
We have made a number of improvements in this third edition of the
book, but the main objectives remain the same. This book is intended as an introduc-
tory text on object-oriented programming, suitable for use in a one-semester CS1
course, and assumes no prior programming experience from the students. We only as-
sume basic computer skills and some background in algebra and trigonometry to
solve certain chapter exercises. Those who already have experience in traditional non-
object-oriented programming languages such as C, BASIC, and others also can use
this book as an introduction to object-oriented programming, graphical user interface,
and event-driven programming. The two main objectives of this book are to teach

• object-oriented programming, and

• the foundations of real-world programming.

Object-orientation has become an important paradigm in all fields of com-
puter science, and it is important to teach object-oriented programming from the
first programming course. Teaching object-oriented programming is more than
teaching the syntax and semantics of an object-oriented programming language.
Mastering object-oriented programming means becoming conversant with the
object-oriented concepts and being able to apply them effectively and systemati-
cally in developing programs. The book teaches object-oriented programming, and
students will learn how to develop object-oriented programs.

The second objective of this book is to prepare students for real-world program-
ming. Knowing object-oriented concepts is not enough. Students must be able to
apply that knowledge to develop real-world programs. Sample programs in many in-
troductory textbooks are too simplistic, and they do not teach students techniques to
develop large object-oriented programs. In this book, we teach students how to use

xiii

Preface

xiv Preface

classes from the class libraries from Chapter 2 and how to define their own
classes from Chapter 4. We emphasize foremost the teaching of effective
object-oriented design and necessary foundations for building large-scale pro-
grams. We will discuss this point further in the Features section of this preface.

New Features in the Third Edition
We would like to take this opportunity to thank the adopters of the earlier edi-
tions. Numerous suggestions we received from the adopters and their stu-
dents helped us tremendously in improving the texbook. For this edition, we
focused on improving the strengths of the earlier editions, updating and
adding the materials by incorporating capabilities of Java 2 SDK 1.4 class
libraries, and removing the materials that have less relevance and significance
today. Before we get into the features of the book, we will highlight briefly
the changes we made in the third edition:

1. Full-color pages. We started with one color in the first edition. We in-
troduced the second color in the second edition to enhance the illustra-
tions and the overall presentation of the materials. We took it one step
further and decided to use full-color pages in this edition. The result is
dramatic. Different sections are clearly identified, syntax coloring is
used in code listings, illustrations are more lucid, and the overall flow
of the pages is very attractive and appealing. Pedagogy has been greatly
enhanced by the use of full-color pages.

In addition to the use of full color, the page layout is completely re-
designed, with new icons to highlight the helpful reminders and design
guidelines. We adopted the Japanese rock garden as our design theme.

2. No reliance on the javabook classes. In the earlier versions of Java
systems, we did not have an easy way to perform input and output.
To work around this shortcoming, many authors provided their own
classes which the students can use to perform input and output. To that
end, we provided a GUI (graphical user interface) based collection of
classes organized into a package named javabook. The situation has
improved with the introduction of new Swing classes, most notably the
JOptionPane class. In this edition, we will be using the standard classes
exclusively for input and output. The javabook package is still avail-
able, however, for those who wish to use them. We will discuss more on
this in the Features section of this preface.

3. Short sample programs. Many reviewers and adopters requested more
short sample programs that illustrate the concepts in a succint manner.
We now have numerous short sample programs throughout the chap-
ters. At the end of many sections, we provide one or two short sample
programs to illustrate the main concept taught in that section. A com-
plete list of all sample classes (programs) is given in Appendix B.

4. Java 2 SDK 1.4 materials. Many new features are added to the newest
Java SDK version 1.4. Not only our sample programs are compatible

with SDK 1.4, we actively teach newly added features of version 1.4 such as
pattern matching capabilities and assertion features.

5. No applets. We no longer teach applets in this textbook. After students cover
Chapter 7 and a portion of Chapter 14, they can easily master applets on their
own. A short handout on applets is available from our website.

6. Swing classes for GUI. For teaching GUI and event-driven programming, we
use Swing classes exclusively. There will be no discussion on AWT-based
GUI components.

