express the program flow as having three tasks:

1. Get three input values: loanAmount, interestRate, and loanPeriod.

2. Compute the monthly and total payments.

3. Output the results.

Having identified the three major tasks of the program, we will now identify the
classes we can use to implement the three tasks. First, we need an object to handle the
input of three values. At this point, we have only learned about the JOptionPane class,
so we will use it here. Second, we need an object to display the monthly and total pay-
ments.We can use either JOptionPane or System.out. Since we plan multiple lines of
text for output, we will use System.out. Finally, we need to consider how we are going
to compute the monthly and total payments. There are no objects in standard
packages that will do the computation, so we have to write our own code to do the
computation.

The formula for computing the monthly payment can be found in any math-
ematics book that covers geometric sequences. Its formula is

Monthy Payment �

where L is the loan amount, R is the monthly interest rate, and N is the number of pay-
ments. The monthly rate R is expressed in a fractional value, e.g., 0.01 for 1 percent

L � R
��

�1 � ��1 �

1

R
��

N

�

program
tasks

wu18847_ch3smp.qxd 12/6/02 5:17 PM Page 34

3.9 Sample Development 35

monthly rate. Once the monthly payment is derived, the total payment can be deter-
mined by multiplying the monthly payment and the number of months the payment
is made. Since the formula includes exponentiation, we will have to use the pow
method of the Math class.

Let’s summarize what we have decided so far in a design document:

Design Document: LoanCalculator

Class Purpose

LoanCalculator The main class of the program.

JOptionPane The showInputDialog of the JOptionPane class is
used to get three input values: loan amount, annual in-
terest rate, and loan period.This class is from javabook.

PrintStream System.out is used to display the input values and
(System.out) two computed results: monthly payment and total

payment.

Math The pow method is used to evaluate exponentiation
in the formula for computing the monthly payment.
This class is from java.lang. Note:You don’t have to
import java.lang.The classes in java.lang are avail-
able to a program without importing.

The program diagram based on the classes listed in the design document is
shown in Figure 3.12. Keep in mind that this is only a preliminary design. The prelimi-
nary document is really a working document that we will modify and expand as we
progress through the development steps.

Before we can actually start our development, we must sketch the steps we will
follow to implement the program.There are more than one possible sequence of steps
to implement a program, and the number of possible sequences will increase as the
program becomes more complex. For this program, we will implement the program in
the following four steps:

1. Start with code to accept three input values.

2. Add code to output the results.

3. Add code to compute the monthly and total payments.

4. Update or modify code and tie any loose ends.

Notice how the first three steps are ordered. Other orders are possible to de-
velop this program. So why did we choose this particular order? The main reason is our
desire to defer the most difficult task till the end. It’s possible, but if we implement the
computation part in the second incremental step, then we need to code some

develop-
ment tasks

program
classes

wu18847_ch3smp.qxd 12/6/02 5:17 PM Page 35

36 Chapter 3 Numerical Data

temporary output routines to verify that the computation is done correctly. However,
if we implement the real output routines before implementing the computation
routines, then there is no need for us to worry about temporary output routines. As for
Step 1 and Step 2, their relative order does not matter much. We simply chose to
implement the input routine before the output routine because input comes before
output in the program.

Step 1 Development: Input Three Data Values

The next task is to determine how we will accept the input values. We will use the
JOptionPane class we learned in this chapter. We will call the showInputDialog
method three times to accept three input values: loan amount, annual interest rate,
and loan period.The problem statement does not specify the exact format of input, so
we will decide that now. Based on how people normally refer to loans, the input values
will be accepted in the following format:

Figure 3.12 The object diagram for the program LoanCalculator.

LoanCalculator

JOptionPane

Math

System.out : PrintStreamy

Input Format Data Type

Loan amount In dollars and cents (e.g., 15000.00) double
Annual interest rate In percent (e.g., 12.5) double
Loan period In years (e.g., 30) int

Step 1
Design

3.9 Sample Development—continued

wu18847_ch3smp.qxd 12/6/02 5:17 PM Page 36

3.9 Sample Development 37

Be aware that we need to convert the annual interest rate to the monthly interest rate
and the input value loan period to the number of monthly payments to use the given
formula. In this case, the conversion is very simple, but even if the conversion routines
were more complicated, we must do the conversion. It is not acceptable to ask users to
enter an input value that is unnatural to them. For example, people do not think of
interest rates in fractional values such as 0.07. They think of interest in terms of
percentages such as 7%. Computer programs work for humans, not the other way
around. Programs we develop should not support an interface that is difficult and
awkward for humans to use.

