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PREFACE

A Finite Element Method Primer for Mechanical Design was written to be
a supplementary text for the junior mechanical design course in a
traditional mechanical engineering curriculum. The intent is to introduce
the finite element method in the context of mechanical design. Emphasis
is on the practical aspects of proper modeling, checking, and interpretation
of results. Theoretical aspects are introduced as they are needed to help
understand the operation. The text covers truss, beam/frame, and two
dimensional solid engineering structures. This text is basically an excerpt
from The Finite Element Method in Mechanical Design.

The finite element method has rapidly become a vital tool for analysis of
mechanical designs. It has reached the point where practically every
design engineer has access to a finite element program through their
company's mainframe computer or on a micro-computer. This method is
extremely powerful in terms of the many different types of problems it can
solve. The method applies to many engineering fields, however this book
concentrates on the application to mechanical design.

Use of this tool does not guarantee correct results. It is a numerical
procedure involving approximations of theoretical behavior. In order to
produce correct results the model must be designed correctly, and be able
to reach numerical convergence (assuming the computer program is
without error). Correct results then depend primarily on the user's ability
to utilize the tool. It in no way supplants the engineer's responsibility to
do approximate engineering calculations, use good design practice, and
apply engineering judgment to the problem. Instead, it should supplement
these skills to ensure that the best design is obtained.

With the ready access of finite element analysis comes the need to
provide the understanding required to accurately and effectively use the
method. Most design engineers are not going to have the time nor the
inclination to study all the theoretical formulations and computer
algorithms much less write their own program. Therefore, most engineers
take the role of users of an in-house or commercial program.



Preface Y,

Information About Accompanying Software

PC computer software is provided with this book that contains a finite
element program called FEPC. The program runs on an IBM PC or
compatible computer. It will solve two-dimensional problems using truss,
beam, plane stress, plane strain or axisymmetric solid elements. Dimen-
sional limits of the program are described in an abbreviated user's guide in
the Appendix. Also, you should review the README file on the disk for
start-up instructions. The complete user's guide is in a file with the
software. The program is provided as shareware.

Although technical support can not be provided, we will replace any
defective files. Also, you may contact the author regarding any program
errors or availability of program updates.
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CHAPTER1

THE FINITE ELEMENT METHOD

1.1 General Overview

The finite element method is enjoying widespread use in many engineering
applications. Although first developed for structural analysis, it now solves
problems in heat transfer, fluid mechanics, acoustics, electromagnetics, and
other specialized disciplines. In conduction heat transfer, we solve for the
temperature distribution throughout the body with known boundary
conditions and material properties whether steady state or time dependent.
Application to fluid mechanics begins with steady inviscid incompressible
flow and progresses to very complex viscous compressible flow. The whole
area of computational fluid dynamics has made rapid progress in recent
years. Acoustics is another area where great strides are being made based
on finite element and boundary element numerical methods. Electromag-
netic solutions for magnetic field strength provide insight for design of
electromagnetic devices. Many of these capabilities are now being coupled
to yield solutions to fluid-structure interactions, convective heat transfer,
and other coupled problems.

The finite element method is a numerical method for solving a system of
governing equations over the domain of a continuous physical system. The
method applies to many fields of science and engineering, but this text
focuses on its application to structural analysis. The field of continuum
mechanics and theory of elasticity provide the governing equations.

The basis of the finite element method for analysis of solid structures is
summarized in the following steps. Small parts called elements subdivide
the domain of the solid structure illustrated in Figure 1-1. These elements
assemble through interconnection at a finite number of points on each
element called nodes. This assembly provides a model of the solid
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structure. Within the domain of each element we assume a simple general
solution to the governing equations. The specific solution for each element
becomes a function of unknown solution values at the nodes. Application
of the general solution form to all the elements results in a finite set of
algebraic equations to be solved for the unknown nodal values. By
subdividing a structure in this manner, one can formulate equations for
each separate finite element which are then combined to obtain the solution
of the whole physical system. If the structure response is linear elastic, the
algebraic equations are linear and are solved with common numerical

procedures.
P
—I—L] F

Nodes

Elements

Figure 1-1. Two-Dimensional Continuum Domain

Since the continuum domain is divided into finite elements with nodal
values as solution unknowns, the structure loads and displacement
boundary conditions must translate to nodal quantities. Single forces like
F apply to nodes directly while distributed loads like P are converted to
equivalent nodal values. Supports like the grounding indicated by the
hatch in Figure 1-1 resolve into specified displacements for the supported
nodes.