7. UML notations. UML diagrams are used to document the relationships of the
classes in the sample programs. Other diagrams (such as state-of-memory di-
agrams) will also use UML notations for consistency. Notice that although
UML notations are used in these diagrams, these illustrative diagrams are not
strictly speaking UML diagrams.

Features
There are many pedagogical features that make this book attractive. We will de-
scribe the defining features of this book.

Java
We chose Java for this book. Unlike C++, Java is a pure object-oriented lan-
guage, and it is an ideal language to teach object-oriented programming because
Java is logical and much easier to program when compared to other object-
oriented programming languages. Java’s simplicity and clean design make it one
of the most easy to program object-oriented languages today. Java does not in-
clude language features that are too complex and could be a roadblock for begin-
ners in learning object-oriented concepts. Although we use Java, we must empha-
size that this book is not about Java programming. It is about object-oriented
programming, and as such, we do not cover every aspect of Java. We do, how-
ever, cover enough language features of Java to make students competent Java
programmers.

Standard Classes for Input and Output
In this edition, we decided to use the standard classes exclusively for both GUI
and console input and output. We still make the author-defined javabook classes
available for use, but there will be no discussion on their use in the textbook. Also,
some exercises may still suggest the use of certain javabook classes, but its use is not
mandatory in solving them.

With the advent of Swing classes, specifically the JOptionPane class, the prac-
tical reason for using the javabook classes is eliminated for the most part. Moreover,
we can achieve most of the pedagogical reasons for providing the javabook classes
by using appropriate standard classes such as String, Date, and others instead. We,
therefore, decided to drop the javabook classes in this edition.

Preface xv

F e a t u r e

1

F e a t u r e

2

Full-Immersion Approach
We wrote a series of articles in 1993 on how to teach object-oriented programming
in the Journal of Object-Oriented Programming (Vol. 6, No. 1; Vol. 6, No. 4; and
Vol. 6, No. 5). The core pedagogic concept we described in the series is that one
must become an object user before becoming an object designer. In other words, be-
fore being able to design one’s own classes effectively, one first must learn how to
use predefined classes. We adopt a full-immersion approach in which students learn
how to use objects from the first program. It is very important to ensure that the core
concepts of object-oriented programming are emphasized from the beginning. Our
first sample program from Chapter 2 is this:

xvi Preface

/* Chapter 2 Sample Program: Displays a Window
File: Ch2Sample1.java

*/

import javax.swing.*;

class Ch2Sample1 {

public static void main(String[] args) {

JFrame myWindow;

myWindow = new JFrame();

myWindow.setSize(300, 200);
myWindow.setTitle("My First Java Program");
myWindow.setVisible(true);

}
}

/*
Hello World Program

*/

class HelloWorld
{

public static void main(String args[])
{

System.out.println("Hello World");
}

}

This program captures the most fundamental notion of object-oriented program-
ming. That is, an object-oriented program uses objects. As obvious as it may sound,
many introductory books do not really emphasize this fact. In the program, we use
a JFrame object called myWindow to display a generic window. Many introductory
textbooks begin with a sample program such as

F e a t u r e

3

Both programs have problems. They do not illustrate the key concept that
object-oriented programs use objects. The first program does indeed use an object
System.out, but the use of System.out does not illustrate the object declaration and
creation. Beginners normally cannot differentiate classes and objects. So it is very
important to emphasize the concept that you need to declare and create an object
from a class before you can start using the object. Our first sample program
does this.

The second HelloWorld program is an applet, which, as its name suggests, is a
mini-application with a very specific usage. Applets are specific to Java, and our ob-
jective is to teach object-oriented programming, not to teach the specific features of
the Java language.

Illustrations
We believe a picture is worth a thousand words. Difficult concepts can be explained
nicely with lucid illustrations. Diagrams are an important tool for designing and
documenting programs, and no programmers will develop real-world software appli-
cations without using some form of diagramming tools.We use UMLdiagrams for the
sampleprograms,andUMLnotationsareusedconsistently inall typesof illustrations.

This book includes numerous illustrations that are used as a pedagogic tool to
explain core concepts such as inheritance, memory allocation for primitive data
types and objects, parameter passing, and others. Representative illustrations can be
found on pages 38, 155, 196, 197, 585, 604, 653, 743, and 835.