When the user inputs an invalid value, for example, an input string value that
cannot be converted to a numerical value or converts to a negative number, the pro-
gram should respond accordingly, such as by printing an error message. We do not
possess enough skills to implement such a robust program yet,so we will make the fol-
lowing assumptions: (1) the input values are nonnegative numbers and (2) the loan
period is a whole number.

One important objective of this step is to verify that the input values are read in
correctly by the program.To verify this, we will use System.out to print out the values
accepted by JOptionPane. This method of printing out the values just entered is
called echo printing. Since we are going to use System.out in the final program, we will
use it for echo printing in this step.

Here’s our Step 1 program:

/*
Chapter 3 Sample Development: Loan Calculator (Step 1)

File: Step1/Ch3LoanCalculator.java

Step 1: Input Data Values
*/

import javax.swing.*;

class Ch3LoanCalculator
{

public static void main (String[] args)
{

double loanAmount,
annualInterestRate;

int loanPeriod;
String inputStr;
//get input values

echo
printing

Step 1
Code

wu18847_ch3smp.qxd 12/6/02 5:17 PM Page 37

38 Chapter 3 Numerical Data

To verify the input routine is working correctly, we run the program multiple
times and enter different sets of data. We make sure the values are displayed in the
standard output window as entered.

Step 2 Development: Output Values

The second step is to add code to display the output values. We will use the standard
output window for displaying output values. We need to display the result in a layout
that is meaningful and easy to read. Just displaying numbers such as the following is
totally unacceptable.

inputStr = JOptionPane.showInputDialog(null,
"Loan Amount (Dollars+Cents):");

loanAmount = Double.parseDouble(inputStr);

inputStr = JOptionPane.showInputDialog(null,
"Annual Interest Rate (e.g. 9.5):");

annualInterestRate = Double.parseDouble(inputStr);

inputStr = JOptionPane.showInputDialog(null,
"Loan Period - # of years:");

loanPeriod = Integer.parseInt(inputStr);

//echo print the input values
System.out.println("Loan Amount: $" + loanAmount);
System.out.println("Annual Interest Rate: "

+ annualInterestRate + "%");
System.out.println("Loan Period (years): " + loanPeriod);

}

}

132.151 15858.1

We must label the output values so the user can tell what the numbers represent. In
addition, we must display the input values with the computed result so it will not be

Step 1 Test

Step 2
Design

3.9 Sample Development—continued

wu18847_ch3smp.qxd 12/6/02 5:17 PM Page 38

3.9 Sample Development 39

meaningless. Which of the two shown in Figure 3.13 do you think is more meaningful
to him? The output format of this program will be with <amount>, <annual interest
rate>, and others replaced by the actual figures.

Since the computations for the monthly and the total payments are not yet
implemented, we will use the following dummy assignment statements:

monthlyPayment = 135.15;
totalPayment = 15858.10;

We will replace these statements with the real ones in the next step.
Here’s our Step 2 program with newly added portion surrounded by a rectangle

and in white background:

For
Loan Amount: $ <amount>
Annual Interest Rate: <annual interest rate> %
Loan Period (years): <year>

Monthly payment is $ <monthly payment>
TOTAL payment is $ <total payment>

Figure 3.13 Two different display formats: One with input values displayed, and the other with only the
computed values displayed.

Monthly payment: $ 143.47
Total payment: $ 17216.50

Only the computed values
(and their labels) are shown

For
Loan Amount: $ 10000.00
Annual Interest Rate: 12.0 %
Loan Period (years): 10

Monthly payment is $ 143.47
TOTAL payment is $ 17216.50

Both the input and
computed values (and

their labels) are shown.

Step 2
Code

wu18847_ch3smp.qxd 12/6/02 5:17 PM Page 39

40 Chapter 3 Numerical Data

/*
Chapter 3 Sample Development: Loan Calculator (Step 2)

File: Step2/Ch3LoanCalculator.java

Step 2: Display the Result
*/

import javax.swing.*;

class Ch3LoanCalculator
{

public static void main (String[] args)
{

double loanAmount,
annualInterestRate;

double monthlyPayment,
totalPayment;

int loanPeriod;

String inputStr;

//get input values
inputStr = JOptionPane.showInputDialog(null,

"Loan Amount (Dollars+Cents):");
loanAmount = Double.parseDouble(inputStr);

inputStr = JOptionPane.showInputDialog(null,
"Annual Interest Rate (e.g. 9.5):");

annualInterestRate = Double.parseDouble(inputStr);

inputStr = JOptionPane.showInputDialog(null,
"Loan Period - # of years:");

loanPeriod = Integer.parseInt(inputStr);

//compute the monthly and total payments
monthlyPayment = 132.15;
totalPayment = 15858.10;

//display the result
System.out.println("Loan Amount: $" + loanAmount);
System.out.println("Annual Interest Rate: "

+ annualInterestRate + "%");
System.out.println("Loan Period (years): " + loanPeriod);

3.9 Sample Development—continued

wu18847_ch3smp.qxd 12/6/02 5:17 PM Page 40

3.9 Sample Development 41

To verify the output routine is working correctly, we run the program and verify
the layout. Most likely, we have to run the program several times to finetune the argu-
ments for the printLine methods until we get the layout that looks clean and nice on
the screen.