At least two sources of error are now apparent. The assumed solution
within the element is rarely the exact solution. The error is the difference
between assumed and exact solutions. The magnitude of this error depends
on the size of the elements in the subdivision relative to the solution
variation. Fortunately, most element formulations converge to the correct
solution as the element size reduces. The second error source is the
precision of the algebraic equation solution. This is a function of the
computer accuracy, the computer algorithm, the number of equations, and
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the element subdivision. Both error sources are reduced with good
modeling practices.

In theory all solid structures could be modeled with three-dimensional
solid continuum elements. However, this is impractical since many
structures are simplified with correct assumptions without any loss of
accuracy, and to do so greatly reduces the effort required to reach a
solution. Different types of elements are formulated to address each class
of structure. Elements are broadly grouped into two categories, structural
elements and continuum elements.

Structural elements are trusses, beams, plates, and shells. Their
formulation uses the same general assumptions about behavior as in their
respective structural theories. Finite element solutions using structural
elements are then no more accurate than a valid solution using convention-
al beam or plate theory, for example. However, it is usually far easier to
get a finite element solution for a beam, plate, or shell problem than it is
using conventional theory.

Continuum elements are the two- and three-dimensional solid elements.
Their formulation basis comes from the theory of elasticity. The theory of
elasticity provides the governing equations for the deformation and stress
response of a linear elastic continuum subjected to external loads. Few
closed form or numerical solutions exist for two-dimensional continuum
problems, and almost none exist for three-dimensional problems; this
makes the finite element method invaluable.

An extensive literature has developed since the 1960s when the term
"finite element” originated. The first textbook appeared in 1967 [see
Reference 1.1]. The number of books and conference proceedings published
since then is near two hundred and the number of journal papers and other
publicationsis in the thousands. The engineer beginning study of the finite
element method may consult references [1.2], [1.3], [1.4], [1.5], [1.6], [1.7],
or [1.8] for formulation [1.9], [1.10], [1.11], [1.12], [1.13], or [1.14] for
structural and solid mechanics applications, and [1.15], [1.16], or [1.17] for
computer algorithms and implementation.

1.2 One-Dimensional Spring System

The fundamental operation of the finite element method is illustrated by
analysis of a one-dimensional spring system. A two-spring structure is
sketched in Figure 1-2. Each spring is an element identified by the number
in the box. The spring elements have a node at each end and they connect
atacommon node. The number in the circle labels each node. The number
in the box labels each element. The subscripted u values are the node
displacements, i.e., degrees-of-freedom. There is an applied force F at node
3. We wish to solve for the node displacements and spring forces.
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Figure 1-2. One-Dimensional Spring Structure

The first step is to formulate a general element. Figure 1-3 shows a
spring element. The element label is p with nodes i and j. For a displace-
ment formulation, assume positive displacement components of u; at node
i and u; at node j. The element has a spring constant k, so node forces
result when these displacements occur. Define f;;, as the force acting on
node i due to the node displacements of element p. Application of simple
equilibrium forms equations (1.1).

Figure 1-3. One-Dimensional Spring Element

-k u. + k_u;
Pt (1.1)

fip kpui - kpuj

We write these in matrix form in equation (1.2) and then symbolically in
equation (1.3).

- (1.2)



Section 1.2 One-Dimensional Spring System 5

[k){d} = {f} (1.3)

Here, [K] is the element stiffness matrix, {d} is the element node displace-
ment vector, and {f} is the element node internal force vector. These steps
complete the element formulation.

Now apply the general formulation to each element:

for element 1

Ky kg g fiy
_ (1.4)
-k kU, for
and for element 2
kK, -k, ||u, -t
_ (1.5)
K, Ky ||ug -t

The force components in the element equations are internal forces on the
nodes produced by the elements when the nodes displace. Equilibrium
requires that the sum of the internal forces equals the external force at
each node. Representing the external force by F,;, where i represents each
node, the equilibrium equations become:

at node 1 ) forces =0 - -f, =F,
at node 2 Y forces =0 - -f,-f, =F, (1.6)
at node 3 ) forces =0 - -f, =F,

Substitute the element equations for the internal force terms in the
equilibrium equations (1.6), and that, in effect, performs the structure
assembly and yields the structure equations (1.7).

Kiu; - Kk, = K
-kup s kU, s ku, - kuy = F, (1.7)

- ku, +ku; = Ry
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These are written in matrix form in equation (1.8) and symbolically in
equation (1.9) where [K] is the structure stiffness matrix, {D} is the
structure node displacement vector, and {F} is the structure external force
vector.