Incremental Development
We teach object-oriented software engineering principles in this book. Instead of
dedicating a separate chapter for the topic, we interweave program development
principles and techniques with other topics. Every chapter from Chapter 2 to
Chapter 14 includes a sample development to illustrate the topics covered in

Preface xvii

F e a t u r e

4

/*
Hello World Applet

*/
import java.applet.*;
import java.awt.*;

public class HelloWorld extends Applet
{

public void paint(Graphics g)
{

g.drawString("Hello World", 50, 50);
}

}

or

F e a t u r e

5

the chapter, and we develop the program using the same design methodology con-
sistently.

This book teaches a software design methodology that is conducive to object-
oriented programming. All sample developments in this book use a technique we
characterize as incremental development. The incremental development technique
is based on the modern iterative approach (some call it a spiral approach), which is
a preferred methodology of object-oriented programmers.

Beginning programmers tend to mix the high-level design and low-level cod-
ing details, and their thought process gets all tangled up. Presenting the final pro-
gram is not enough. If we want to teach students how to develop programs, we must
show the development process. An apprentice will not become a master builder just
by looking at finished products, whether they are furniture or houses. Software con-
struction is no different.

The problem with other textbooks is that the authors often dedicate a single
chapter to discuss and preach effective software development methodologies, but
they never actually show how to put these methodologies into practice. They only
show and explain the finished products. But without putting what they preach into
practice by showing the development process, students will not learn how to de-
velop programs. And it is not enough to show the development process once. We
must show the development process repeatedly. In this book, we develop every
sample development program incrementally to show students how to develop pro-
grams in a logical and methodical manner.

Design Guidelines, Helpful Reminders, and Quick Checks
Throughout the book, we include design guidelines and helpful reminders. Almost
every section of the chapters is concluded with a number of Quick Check questions
to make sure that students have mastered the basic points of the section.

Design guidelines are indicated with a bonsai icon like this:

xviii Preface

Watch out for the off-by-one error (OBOE).

Design a class that implements a single well-defined task. Do not overburden
the class with multiple tasks.

Helpful reminders come in different styles. The first style is indicated with a
stone lantern icon like this:

F e a t u r e

6

The second style is a Take My Advice box:

Preface xix

On occasions,programming can be very frustrating because no amount of effort on
your part would make the program run correctly. You are not alone. Professional
programmers often have the same feeling, including this humble self. But, if you
take time to think through the problem and don’t lose your cool, you will find a
solution. If you don’t, well, it’s just a program. Your good health is much more
important than a running program and a good grade.

Interesting pieces of background information are presented in the You Might
Want to Know box:

There’s a reason behind choosing a Japanese rock garden as a design theme. The
famous rock garden at Ryoan-ji temple in Kyoto, Japan has 15 stones. It is told that
viewing the rock garden from any angle you can see only 14 of these stones, but
when you master Zen, you can “see” the 15th stone with your mind’s eye. Likewise,
when you study object-oriented programming with this book, you can visualize
objects easily with your mind’s eye while developing programs.

When we refer to materials available on websites that are related to the topic
covered in the book, we indicate this availability with the following icon:

How-to documents on how to compile and run Java programs with different development
tools are available from our website at www.drcaffeine.com.

Quick Check questions appear at the end of the sections with the following
banner:

1. How many stones are there at Ryoan-ji’s rock garden?

2. Name the purpose of the bonsai and lantern icons.

xx Preface

F e a t u r e

7

F e a t u r e

8

Graphical User Interface and Event-Driven Programming
Since modern real-world programs are GUI-based and event-driven, we cannot skirt
around them if we want to teach the foundation of real-world programming. Al-
though we teach console input and output and use them in many sample programs,
the large sample programs in this book are GUI-based. We introduce Swing-based
GUI components in Chapter 7 and present advanced GUI topics in Chapter 14. We
feel strongly that GUI and event-driven programming must be taught in CS1, but
those instructors who wish to keep the discussion on user interface to a minimum
can omit the entire Chapter 14.