Step 3 Development: Compute Loan Amount

We are now ready to complete the program by implementing the formula derived in
the design phase. The formula requires the monthly interest rate and the number of
monthly payments. The input values to the program, however, are the annual interest
rate and the loan period in number of years. So we need to convert the annual interest
rate to a monthly interest rate and the loan period to the number of monthly pay-
ments.The two input values are converted as

monthlyInterestRate = annualInterestRate / 100.0 /
MONTHS_IN_YEAR;

numberOfPayments = loanPeriod * MONTHS_IN_YEAR;

where MONTHS_IN_YEAR is a symbolic constant with value 12. Notice that we need
to divide the input annual interest rate by 100 first because the formula for loan com-
putation requires that the interest rate is a fractional value, for example, 0.01, but the
input annual interest rate is entered as a percentage point, for example, 12.0. Please
read exercise 23 on page 154 for information on how the monthly interest rate is
derived from a given annual interest rate.

The formula for computing the monthly and total payments can be expressed
as

monthlyPayment = (loanAmount * monthlyInterestRate)
/
(1 - Math.pow(1/(1 +

monthlyInterestRate),
numberOfPayments));

totalPayment = monthlyPayment * numberOfPayments;

System.out.println("\n"); //skip two lines
System.out.println("Monthly payment is $ " + monthlyPayment);
System.out.println(" TOTAL payment is $ " + totalPayment);

}
}

Step 2 Test

Step 3
Design

wu18847_ch3smp.qxd 12/6/02 5:17 PM Page 41

42 Chapter 3 Numerical Data

Let’s put in the necessary code for the computations and complete the program.
Here’s our program:

Step 3
Code

/*
Chapter 3 Sample Development: Loan Calculator (Step 3)

File: Step3/Ch3LoanCalculator.java

Step 3: Compute the monthly and total payments
*/

import javax.swing.*;

class Ch3LoanCalculator
{

public static void main (String[] args)
{

final int MONTHS_IN_YEAR = 12;

double loanAmount,
annualInterestRate;

double monthlyPayment,
totalPayment;

double monthlyInterestRate;

int loanPeriod;

int numberOfPayments;

String inputStr;

//get input values
inputStr = JOptionPane.showInputDialog(null,

"Loan Amount (Dollars+Cents):");
loanAmount = Double.parseDouble(inputStr);

inputStr = JOptionPane.showInputDialog(null,
"Annual Interest Rate (e.g. 9.5):");

annualInterestRate = Double.parseDouble(inputStr);

inputStr = JOptionPane.showInputDialog(null,
"Loan Period - # of years:");

loanPeriod = Integer.parseInt(inputStr);

3.9 Sample Development—continued

wu18847_ch3smp.qxd 12/6/02 5:17 PM Page 42

3.9 Sample Development 43

After the program is coded, we need to run the program through a number of
tests. Since we made the assumption that the input values must be valid, we will only
test the program for valid input values. If we don’t make that assumption, then we
need to test that the program will respond correctly when invalid values are entered.
We will perform such testing beginning in Chapter 5. To check that this program pro-
duces correct results, we can run the program with the following input values. The
right two columns show the correct results.Try other input values as well.

Step 3 Test

//compute the monthly and total payments
monthlyInterestRate = annualInterestRate / MONTHS_IN_YEAR / 100;
numberOfPayments = loanPeriod * MONTHS_IN_YEAR;

monthlyPayment = (loanAmount * monthlyInterestRate) /
(1 - Math.pow(1/(1 + monthlyInterestRate),

numberOfPayments));

totalPayment = monthlyPayment * numberOfPayments;

//display the result
System.out.println("Loan Amount: $" + loanAmount);
System.out.println("Annual Interest Rate: "

+ annualInterestRate + "%");
System.out.println("Loan Period (years): " + loanPeriod);

System.out.println("\n"); //skip two lines
System.out.println("Monthly payment is $ " + monthlyPayment);
System.out.println(" TOTAL payment is $ " + totalPayment);