-k, kitk, -k, Ru,p = 4F, (1.8)
0 -k, k, (|u; F,
[KKD} = {F} (1.9)

The set of structure or system equations must now be solved. The spring
constants of the springs are known, so all terms in the structure stiffness
matrix are known. The applied forces are known and the node displace-
ments become the unknowns in this set of three simultaneous equations.
We get the solution by premultiplying both sides of equation (1.9) by the
inverse of [K]. However, in this case the inverse of [K] is singular, meaning
that we cannot get a unique solution. Physically, this means that the
structure can be in equilibrium at any location in the x space, and it is free
to occupy any of those positions. This allows rigid body motion. To have a
unique solution we must locate the structure; that is, apply boundary
conditions such as a fixed displacement on one of the nodes which is enough
to prevent rigid body motion.

If an external force F applies to node 3, and the spring attaches to the
wall at node 1, then it is natural to set the displacement of node 1 to zero.
This action zeroes the first column of terms in the structure stiffness
matrix, and that leaves three equations with two unknowns. If the value
of the reaction force at node 1 is unknown, then we may skip the first
equation and choose the second and third equations to solve for the
unknown displacements. If the external force on node 2 is zero then

Kitk, -k, ||u, 0
- (1.10)

Now we may get the solution of the resulting equations (1.10) by
premultiplying both sides of the equation by the inverse of this reduced
structure stiffness matrix. Using the solved displacements, we calculate
each element internal force by use of the individual element equations. In
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this example the force calculation is trivial, but in more complex elements
this step determines stresses in elements of the structure.

Also, in this example the calculation of the reaction force at node 1 is
easily done from elementary equilibrium equations. However, in general
cases, the structure under analysis may be statically indeterminant and the
reaction forces at locations of support or fixed displacement may not be
known. In that situation, the equations involving these reaction forces are
stored and solved after the displacements are found to calculate any desired
reaction forces.

This detailed example illustrates most of the fundamental steps in the
finite element method. The finite element method obviously overpowers
the example case. However, a complex spring arrangement could use the
procedure for analysis, or if a computer program were written, solution for
a complex spring arrangement would come quickly with input of the spring
constants and connectivity. The major differences between this example
and actual practice are that (1) nodes usually have more than one
displacement component or degree-of-freedom, (2) the element formulation
is chosen to match the class of structure being analyzed, and (3) a large
number of equations must be solved.

1.3 Using a Computer Program

There are three stages that describe the use of any existing finite element
program. The preprocessing stage creates the model of the structure from
inputs provided by the analyst. A preprocessor then assembles the data
into a format suitable for execution by the processor in the next stage. The
processor is the computer code that generates and solves the system
equations. The third stage is postprocessing. The solution in numeric form
is very difficult to evaluate except in the most simple cases. The
postprocessor accepts the numeric solution, presents selected data, and
produces graphic displays of the data that are easier to understand and
evaluate.

Figure 1-4 draws a block diagram of a typical finite element computer
program. Before entering the program's preprocessor, the user should have
planned the model and gathered necessary data. In the pre-processor
block, the user defines the model through the commands available in the
preprocessor. Thedefinition includes input and generation of all node point
coordinates, selection of the proper element from the program's element
library, input and generation of node connectivity to define all elements,
input of material properties, and specifying all displacement boundary
conditions, loads, and load cases. The completion of the preprocessing stage
results in creation of an input data file for the analysis processor.
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PREPROCESSOR

L 4

INPUT DATA

Element File
Load File

Control Data, Materials, Node and Element
Definition, Boundary Conditions, Loads

|

FORM ELEMENT [K]

Read Element Data, Calculate Element Element File
Stiffness Matrix, [K ]

i

FORM SYSTEM [K ]

Assemble Element [k ]s to Formthe
System Stiffness Matrix, [K ]

|APPLY DISPLACEMENT BOUNDARY CONDITIONS |

|

COMPUTE DISPLACEMENTS

Solve the System Equations
KKD}={F}
for the Displacements
P}=KK]1 1}

1 !

COMPUTE STRESSES

Load File

Displacement,

Calculate Stresses and Output Stress Files

Files for Postprocessor Plotting

POSTPROCESSOR

Figure 1-4. Finite Element Computer Program Block Diagram

The processor reads from the input data file each element definition,
calculates terms of the element stiffness matrix, and stores them in a data
array or on a disk file. The element type selection determines the form of
the element stiffness matrix. The next step is to assemble the structure
stiffness matrix by matrix addition of all element stiffness matrices. The
application of enough displacement boundary conditions to prevent rigid



References 9

body motion reduces the structure stiffness matrix to a nonsingular form.