Assertions and Pattern Matching
Two of the new features added to Java 2 SDK 1.4 are pattern matching and assertions.
Pattern matching is a very powerful and flexible tool in manipulating strings, and we
teach pattern matching with many examples in Chapter 9.Assertion is one of the soft-
ware engineering techniques to ensure the program reliability, and finally, the asser-
tion feature is added to Java. In Chapter 8, we explain two key language features—
exception handling and assertion—which we can use to improve program reliability.

This guided tour is designed to walk you through the features of the chapters and the
supplements. As you examine them, note the following

• Each chapter begins by orienting you to what you will learn.

• A variety of examples are used to demonstrate concepts.

• A large number of colorful diagrams intuitively explains concepts.

• Excellent pedagogy keeps students motivated.

• Each chapter reinforces concepts in numerous ways.

Chapter openers orient students to what they will learn

Walk Through

55Selection Statements

O b j e c t i v e s

After you have read and studied this
chapter, you should be able to

• Implement selection control in a
program by using if statements.

• Implement selection control in
a program by using switch
statements.

• Write boolean expressions with
relational and boolean operators.

Chapter Objectives detail
what students will be able to
accomplish when they have
worked through the chapter.

Preface xxi

he selection statements we covered in Chapter 5 alter the control flow of a pro-
gram. In this chapter we will cover another group of control statements, called rep-
etition statements. Repetition statements control a block of code to be executed for
a fixed number of times or until a certain condition is met. We will describe Java’s
three repetition statements: while, do–while, and for. In addition to the repetition
statements, we will introduce the third useful method of the JOptionPane class,
called showConfirmDialog. The confirmation dialog is often used in conjunction
with a repetition statement. For example, we can set up a repetition statement to
keep playing a game while the user replies yes to a confirmation dialog. Finally, in
an optional section at the end of the chapter, we will describe recursive methods. A
recursive method is a method that calls itself. Instead of using a repetition statement,
a recursive method can be used to program the repetition control flow.

6.1 The while Statement
Suppose we want to compute the sum of the first 100 positive integers 1, 2, . . . , 100.
Here’s how we compute the sum, using a while statement:

int sum = 0, number = 1;

while (number <= 100) {

I n t r o d u c t i o n

T
repetition
statements

recursive
method

public boolean equals(Ch5Weight wgt) {

boolean result;

double thisGram = this.getGram();
double otherGram = wgt.getGram();

if (thisGram == otherGram) {
result = true;

} else {
result = false;

}

return result;
}
...

}

The equals method is called in the following manner:

Ch5Weight wgt1, wgt2;
wgt1 = new Ch5Weight();
wgt2 = new Ch5Weight();
...
if (wgt1.equals(wgt2)) {

The use of this is
optional here.

This if statement can be
written succinctly as

result
= thisGram == otherGram:

/*
Chapter 3 Sample Program: Compute Area and Circumference

using standard input and output

File: Ch2Circle4.java
*/

import java.io.*;
import java.text.*;

class Ch3Circle4 {

public static void main(String[] args) throws IOException {

final double PI = 3.14159;

String radiusStr;
double radius, area, circumference;
BufferedReader bufReader;

DecimalFormat df = new DecimalFormat("0.000");

bufReader = new BufferedReader(
new InputStreamReader(System.in));

//Get input
System.out.print("Enter radius: ");
radiusStr = bufReader.readLine();

radius = Double.parseDouble(radiusStr);

//Compute area and circumference
area = PI * radius * radius;
circumference = 2.0 * PI * radius;

//Display the results
System.out.println("");
System.out.println("Given Radius: " + radius);
System.out.println("Area: " + df.format(area));
System.out.println("Circumference: " + df.format(circumference));

}
}

Don’t forget to
add this clause

The Introduction motivates the
material to be covered in the
chapter and often relates the
topics to be learned to what has
already been covered.

Code with comments is found
throughout the text. This
annotated code helps students
to understand how the various
lines of code work.

Short Example Programs scattered
throughout each chapter demonstrate
how to implement concepts being
learned.

Teaching By Example

xxii Preface

Sample Program6.11 Sample Program

Hi-Lo Game

In this section we will develop a program that plays a Hi-Lo game. This program illus-
trates the use of repetition control, the random number generator, and the testing
strategy. The objective of the game is to guess a secret number between 1 and 100.
The program will respond with HI if the guess is higher than the secret number and
LO if the guess is lower than the secret number. The maximum number of guesses
allowed is six. If we allow up to seven, one can always guess the secret number. Do
you know why?