}
}

Input Output

Annual Loan
Loan Interest Period Monthly Total
Amount Rate (in years) Payment Payment

10000 10 10 132.151 15858.1

15000 7 15 134.824 24268.4

10000 12 10 143.471 17216.5

wu18847_ch3smp.qxd 12/6/02 5:17 PM Page 43

44 Chapter 3 Numerical Data

Step 4 Development: Finishing Up

We finalize the program in the last step by making any necessary modifications or ad-
ditions.We will make two additions to the program.The first is necessary while the sec-
ond is optional but desirable.The first addition is the inclusion of program description.
One of the necessary features of any nontrivial programs is the description of what the
program does to the user. We will print out a description at the beginning of the pro-
gram to System.out. The second addition is the formatting of the output values. We
will format the monthly and total payments to two decimal places using a Decimal-
Format object.

Here is our final program:

Step 4
Design

Step 4
Code

/*
Chapter 3 Sample Development: Loan Calculator (Step 4)

File: Step4/Ch3LoanCalculator.java

Step 4: Finalize the program
*/

import javax.swing.*;
import javax.text.*;

class Ch3LoanCalculator
{

public static void main (String[] args)
{

final int MONTHS_IN_YEAR = 12;

double loanAmount,
annualInterestRate;

double monthlyPayment,
totalPayment;

double monthlyInterestRate;

int loanPeriod;

int numberOfPayments;

String inputStr;

DecimalFormat df = new DecimalFormat("0.00");
//describe the program
System.out.println("This program computes the monthly and

total");

3.9 Sample Development—continued

wu18847_ch3smp.qxd 12/6/02 5:17 PM Page 44

3.9 Sample Development 45

System.out.println("payments for a given loan amount, annual ");
System.out.println("interest rate, and loan period.");
System.out.println("Loan amount in dollars and cents, e.g.

12345.50");
System.out.println("Annual interest rate in percentage, e.g.

12.75");
System.out.println("Loan period in number of years, e.g. 15");
System.out.println("\n"); //skip two lines

//get input values
inputStr = JOptionPane.showInputDialog(null,

"Loan Amount (Dollars+Cents):");
loanAmount = Double.parseDouble(inputStr);

inputStr = JOptionPane.showInputDialog(null,
"Annual Interest Rate (e.g. 9.5):");

annualInterestRate = Double.parseDouble(inputStr);

inputStr = JOptionPane.showInputDialog(null,
"Loan Period - # of years:");

loanPeriod = Integer.parseInt(inputStr);

//compute the monthly and total payments
monthlyInterestRate = annualInterestRate / MONTHS_IN_YEAR / 100;
numberOfPayments = loanPeriod * MONTHS_IN_YEAR;

monthlyPayment = (loanAmount * monthlyInterestRate) /
(1 - Math.pow(1/(1 + monthlyInterestRate),

numberOfPayments));

totalPayment = monthlyPayment * numberOfPayments;

//display the result
System.out.println("Loan Amount: $" + loanAmount);
System.out.println("Annual Interest Rate: "

+ annualInterestRate + "%");
System.out.println("Loan Period (years): " + loanPeriod);

System.out.println("\n"); //skip two lines
System.out.println("Monthly payment is $ "

+ df.format(monthlyPayment));
System.out.println(" TOTAL payment is $ "

+ df.format(totalPayment));
}

}

wu18847_ch3smp.qxd 12/6/02 5:17 PM Page 45

46 Chapter 3 Numerical Data

8-Bit Binary Number Decimal Equivalent

00000000 0
00000001 1
00000010 2
00000011 3
00000100 4

...
11111100 252
11111101 253
11111110 254
11111111 255

3.10 Numerical Representation (Optional)
In this section we explain how integers and real numbers are stored in memory.
Although computer manufacturers have used various formats for storing numerical
values, today’s standard is to use the twos-complement format for storing integers and
the floating-point format for real numbers. We describe these formats in this section.

An integer can occupy 1, 2, 4, or 8 bytes depending on which data type (i.e., byte,
short, int, or long) is declared. To make the examples easy to follow, we will use 1 byte
(� 8 bits) to explain twos-complement form. The same principle applies to 2, 4, and
8 bytes. (They just utilize more bits.)

The following table shows the first five and the last four of the 256 positive binary
numbers using 8 bits. The right column lists their decimal equivalents.

twos-
complement

sign bit

We repeat the test runs from Step 3 and confirm the modified program still runs
correctly. Since we have not made any substantial additions or modifications, we fully
expect the program to work correctly. However, it is very easy to introduce errors in
coding so even if we think the changes are trivial, we should never skip the testing
after even a slight modification.