Then the equation solution may be done with several different computer
algorithms, but most use some variation of Gaussian elimination. For a
large set of equations this is the most computationally intensive step in the
process. The solution here yields values for all node point displacement
components in the model. The node displacements associated with each
element combined with the element formulation matrix yield the element
strains. The element strains with the material propertiesyield the stresses
in each element. The processor then produces an output listing file with
data files for postprocessing.

Postprocessing takes the results files and allows the user to create
graphic displays of the structural deformation and stress components. The
node displacements are usually very small for most engineering structures
so they are magnified to show an exaggerated shape. Node displacements
are single-valued, but node values of stress are multi-valued if more than
one element is attached to a given node. Node stress values are usually
reached by extrapolation from internal element values and then averaged
for all elements attached to the node. Contour plots or other stress plots
desired by the user are created from the node values. In some post-
processing programs criterion plots of the factor of safety, stress ratio to
yield, or stress ratio to allowable values are also generated and displayed.

The engineer is then responsible for interpreting the results and taking
whatever action is proper. The user must estimate the validity of the
results first. This is very important because the tendency is to accept the
results without question. Experience, thorough checking of the modeling
assumptions and resulting predicted behavior, and correlation with other
engineering calculations or experimental results all contribute to estimat-
ing the validity of the results.

References

1.1 Zienkiewicz, O. C. and Cheung, Y. K., The Finite Element Method in
Structural and Continuum Mechanics, McGraw-Hill, London, 1967.

1.2 Akin, J. E., Finite Element Analysis for Undergraduates, Academic Press,
London, 1986.

1.3 Gallagher, R. H., Finite Element Analysis — Fundamentals, Prentice-Hall,
Englewood Cliffs, New Jersey, 1975.

1.4 Huebner, K. H. and Thornton, E. A., The Finite Element Method for
Engineers, John Wiley and Sons, New York, 1982.

1.5 Irons, B. and Ahmad, S., Techniques of Finite Elements, John Wiley and
Sons, New York, 1980.

1.6 Irons, B. and Shrive, N., Finite Element Primer, John Wiley and Sons, New
York, 1983.

1.7 Reddy, J. N, An Introduction to the Finite Element Method, McGraw-Hill,
New York, 1984.



10

1.8

1.9

1.10

1.11

1.12

1.13

1.14

1.15

1.16

1.17

Chapter 1 The Finite Element Method

Zienkiewicz, O. C. and Taylor, R. L., The Finite Element Method, Volume
1—Basic Formulation and Linear Problems, Fourth Edition, McGraw-Hlill,
New York, 1989.

Cook, R. D., Malkus, D. S., and Plesha, M. E., Concepts and Applications
of Finite Element Analysis, Third Edition, John Wiley and Sons, New York,
1989.

Fenner, D. N., Engineering Stress Analysis: A Finite Element Approach
with Fortran 77 Software, John Wiley and Sons, New York, 1987.

Potts, J. F. and Oler, J. W., Finite Element Applications with Microcomput-
ers, Prentice-Hall, Englewood Cliffs, New Jersey, 1989.

Ross, C. T. F., Finite Element Methods in Structural Mechanics, John Wiley
and Sons, New York, 1985.

Stasa, F. L., Applied Finite Element Analysis for Engineers, Holt, Rinehart
and Winston, New York, 1985.

Weaver, W. and Johnston, P. R., Finite Elements for Structural Analysis,
Prentice-Hall, Englewood Cliffs, New Jersey, 1984.

Akin, J. E., Application and Implementation of Finite Element Methods,
Academic Press, London, 1982.

Bathe, K. J. and Wilson, E. L., Numerical Methods in Finite Element
Analysis, Prentice-Hall, Englewood Cliffs, New Jersey, 1976.

Bathe, K. J., Finite Element Procedures in Engineering Analysis, Prentice-
Hall, Englewood Cliffs, New Jersey, 1981.



CHAPTER 2

TRUSSES

The primary focus of this text is on the aspects of finite element analysis
that are more important to the user than the formulator or programmer.
However, for the user to employ the method effectively he or she must have
some understanding of the element formulations as well as some of the
computational aspects of the programming. Therefore, the next chapters
begin by looking at the element formulation for a given structural behavior
class before proceeding to model development and the proper modeling
approach. Most finite elements develop from use of an assumed displace-
ment approximation; therefore, the elements presented will all deal with
assumed displacement formulations.