Problem Statement

Write an application that will play Hi-Lo games with the user.The objective of
the game is for the user to guess the computer-generated secret number in
the least number of tries. The secret number is an integer between 1 and 100,
inclusive. When the user makes a guess, the program replies with HI or LO de-
pending on whether the guess is higher or lower than the secret number. The
maximum number of tries allowed for each game is six. The user can play as
many games as she wants.

Overall Plan

We will begin with our overall plan for the development. Let’s identify the major tasks
of the program. The first task is to generate a secret number every time the game is
played, and the second task is to play the game itself.We also need to add a loop to re-
peat these two tasks every time the user wants to play the Hi-Lo game.We can express
this program logic in pseudocode as

Longer Sample Programs at the
end of each chapter walk students
through larger examples, giving
students a framework for building
programs incrementally.

Problem Statement—presents the
goal of the program to be designed.

Overall Plan—at this stage the
problem is broken down into tasks
and a plan is developed.

Development:Then for each
component to the program that needs
to be developed the student is walked
through the steps of design, coding
and testing, then finalizing the
program.

Visual Approach
Diagrams give visual representation to concepts and help to explain the relation-
ships of classes and objects.

Import Statements

Class Comment
Describe the class in the
javadoc format.

Declarations
Declare data members
shared by multiple methods
here, outside of method
declarations.

}

class

. . .

{
Class Name

Methods

State-of-Memory
Notation

Program Diagram
Notation

account : Account

account

:Account

The state-of-memory diagram uses the
same UML notation, but it also includes
symbols and notations not found in UML.

Figure 2.5 Relationship between the state-of-memory diagram and the program diagram notation.

State of Memory

Account account;

account = new Account();

A Account account;

B account = new Account();

after is executed A

account

after is executed B

The identifier account is
declared and space is
allocated in memory.

An Account object is created
and the identifier account is

set to refer to it.

account

:Account

Figure 2.4 Distinction between object declaration and object creation.

5.7 Sample Development—continued

MyClass2

:MyHelperClass:Type2Class

To use Type 2 predefined
classes, we must define
helper classes required by
the predefined classes.

There's no restriction in
using Type 1 predefined
classes other than calling
their methods correctly.

MyClass1

:Type1Class

A class we implement

A class given to us

Excellent Pedagogy

Preface xxiii

To draw geometric shapes on the content pane of a frame window, remember that

1. The content pane is declared as a Container, for example,

Container contentPane;

2. The frame window must be visible on the screen before we can get the content
pane’s Graphics object.

To show you just how common the off-by-one error occurs in everyday life, con-
sider the following two questions. When you want to put a fence post every 10 ft,
how many posts do you need for a 100-ft fence? If it takes 0.5 seconds for an eleva-
tor to rise one floor, how long does it take to reach the fourth floor from the ground
level? The answers that come immediately are 10 posts and 2 seconds, respec-
tively. But after a little more thought, we realize the correct answers are 11 posts
(we need the final post at the end) and 1.5 seconds (there are three floors to rise to
reach the fourth floor from the ground level).

It takes some practice before you can write well-formed if statements. Here are
some rules to help you write the if statements.

Rule 1: Minimize the number of nestings.
Rule 2: Avoid complex boolean expressions. Make them as simple as possible.

Don’t include many ANDs and ORs.
Rule 3: Eliminate any unnecessary comparisons.
Rule 4: Don’t be satisfied with the first correct statement. Always look for

improvement.
Rule 5: Read your code again. Can you follow the statement easily? If not, try to

improve it.

Always define a constructor and initialize instance variables fully in the
constructor so an object will be created in a valid state.

Helpful Reminders
provide tips for students
to help them become
more effective
programmers.

You Might Want to Know
boxes give students
interesting bits of
information

Take My Advice boxes give
students advice on coding from
an experienced programmer
perspective.

Design Guidelines provide
tips on good program
design techniques.

xxiv Preface

Tools That Reinforce the Concepts

Key Terms are highlighted in the
margin, so students can find them
easily when studying.