Always test after making any additions or modifications to a program, no matter
how trivial you think the changes are.

Helpful Reminder

Using 8 bits, we can represent positive integers from 0 to 255. Now let’s see the
possible range of negative and positive numbers that we can represent using 8 bits. We
can designate the leftmost bit as a sign bit: 0 means positive and 1 means negative.
Using this scheme, we can represent integers from �127 to �127 as shown in the

3.9 Sample Development—continued

Step 4 Test

wu18847_ch3smp.qxd 12/6/02 5:17 PM Page 46

3.10 Numerical Representation (Optional) 47

8-Bit Binary Number
(with a sign bit) Decimal Equivalent

0 0000000 �0
0 0000001 �1
0 0000010 �2

...
0 1111111 �127
1 0000000 �0
1 0000001 �1

...
1 1111110 �126
1 1111111 �127

8-Bit Binary Number
(twos-complement) Decimal Equivalent

00000000 �0
00000001 �1
00000010 �2

...
01111111 �127
10000000 �128
10000001 �127

...
11111110 �2
11111111 �1

The following table shows the decimal equivalents of 8-bit binary numbers using
twos-complement representation. Notice that zero has only one representation.

Notice that zero has two distinct representations (�0 � 00000000 and �0 �
10000000), which adds complexity in hardware design. Twos-complement format
avoids this problem of duplicate representations for zero. In twos-complement format
all positive numbers have zero in their left-most bit. The representation of a negative
number is derived by first inverting all the bits (changing 1s to 0s and 0s to 1s) in the
representation of the positive number and then adding 1. The following diagram illus-
trates the process:

invert

add 1

13 = 00001101

11110010

-13 = 11110011

following table:

wu18847_ch3smp.qxd 12/6/02 5:17 PM Page 47

Now let’s see how real numbers are stored in memory in floating-point format.
We will present only the basic ideas of storing real numbers in computer memory here.
We will omit the precise details of the IEEE (Institute of Electronics and Electrical
Engineers) Standard 754 that Java uses to store real numbers.

Real numbers are represented in the computer using scientific notation. In base
10 scientific notation, a real number is expressed as

A � 10N

where A is a real number and N an integral exponent. For example, the mass of a hy-
drogen atom (in grams) is expressed in decimal scientific notation as 1.67339 � 10�24 ,
which is equal to 0.00000000000000000000000167339.

We use base 2 scientific notation to store real numbers in computer memory.
Base 2 scientific notation represents a real number as

A � 2N

The float and double data types use 32 bits and 64 bits, respectively, with the
number A and exponent N stored as

48 Chapter 3 Numerical Data

81

ANS

1

ANS

11 52

23

Sign bit:
 0 - positive
 1 - negative

Number of
bits used

Normalized Unnormalized

.1010100 1.100111

.100011 .0000000001

.101110011 .0001010110

The value A is a normalized fraction, where the fraction begins with a binary point, fol-
lowed by a 1 bit, and the rest of the fraction. (Note: A decimal number has a decimal
point; a binary number has a binary point.) The following numbers are sample normal-
ized and unnormalized binary fractions:

normalized
fraction

Since a normalized number always start with a 1, this bit does not actually have to
be stored. The following diagram illustrates how the A value is stored.

wu18847_ch3smp.qxd 12/6/02 5:17 PM Page 48

The sign bit S indicates the sign of a number, so A is stored in memory as an un-
signed number. The integral exponent N can be negative or positive. Instead of using
twos-complement for storing N, we use a format called excess format. The 8-bit expo-
nent uses the excess-127 format, and the 11-bit exponent uses the excess-1023 format.
We will explain the excess-127 format here. The excess-1023 works similarly. With the
excess-127 format, the actual exponent is computed as

N � 127

Therefore, the number 127 represents an exponent of zero. Numbers less than 127 rep-
resent negative exponents, and numbers greater than 127 represent positive exponents.
The following diagram illustrates that the number 125 in the exponent field represents
2125�127 � 2�2.