2.1 Direct Element Formulation

This section presents the direct physical formulation of a truss element and
its spatial orientation to solve two-dimensional frameworks. A member of
a truss structure is like a one-dimensional spring. The member has a
length substantially larger than its transverse dimensions, and it has a
pinned connection to other members that eliminates all loads other than
axial load along the member length. It usually has a constant cross-section
area and modulus of elasticity along its length. The stiffness is then

k=—= (2.1)

where A is the cross-section area, E is the modulus of elasticity, and L is
the member length.

11
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A one-dimensional truss element then has an element formulation
identical to the one-dimensional spring given in equation (1.2). This s its
element stiffness matrix for one-dimensional displacement and loading
along the axis of the member. For member positioning in a two-dimen-
sional space as illustrated in Figure 2-1, each node has two components of
displacement u and v and two components of force p and g. This leads to
a set of element equations with an element stiffness matrix of size 4 by 4.

Figure 2-1. Two-Dimensional Truss Element

Derivation of the two-dimensional element stiffness matrix comes
through coordinate transformations [2.1], but first we expand the one-
dimensional stiffness matrix to two dimensions with the member lying
along the x axis. Assuming an order of components and equations of u and
v at node i followed by u and v at node j, the element equations are written
in equation (2.2).

'k 0 -k o[y -p;
0 0 0 0V -q;
= (2.2)
-k 0 k 0]|Y By
0 0 0 0]y -0

Notice that the terms relating displacement and force in the x direction
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are the spring constant of the member and the terms relating displacement
and force in the y direction are zero. A linear analysis always assumes that
the displacements are much smaller than the overall geometry of the
structure; therefore, the stiffness is based on the undeformed configuration.
In this case, because it is a motion perpendicular to the line of the member,
if we consider a vertical displacement component at one of the nodes, no
vertical force results because there is no axial stretch relative to the
undeformed configuration.

This formulation represents the element stiffness matrix in a local
element coordinate system that is aligned with the element axis. To
position the element at an arbitrary angle, 8, from the x coordinate axis, we
perform a transformation of coordinate systems to derive the element
stiffness matrix in the x,y global coordinate system. In the system of
equations, the displacements and forces are both vectors, so they transform
through standard vector transformations. The displacement components
in global coordinates relate to local components through equation (2.3).

{d} = [T}{d"} (2.3)

Here, {d'} are the global displacement components, [T] is the transforma-
tion matrix, and {d} are the local element coordinate displacement
components.

The transformation matrix is given by equation (2.4).

c s 0O
-s ¢ O

[T] = (2.4)
0 0 ¢ s

0 0 -s ¢

o

Here, s is the sin g, and c is the cos 6. Similarly, the force components in
the global coordinate system are given by

{f} = [TKf"}. (2.5)

The element stiffness matrix in the local coordinate system is defined in
matrix notation from equation (2.2) by

[kNd} = {f}. (2.6)
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Making the substitutions for {d} and {f} given above yields

[KI[THd"} = [THF'}- (2.7)

The transformation matrix is an orthogonal matrix, meaning that

[T1+ =[TT. (2.8)

Therefore, multiplying equation (2.7) by [T]T produces
[TTKI[THd'} = {f'} (2.9)

which makes

N cs s -cs -5
k'] =[TTIKI[T] = k (2.10)
-c2 -cs ¢c?2 ¢cs
-cs -s® c¢s s?

The use of this element formulation and equation assembly is shown
through the example truss structure pictured in (2.11). The elements and
nodes are numbered, and load and boundary conditions are shown. The
structure equations are

[KKD} = {F} (2.11)

where, [K] is the structure stiffness matrix, {D} is the node displacement
vector, and {F} is the applied load vector.

These equations come from applying the conditions of equilibrium to all
the nodes by setting the summation of internal forces equal to the applied
forces. The internal forces are given by the product of each element
stiffness matrix with its node displacements. This yields equation (2.12),
where the subscripts refer to the numbered elements. If the displacement
vector in each term of the equation above was identical, then we could

[ki{dH, + [KHd}l, + [kKd}; = {F} (2.12)
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D — Element
O — Node

@

Figure 2-2. Example Truss Structure

factor it out and add the stiffness matrices term-by-term to produce the
structure stiffness matrix.