• A selection control statement is used to alter the sequential flow of control.

• The if and switch statements are two types of selection control.

• A boolean expression contains conditional and boolean operators and
evaluates to true or false.

• Three boolean operators in Java are AND (&&), OR (||), and NOT (!).

• DeMorgan’s laws state that !(P &&Q) and !P || !Q are equivalent and that
!(P || Q) and !P && !Q are equivalent.

• Logical operators && and || are evaluated by using the short-circuit
evaluation technique.

• A boolean flag is useful in keeping track of program settings.

• An if statement can be a part of the then or else block of another if statement
to formulate nested-if statements.

• Careful attention to details is important to avoid illogically constructed
t d if t t t

S u m m a r y

K e y C o n c e p t s

selection control

if statements

boolean operators and expressions

precedence rules for boolean
expressions

nested-if statements

switch statements

break statements

graphics

content pane of a frame

Quick Check exercises at the
end of sections allow students
to test their comprehension of
concepts.

End of Chapter Summary
provides a bulleted
explanation of important
topics explained in the
chapter.

The Key Concepts section
lists the important terms
that the students should
know after finishing the
chapter.

Exercises at the end of each
chapter give students a chance
to practice what they are
learning.

Development Exercises give students an
opportunity to use the incremental development
methodology to implement programs.

1. Indent the following if statements properly.

a. if (a == b) if (c == d) a = 1; else b = 1; else c = 1;

b. if (a == b) a = 1; if (c == d) b = 1; else c = 1;

c. if (a == b) {if (c == d) a = 1; b = 2; } else b = 1;

d. if (a == b) {

if (c == d) a = 1; b = 2; }

else {b = 1; if (a == d) d = 3;}

else c = 1;

2. Which two of the following three if statements are equivalent?

a. if (a == b)

if (c == d) a = 1;

else b = 1;

b. if (a == b) {

E x e r c i s e s

Development Exercises
For the following exercises, use the incremental development methodology to
implement the program. For each exercise, identify the program tasks, create a
design document with class descriptions, and draw the program diagram. Map out
the development steps at the start. Present any design alternatives and justify your
selection. Be sure to perform adequate testing at the end of each development step.

29. Write an application that draws nested N squares, where N is an input to the
program. The smallest square is 10 pixels wide, and the width of each
successive square increases by 10 pixels. The following pattern shows seven
squares whose sides are 10, 20, 30, . . . , and 70 pixels wide.

The syntax for the switch statement is

switch (<arithmetic expression>) {

<case label 1> : <case body 1>
...
<case label n> : <case body n>

}

Figure 5.6 illustrates the correspondence between the switch statement we wrote
and the general format.

The <case label i> has the form

case <constant> or default

and <case body i> is a sequence of zero or more statements. Notice that <case body i>
is not surrounded by left and right braces. The <constant> can be either a named or
literal constant.

The data type of <arithmetic expression> must be char byte short or int

switch state-
ment syntax

default
reserved word

1. Translate the following while loop to a loop-and-a-half format.

int sum = 0, num = 1;
while (num <= 50) {

sum += num;
num++;

}

Preface xxv

Supplements for Instructors and Students

For Instructors
• Complete set of PowerPoints, including lecture notes and figures.

• Complete solutions for the exercises

• Example Bank—Additional examples, which are searchable by topic, are
provided online in a “bank” for instructors.

• Homework Manager/Test Bank—Conceptual review questions are stored in
this electronic question bank and can be assigned as exam questions or home-
work.

• Online labs which accompany this text, can be used in a closed lab, open lab,
or for assigned programming projects.

For Students
• Compiler How Tos provide tutorials on how to get up and running on the

most popular compilers to aid students in using IDEs.

xxvi Preface

• Source code for all example programs in the book.

• Answers to quick check exercises.

• Glossary of key terms.

• Recent News links relevant to computer science.

• Additional Topics such as more on swing and an introduction to data
structures.

Book Organization
There are 16 chapters in this book, numbered from 0 to 15. There are more than
enough topics for one semester. Basically the chapters should be covered in linear
sequence, but nonlinear sequence is possible. We show the dependency relation-
ships among the chapters at the end of this section.