Exercises 49

E x e r c i s e s

S N A

201111101 � 127 � 2125 � 127 � 2�2

01111101

1. Suppose we have the following declarations:

int i = 3, j = 4, k = 5;
float x = 34.5f, y = 12.25f;

Determine the value for each of the following expressions or explain why it is
not a valid expression.

a. (x + 1.5) / (250.0 * (i/j)) f. Math.exp(3, 2)
b. x + 1.5 / 250.0 * i / j g. y % x
c. -x * -y * (i + j) / k h. Math.pow(3, 2)
d. (i / 5) * y i. (int)y % k
e. Math.min(i, Math.min(j,k)) j. i / 5 * y

2. Suppose we have the following declarations:

int m, n, i = 3, j = 4, k = 5;
float v, w, x = 34.5f, y = 12.25f;

1 8

.1 0 1 1 0 1 1 1

S N 0 1 1 0 1 1 1 0 0 ... 0 0

wu18847_ch3smp.qxd 12/6/02 5:17 PM Page 49

Determine the value assigned to the variable in each of the following assignment
statements or explain why it is not a valid assignment.

a. w = Math.pow(3,Math.pow(i,j)); f. m = n + i * j;
b. v = x / i; g. n = k /(j * i)

* x + y;
c. w = Math.ceil(y) % k; h. i = i + 1;
d. n = (int) x / y * i / 2; i. w = float(x + i);
e. x = Math.sqrt(i*i - 4*j*k); j. x = x / i /

y / j;

3. Suppose we have the following declarations:

int i, j;
float x, y;
double u, v;

Which of the following assignments are valid?

a. i = x;
b. x = u + y;
c. x = 23.4 + j * y;
d. v = (int) x;
e. y = j / i * x;

4. Write Java expressions to compute the following:

a. The square root of B2 + 4AC (A and C are distinct variables).

b. The square root of X + 4Y3.

c. The cube root of the product of X and Y.

d. The area �R2 of a circle.

e. a sin C / sin A.

5. Determine the output of the following program without running it:

/*
Program TestOutputBox

*/

import javabook.*;

class TestOutputBox
{

public static void main (String args[])
{
MainWindow mainWindow;
OutputBox outputBox;

mainWindow = new MainWindow("Program TestOutputBox");
outputBox = new OutputBox(mainWindow);

50 Chapter 3 Numerical Data

wu18847_ch3smp.qxd 12/6/02 5:17 PM Page 50

mainWindow.setVisible(true);
outputBox.setVisible(true);

outputBox.printLine("One");
outputBox.print("Two");
outputBox.skipLine(1);

outputBox.print("Three");
outputBox.printLine("Four");
outputBox.skipLine(1);

outputBox.print("Five");
outputBox.printLine("Six");

}
}

6. Determine the output of the following code:

int x, y;
x = 1;
y = 2;
messageBox.show("The output is " + x + y);
messageBox.show("The output is " + (x + y));

7. Write an application that displays the following pattern in an OutputBox
dialog:

Exercises 51

OXOXOXOXOXOXOXOXOXOX
X O
O X
X O
O X
X O
OXOXOXOXOXOXOXOXOXOX

OutputBox
Starts from the second
line with five leading

blank spaces.

8. Write an application to convert centimeters (input) to feet and inches (output).
Use InputBox for input and OutputBox for output. 1 inch � 2.54 centimeters.

9. Write an application that inputs temperature in Celsius and prints out the
temperature in Fahrenheit. Use InputBox for input and OutputBox for output.
The formula to convert Celsius to the equivalent Fahrenheit is

fahrenheit � 1.8 � celsius � 32

Note: The OutputBox is not drawn to scale.

wu18847_ch3smp.qxd 12/6/02 5:17 PM Page 51

10. Write an application that accepts a person’s weight and displays the number of
calories the person needs in one day. A person needs 19 calories per pound of
body weight, so the formula expressed in Java would be

calories = bodyWeight * 19;

Use an OutputBox dialog for display. Draw the object diagram of the program.
(Note: We are not distinguishing between genders.)

11. A quantity known as body mass index (BMI) is used to calculate the risk of
weight-related health problems. BMI is computed by the formula

BMI �

where w is weight in kilograms and h is height in meters. A BMI of about 20 to
25 is considered “normal.” Write an application that accepts weight and height
(both integers) and outputs the BMI.

12. Your weight is actually the amount of gravitational attraction exerted on you by
the earth. Since the moon’s gravity is only 1/6 of the earth’s gravity, on the moon
you would weigh only 1/6 of what you weigh on the earth. Write an application
that inputs the user’s earth weight and outputs his/her weight on Mercury, Venus,
Jupiter, and Saturn. Use the values in the table below:

w
�
h2

52 Chapter 3 Numerical Data

Planet Multiply the Earth Weight by

Mercury 0.4

Venus 0.9

Jupiter 2.5

Saturn 1.1

13. When you say you are 18 years old, you are really saying that the earth has cir-
cled the sun eighteen times. Since other planets take less or more days than the
earth to travel around the sun, your age would be different on other planets. You
can compute how old you are on other planets by the formula

y �

where x is the age on the earth, y is the age on planet Y, and d is the number of
earth days the planet Y takes to travel around the sun. Write an application that
inputs the user’s earth age and print outs his/her age on Mercury, Venus, Jupiter,

x � 365
�

d

wu18847_ch3smp.qxd 12/6/02 5:17 PM Page 52

Exercises 53

d = Approximate Number of Earth Days
Planet for This Planet to Travel around the Sun

Mercury 88

Venus 225

Jupiter 4380

Saturn 10767

Purchase Price: $ 34.50
Amount Tendered: $ 40.00

Your change is: $ 5.50

5 one-dollar bill(s)
2 quarter(s)

Thank you for your business. Come back soon.