The displacement vector for each element must then expand to include
all the structure degrees-of-freedom, not just the ones associated with a
given element. In order for the matrix equation to be correct, a corre-
sponding expansion of the element stiffness matrix must accompany the
expansion of the displacement vector. It expands to the size of the
structure stiffness matrix which in this example becomes a 6-by-6 matrix.
The expansion simply adds rows and columns of zeroes to each element
stiffness matrix corresponding to the additional structure degrees-of-
freedom unused in the given element [2.1].

Applying this approach, the stiffness matrix for element 1 in the example
results from using equation (2.10) with a @value of 90 degrees. Rows and
columns of zeroes fill in equations and positions involving u, and v, as
shown in equation (2.13).

[0 0 0 0 ©

0 0 0 O 0 0 0 0 O

0 k, 0 k] |0 0 0 0 O
1o o o “lo 0o 0o k o (2.13)

0 -k, 0 Kk, 0 0 0 0 O

0 0 0 -k O

Similarly, the matrix for element 2 with fequal to 135 degrees and rows
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and columns filled in equations and positions involving u, and v, results in
equation (2.14).

L9P

[ Bk, -.5k,
-5k, .5k,
0o o
1o o
-5k, .5k,
5k, .5k,

O O O o o o

O O O o o o

-5k, .5k, ]
5k, -.5k,
o o
o o
5k, -5k,
-5k, .5k,

(2.14)

Finally for element 3, ¢ is 0 degrees and u, and v, are the additional
degrees-of-freedom in equation (2.15).

[kls =

0
0 0
k, 0
0
0
0

_k3

0
k

w

0
0
0

O O O O o o

O O O O o o
O O O O o o

(2.15)

The summations of equation (2.12) are now carried out by adding the
expanded element stiffness matrices term-by-term. The resulting structure
stiffness matrix is in equation (2.16).

[K] =

[ 5k, +k,
-5k,
_k3
0
- 5K,
5k,

-5k,
5Kk,
0
0
5k,
- 5k,

_k3

0
k

w

0
0
0

0 -5k,
0 .5k,
0 0
K, 0

0 5k,
-k, -5k,

rm

(2.16)

.5k



Section 2.1 Direct Element Formulation 17

Before solving the equations, apply the displacement boundary
conditions. In this example the boundary conditions have components u,,
Vv,, and u, equal to zero. Applying these to the system equations zeroes the
third, fourth, and fifth columns of the structure stiffness matrix. This
leaves six equations with three unknown displacements. In most problems,
the reaction forces in equations 3, 4, and 5 are also unknown, so choose
equations 1, 2, and 6 to solve for the displacement components, u,, v;, and
Vs.

We get the solution by finding the inverse of the remaining 3-by-3
stiffness matrix. Multiplying the inverse with the load vector yields the
displacements. After finding the displacements, calculate the element
forces by use of the element equations.

This concludes the example and demonstration of two-dimensional truss
formulation. Of course, this extends easily to three dimensions. The
assembly of equations by expanding the element stiffness matrix to
structure size is useful for explanation of the process but impractical for a
large number of system equations. In computer programs the algorithm
only needs to place the terms of the element stiffness matrix in the correct
position in the structure stiffness matrix. This is easy to accomplish
because the structure equation sequence correlates to the node number.
Elements are defined by node numbers, thus providing the direct correla-
tion for positioning the terms.

2.2 The Finite Element Model

The practitioner of finite element analysis normally uses an existing
computer code. Because of the general complexity and sizable effort
required to create a finite element code, it is impractical to consider writing
a code for every specific problem that needs solving. So the job of the
practitioner is to use an existing code to solve the problem of interest. The
user in this case is responsible for creating the model of the structure, for
managing the execution of the program, and for interpreting results created
by the program.

In following the analysis procedure we reach the point of planning the
model. The arrangement of nodes and elements that describe the model is
known as the mesh. Using all the information that is known about the
problem, and knowing the capabilities of the program chosen to analyze the
problem, the mesh is planned to model the structure properly. In truss
structures, each member is modeled as one truss element with the
connections of truss members or elements at the node points. Based on the
formulation and general assumptions for truss members, these node
connections behave as pinned joints. This results in no flexural loading of
the member in that one member can swivel or hinge relative to the others
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connected at any given node, yet will transmit axial load.