Here is a short description for each chapter:

• Chapter 0 is an optional chapter. We provide background information on
computers and programming languages. This chapter can be skipped or as-
signed as an outside reading if you wish to start with object-oriented pro-
gramming concepts.

• Chapter 1 provides a conceptual foundation of object-oriented programming.
We describe the key components of object-oriented programming and illus-
trate each concept with a diagrammatic notation using UML.

• Chapter 2 covers the basics of Java programming and the process of editing,
compiling, and running a program. From the first sample program presented in
this chapter, we emphasize object-orientation. We will introduce the standard
classes String, JOptionPane, Date, and SimpleDateFormat so we can reinforce
the notion of object declaration, creation, and usage. Moreover, by using these
standard classes, students can immediately start writing practical programs.

• Chapter 3 introduces variables, constants, and expressions for manipulating
numerical data. We explain the standard Math class from java.lang and intro-
duce more standard classes (GregorianCalendar and DecimalFormat) to con-
tinually reinforce the notion of object-orientation. We describe and illustrate
console input and output (System.in and System.out) so the students can see
the use of non-GUI I/O. The optional section explains how the numerical val-
ues are represented in memory space.

• Chapter 4 teaches how to define and use your own classes. The key topics
covered in this chapter are constructors, visibility modifiers (public and
private), local variables, parameter passing, and value-returning methods. We
explain and illustrate parameter passing and value-returning methods using
both primitive data types (int, double, etc.) and reference data types (objects).
Through these explanations and illustrations, we clearly distinguish the prim-
itive and reference data types. By the end of this chapter, students will have a
solid understanding of object-orientation.

• Chapter 5 explains the selection statements if and switch. We cover boolean
expressions and nested-if statements. We explain how objects are compared

Preface xxvii

by using equivalence (==) and equality (the equals and compareTo methods).
Illustrative and meaningful examples are provided to make the distinction be-
tween the equivalence and equality clear. Drawing 2-D graphics is introduced,
and a screensaver sample development program is developed.

• Chapter 6 explains the repetition statements while, do–while, and for. Pitfalls in
writing repetition statements are explained. The use of confirmation dialog with
the showConfirmDialog method of JOptionPane is shown. The optional last sec-
tion of the chapter introduces recursion as another technique for repetition.

• Chapter 7 covers basic GUI components and event-driven programming.
Only the Swing-based GUI components are covered in this chapter. This
chapter provides a first glimpse of using inheritance. We limit the discussion
to defining a subclass of a standard class (JFrame) as a nice foundation for a
fuller coverage of inheritance in Chapter 13. GUI components introduced in
this chapter are JButton, JLabel, ImageIcon, JTextField, JTextArea, and menu-
related classes. Our main focus for this chapter is event-driven programming,
so we keep the discussion on GUI components at the basic level. For instance,
we defer the discussion on layout managers and mouse events until Chapter
14. For those who wish to cover more GUI topics can teach a portion of Chap-
ter 14 before continuing to Chapter 8.

• Chapter 8 teaches exception handling and assertions. The focus of this chap-
ter is the construction of reliable programs. We provide a detailed coverage of
exception handling in this chapter. In the previous edition, we presented ex-
ception handling as a part of discussing file input and output. In this edition,
we treat it as a separate topic. We introduce an assertion, a newly added Java
2 SDK 1.4 feature, and show how it can be used to improve the reliability of
finished products by catching logical errors early in the development.

• Chapter 9 covers nonnumerical data types: characters and strings. Both the
String and StringBuffer classes are explained in the chapter. An important
application of string processing is pattern matching. We describe pattern
matching and regular expression in this chapter. We introduce the Pattern and
Matcher classes, newly added to Java 2 SDK 1.4 and show how they are used
in pattern matching.

• Chapter 10 teaches arrays. We cover arrays of primitive data types and of ob-
jects. An array is a reference data type in Java, and we show how arrays are
passed to methods. We describe how to process two-dimensional arrays and
explain that a two-dimensional array is really an array of arrays in Java. Lists
and maps are introduced as more general and flexible ways to maintain a
collection of data. The use of ArrayList and HashMap classes from the java.util
package is shown in the sample programs. Also, we show how the WordList
helper class used in Chapter 9 sample development program is implemented
with another map class called TreeMap.