14. Write an application to solve quadratic equations of the form

Ax2 � Bx � C � 0

where the coefficients A, B, and C are real numbers. The two real number solu-
tions are derived by the formula

x �

For this exercise, you may assume that A
 0 and the relationship

B2 � 4AC

holds, so there will be real-number solutions for x.

15. Write an application that reads a purchase price and an amount tendered and
then displays the change in dollars, quarters, dimes, nickels, and pennies. Two
input values are entered in cents, for example, 3450 for $34.50 and 70 for $0.70.
Use InputBox for input and OutputBox for output. Display the output in the
following format:

�B � �B2 � 4�AC�
��

2A

Notice the input values are to be entered in cents (int data type), but the echo
printed values must be displayed with decimal points (float data type).

16. Write an application that accepts the unit weight of a bag of coffee in pounds
and the number of bags sold and displays the total price of the sale, computed as

totalPrice = unitWeight * numberOfUnits * 5.99f;
totalPriceWithTax = totalPrice + totalPrice * 0.0725f;

and Saturn. The values for d are listed in the table below:

wu18847_ch3smp.qxd 12/6/02 5:17 PM Page 53

where 5.99 is the cost per pound and 0.0725 is the sales tax. The letter f after
5.99 and 0.0725 designates that these two numbers are of type float. Display
the result in the following manner:

54 Chapter 3 Numerical Data

Month # # of pairs

1 1
2 1
3 2
4 3
5 5
6 8
7 13

Draw the object diagram of the program.

17. If you invest P dollars at R% interest rate compounded annually, in N years, your
investment will grow to

dollars. Write an application that accepts P, R, and N and computes the amount
of money earned after the N years.

18. Leonardo Fibonacci of Pisa was one of the greatest mathematicians of the
Middle Ages. He is perhaps most famous for the Fibonacci sequence that can be
applied to many diverse problems. One amusing application of the Fibonacci
sequence is finding the growth rate of rabbits. Suppose a pair of rabbits matures
in two months and is capable of reproducing another pair every month after
maturity. If every new pair has the same capability, how many pairs will there be
after one year? (We assume here that no pairs die.) The table below shows the
sequence for the first seven months. Notice that at the end of the second month,
the first pair matures and bears its first offspring in the third month, making the
total two pairs.

P �1 � ��
1

R

00
��

N�1

�
��

1 � ��
1

R

00
��

Number of bags sold: 32
Weight per bag: 5 lbs
Price per pound: $5.99

Sales tax: 7.25%

Total price: $ 1027.884

wu18847_ch3smp.qxd 12/6/02 5:17 PM Page 54

The Nth Fibonacci number in the sequence can be evaluated with the formula

FN � �� �
N

� � �
N

�
Write an application that accepts N and displays FN. Note that the result of com-
putation using the Math class is double. You need to display it as an integer.

19. Java2 Coffee Outlet runs a catalog business. It sells only one type of coffee
beans harvested exclusively in the remote area of Irian Jaya. The company sells
the coffee in 2-lb bags only, and the price of a single 2-lb bag is $5.50. When a
customer places an order, the company ships the order in boxes. The boxes come
in three sizes: the large box holds 20 2-lb bags, the medium 10 bags, and the
small 5 bags. The cost of a large box is $2.00, a medium box $1.00, and a small
box $0.50. The order is shipped using the least number of boxes with the cheap-
est cost. For example, the order of 25 bags will be shipped in two boxes, one
large and one small. Write an application that computes the total cost of an
order. Use InputBox to accept the number of bags for an order and OutputBox
to display the total cost including the cost of boxes. Display the output in the
following format:

1 � �5�
�

2
1 � �5�
�

2
1

�
�5�

Exercises 55

Number of Bags Ordered: 52 - $ 286.00

Boxes Used:
2 Large - $4.00
1 Medium - $1.00
1 Small - $0.50

Your total cost is: $ 291.50

Remember that you can format a double value X to two decimal places by the
expression

Math.round(X * 100) / 100.0

20. According to Newton’s universal law of gravitation, the force F between two
bodies with masses M1 and M2 is computed as

F � k� �
where d is the distance between the two bodies and k is a positive real number
called the gravitational constant. The gravitational constant k is approximately
equal to 6.67E-8 dyne cm2/gm2. Write an application that accepts the mass for
two bodies in grams and the distance between the two bodies in centimeters,
and compute the force F. Use the appropriate format for the output. For your
information, the force between the earth and the moon is 1.984E25 dynes. The
mass of the earth is 5.983E27 grams, the mass of the moon is 7.347E25 grams,
and the distance between the two is 3.844E10 centimeters.