Since a truss element behaves exactly in agreement with the assump-
tions of a truss member, there is no need to divide a member into more
than one element. In fact, such a subdivision will cause the execution stage
of the program to fail. The failure is due to the zero stiffness against any
lateral force applied at a node connection where two members are in perfect
axial alignment. So just as a physical truss structure constructed in this
manner would collapse, the numerical solution of the problem defined in
this manner also should collapse.

A simple bridge structure is in Figure 2-3 and a corresponding finite
element mesh with elements and nodes numbered is in Figure 2-4.

Figure 2-3. Simple Bridge Structure

AT o &0 ©6 |A

Figure 2-4. Simple Bridge Structure Finite Element Mesh

2.3 The Analysis Step

Operation of the analysis step is mostly transparent to the user. However,
there are some factors that the user must be familiar with to assure good
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results. Some of them are inherent in the computer hardware and
software, but some of them are under user control. For small truss
structure models, most programs have enough numerical accuracy and
performance to provide an accurate solution without much user concern.
Large models cause the most concern [2.1].

A large model is one in which there are many elements and nodes used
to represent the structure. (The structure itself is not necessarily large.)
With many system equations it becomes difficult to find a numerical
solution if the equation matrix is full. Even the inverse of a 10-by-10
matrix may be inaccurate if done by Gauss elimination with only a few
significant figures carried along in the mathematical operations. The
accuracy will improve, however, if the matrix has its nonzero terms
clustered near the diagonal. This reduces the number of operations and
reduces the roundoff error carried along in each operation. This kind of
matrix, with its nonzero terms near the diagonal, is a banded matrix.

If the truss structure model consists of thousands of nodes and elements,
then the bandwidth of the structure equations needs to be small. Keeping
it small reduces error and computing time. If the mesh plan does not have
a small bandwidth for the system of equations, then bandwidth minimizers
available in many programs should reduce it. There are several algorithms
available which will usually, but not always, find a better node or element
numbering pattern. Most programs keep the original numbering in the
model for documentation and presentation purposes by storing the
renumbered nodes and elements in translation tables. In some programs
the user has the option to keep the original numbering or change to the
new numbering plan.

The approximation error for the truss element is zero since the element
formulation is in exact agreement with the assumptions used to define a
truss member. During processor execution there are usually some prompts
of progress made displayed on the computer, and if errors occur, messages
appear. Sometimes these messages have meaning only to the computer
program developer, but some of them can be very helpful in determining
the model error.

The most common runtime errors involve incorrect definition of elements
or incorrect application of displacement boundary conditions. For example,
both conditions can produce an error message that the structure stiffness
matrix is not positive-definite or that a negative pivot or diagonal term in
the stiffness matrix appeared during equation reduction. For truss models
this can occur whenever there are not enough boundary conditions to
prevent rigid body motion. It can also occur when two elements connect in-
line resulting in zero lateral stiffness. It can also mean that the truss
structure itself is not kinematically stable associated with a kinematic
linkage of the members.

The error messages from the computer program should provide an
associated element number, node number, or equation number where the
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error occurred. That makes it easier for the user to pinpoint the problem.
When execution completes without errors, then postprocessing may begin.

2.4  Output Processing and Evaluation

At this stage of the analysis, all programs have numerical results in the
form of a listing file of the problem. This file will include a summary of the
input data followed by numerical values of all node displacement compo-
nents and all element stress results. One of the important steps to take
here is to review the summary of the input printout, scanning it for errors
in input interpretation of the data entered or selection of default parame-
ters that are not appropriate for the problem at hand. This can usually be
done effectively if the program formats the data for easy viewing.

The results for displacements and stresses in the listing file for large
models are so lengthy that scanning is not practical. However, many
programs will print a summary of maximum values for displacement
components and stress magnitudes. Therefore, it is very desirable to
present the data graphically for more effective evaluation.

The first graphic of importance should be an exaggerated deformed
shape of the structure. All postprocessing programs will include this
graphic that uses the node displacements with a scale factor to exaggerate
the deformation and make it more apparent to the eye. The deflections in
most engineering structures are usually very small, and without an
exaggeration scale factor the deformed shape would look the same as the
undeformed shape. Program options usually exist either to provide both an
undeformed and deformed mesh simultaneously or an outline of the
undeformed object superimposed on the graphic of the deformed mesh.

The engineer must look at this plot critically and make sure that the
boundary conditions are correct and that the shape of the deformed
structure agrees qualitatively with the expected deformation. In truss
structures the deformed shape will obviously show each member or element
as a straight line connecting the nodes in an exaggerated deformed
position.