• Chapter 11 presents searching and sorting algorithms. Both N2 and N log2 N
sorting algorithms are covered. The mathematical analysis of searching and
sorting algorithms can be omitted depending on the students’ background.

• Chapter 12 explains the file I/O. Standard classes such as File and JFile-
Chooser are explained. We cover all types of file I/O, from a low-level byte
I/O to a high-level object I/O. We show how the file I/O techniques are used
to implement the helper classes—Dorm and FileManager—in Chapter 8 and 9
sample development programs.

• Chapter 13 discusses inheritance and polymorphism and how to use them ef-
fectively in program design. The effect of inheritance for member accessibil-
ity and constructors is explained. We also explain the purpose of abstract
classes and abstract methods.

• Chapter 14 covers advanced GUI. We describe the effective use of nested pan-
els and layout managers. Handling of mouse events is described and illustrated
in the sample programs. A capstone sample development program that uses a
modified Model-View-Controller design pattern is constructed in this chapter.

• Chapter 15 covers recursion. Because we want to show the examples where
the use of recursion really shines, we did not include any recursive algorithm
(other than those used for explanation purposes) that really should be written
nonrecursively.

Chapter Dependency
For the most part, chapters must be read in sequence, but some variations are possi-
ble, especially with the optional chapters. Chapters 0, 14, 15 and Section 6.12 are
optional. Section 8.6 on assertions can be considered optional. Here’s a simplified
dependency graph (optional chapters are shown in green):

More detailed information on chapter dependency and suggested sequences
for different audiences can be found at our website.

Acknowledgments
I would like to thank the following reviewers and the focus group participants for
their comments, suggestions, and encouragement.

Focus Group Attendees
Roger Ferguson, Grand Valley State University
Gerald Gordon, Depaul University
Susan Haller, University of Wisconsin, Parkside
Eliot Jacobson, University of California, Santa Barbara
Marian Manyo, Marquette University
Thaddeus Pawlicki, University of Rochester
Paul Tymann, Rochester Institute of Technology

0 1 2 3 4 5 6 7 14

9 12 13

8 10

11 15

xxviii Preface

Reviewers:
Ken Brown, University of Aberdeen, UK
Robert Burton, Brigham Young University
Michael Crowley, University of Southern California
Adrienne Decker, University of Buffalo
Deborah Deppeler, University of Wisconsin, Madison
Julian Dermoudy, University of Tasmania, Australia
Roger Ferguson, Grand Valley State University
Mark Fienup, University of Northern Iowa
H.J. Geers, Technical University Delft, Netherlands
John Hamer, University of Auckland, New Zealand
Sherri Harms, University of Nebraska, Lincoln
Joseph D. Hurley, Texas A & M University
Eliot Jacobson, University of California, Santa Barbara
Saroja Kanchi, Kettering University
Andrew Kinley, Rose-Hulman Institute of Technology
Blayne E. Mayfield, Oklahoma State University
James McElroy, California State University, Chico
Carolyn S. Miller, North Carolina State University
Jayne Valenti Miller, Purdue University
Thaddeus Pawlicki, University of Rochester
Gyorgy Petruska, Indiana University-Purdue University, Fort Wayne
David Raymond, United States Military Academy, West Point
Donna S. Reese, Mississippi State University
Alan Saleski, Loyola University
Carolyn Schauble, Colorado State University
Ken Slonneger, University of Iowa
Howard Straubing, Boston College
Alex Thornton, University of California, Irvine
David Vineyard, Kettering University
Gregory F. Welch, University of North Carolina

I would like to thank the following McGraw-Hill staff for their trust in my ability to
produce a quality text book and their never-ending support throughout the whole
project.

Kelly Lowery
Emily Lupash
Sheila Frank
Dawn Bercier

My Story
In September, 2001, I changed my name for personal reasons. Prof. Thomas Wu is
now Prof. Thomas Otani. To maintain continuity and not to confuse people, the third
edition is published under my former name. Those who care to find out the reasons
for changing the name (they are not dramatic) can do so by visiting my website
(www.drcaffeine.com).

Preface xxix