M1M2�
d 2

wu18847_ch3smp.qxd 12/6/02 5:17 PM Page 55

21. Dr. Caffeine’s Law of Program Readability states that the degree of program
readability R (whose unit is mocha) is determined as

R � k �

where k is Ms. Latte’s constant, C is the number of lines in the program that
contain comments, T is the time spent (in minutes) by the programmer
developing the program, and V is the number of lines in the program that contain
nondescriptive variable names. Write an application to compute the program
readability R. Ms. Latte’s constant is 2.5E2 mocha lines2/min2. (Note: This is
just for fun. Develop your own law using various functions from the Math
class.)

22. If the population of a country grows according to the formula

y � cekx

where y is the population after x years from the reference year, then we can
determine the population of a country for a given year from two census figures.
For example, given that a country with a population of 1,000,000 in 1970 grows
to 2,000,000 by 1990, we can predict the country’s population in the year 2000.
Here’s how we do the computation. Letting x be the number of years after 1970,
we obtain the constant c is 1,000,000 because

1,000,000 � cek0 � c

Then we determine the value of k as

y � 1,000,000 ekx

� e20k

k � ln � � 	 0.03466

Finally we can predict the population in the year 2000 by substituting 0.03466
for k and 30 for x (2000 � 1970 � 30). Thus, we predict

y � 1,000,000 e0.03466(30) 	 2,828,651

as the population of the country for the year 2000. Write an application that
accepts five input values—year A, population in year A, year B, population in
year B, and year C—and predict the population for year C.

23. In Section 3.9, we use the formula

mr �

to derive the monthly interest rate from a given annual interest rate, where mr is
the monthly interest rate and ar is the annual interest rate (expressed in a

ar
�
12

2,000,000
�
1,000,000

1
�
20

2,000,000
�
1,000,000

CT 2

�
V 3

56 Chapter 3 Numerical Data

wu18847_ch3smp.qxd 12/6/02 5:17 PM Page 56

fractional value such as 0.083). This annual interest rate ar is called the stated
annual interest rate to distinguish it from the effective annual interest rate,
which is the true cost of a loan. If the stated annual interest rate is 9%, for
example, then the effective annual interest rate is actually 9.38%. Naturally, the
rate the financial institutions advertise more prominently is the stated interest
rate. The loan calculator program in Section 3.7 treats the annual interest rate the
user enters as the stated annual interest rate. If the input is the effective annual
interest rate, then we compute the monthly rate as

mr � (1 � ear)
�
1
1
2
�

� 1

where ear is the effective annual interest rate. The difference between the stated
and effective annual interest rates is negligible only when the loan amount is
small or the loan period is short. Modify the loan calculator program so that the
interest rate the user enters is treated as the effective annual interest rate. Run the
original and modified loan calculator programs and compare the differences in
the monthly and total payments. Use the loan amount of 1, 10, and 50 million
dollars with the loan period of 10, 20, and 30 years and the annual interest rate
of 0.07, 0.10, and 0.18, respectively. Try other combinations also.

Visit several websites that provide a loan calculator for computing a monthly
mortgage payment (one such site is the financial page at www.cnn.com).
Compare your results to the values computed by the websites you visited.
Determine whether the websites treat the input annual interest rate as stated or
effective.

24. Using a Turtle object from the galapagos package (see exercise 27 on page 88),
draw three rectangles. Use an InputBox to accept the width and the length of the
smallest rectangle from the user. The middle and the largest rectangles are 40
and 80 percent larger than the smallest rectangle. The galapagos package and
its documentation are available at www.drcaffeine.com/packages.

25. Write a program that draws a bar chart using a Turtle object (see exercise 27 on
page 88). Input five int values and draw the vertical bars that represent the en-
tered values in the following manner:

Exercises 57

10

5

7

12

3

Your Turtle must draw everything shown in the diagram, including the axes and
numbers.

wu18847_ch3smp.qxd 12/6/02 5:17 PM Page 57