After thorough evaluation of the deformed shape, the graphics should
then turn to plots of the stress components. In continuum structures the
stress component plots relate to averaged quantities at the node points.
Truss structures have a stress in each member that is constant, and most
commercial postprocessing programs do not provide much in the way of
graphic presentation of these stresses. In this event the user must return
to the listing file and examine it for the highest stressed members.

The evaluation of the results determines whether we need to make
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additional model refinements and whether the results have converged to
enough accuracy. For truss structures we know that the element formula-
tion is exact; therefore, in a correctly defined and processed model the
output results will be exact. So there is no need for refined modeling to
produce converged results in this case, but the modeling of loads and
boundary conditions may not be fully appropriate.

Itis important to remember that this is a linear elastic analysis. One of
the potential failure modes is overstressing while another is elastic
buckling. The stresses compare to yield strength for the material to
determine if overstress failure occurs. To determine whether there is
potential for elastic buckling, the user must identify the members with a
significant compression load, and then use Euler buckling equations from
mechanics of materials to evaluate the potential for each member to buckle
[2.2]. Thisisnotdonein alinear elastic analysis computer program. If any
member has an inadequate safety factor against buckling, then the entire
structure should have a stability analysis conducted using a solution
algorithm available in some nonlinear computer codes.

2.5 Case Study

We show a typical truss structure in Figure 2-5. This structure has
members of two different cross-section areas and two different materials.
The mesh plan for this structure is illustrated in Figure 2-6 with a chosen
pattern for node and element numbers. The enforced boundary conditions

a O

Figure 2-5. Two-Dimensional Truss Structure
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symbolized by the triangular shapes have the triangle tip placed on the
node pointing in the direction of restraint. The loads symbolized by long
arrows apply to the indicated node points.

Figure 2-6. Truss Structure Finite Element Model

Table 2-1 lists the input data required to create this model. The title
line is first followed by the control data line. Node definition lines begin
with their number, with boundary condition restraints and coordinate
locations following. In this model all the z boundary conditions are
restrained and all the z coordinates are zero because this is a 2-D truss
element without any z degrees-of-freedom. Additional control data is next
followed by load data lines. The load data lines begin with the node
number of application with a direction and magnitude. The type of element
is a truss. The material data is shown with two table entries. Material 1
has a modulus of elasticity for steel with a cross-section area of 0.4 in?, and
material 2 is aluminum with a cross-section area of 0.7 in°>. The element
definitions are given by the entry of two node numbers at the endpoints of
the element with a material table assignment.

This is such a small model that the equation bandwidth factor is
insignificant along with any question of numerical performance or
precision. Following program execution the deformed shape of the
structure is shown in Figure 2-7. Note particularly that the enforced
boundary conditions match, and the structure deforms in a manner that
agrees with its expected deformation. The displacement, load, and stress
results are in Table 2-2. Finally, the stress results are displayed in bar
graph form in Figure 2-8.

We may evaluate these results for the design by knowing the additional
property given by its yield strength. If we say the steel has a yield strength
of 50 kpsi and the aluminum has a yield strength of 30 kpsi, then the
lowest factor of safety will be in element number 9 which has a value of
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Table 2-1. Input Data File for Truss Structure Model
_______________________________________________________________________________________|

FrRxkxxxkxkx*|notes inside vertical bars are for data
expl anati on only|
Truss Case Study

|[title line|
6 1 | 6 nodes, 1 elenent group, 1
| oad case|
1 1 1 1 0. 000 0. 000 0. 000 | node
nunber, |
2 0 0 1 10. 000 0. 000 0. 000 | x,y,2z
boundary|
3 0 1 20. 000 0. 000 0. 000
| condi ti ons, |
4 0 1 1 30. 000 0. 000 0. 000
| O-free, 1-fi xed|
5 | 0 0 1 10.000 10.000 0. 000 | x,y,2z
6 0 0 1 20. 000 10. 000 0. 000
| coor di nat es |
0 | nunber of inclined boundary
condi tions|
1 3 |l oad case
1, 3 | oads|
5 2 -5000.0 | node 5, y dir.,
-5000 val ue|
6 1 2000.0 | node 6, x dir.,

DEFORMED
GEOMETRY
Maximum
Displacement

X 0.017500
Y -0.037690

Figure 2-7. Truss Structure Deformed Shape

2.12. We see that members 4, 6, and 9 have compressive axial loads. If we
use the Euler buckling equation we have to know more than just its elastic
modulus and cross-section area. We also must know its cross-section shape
to find the area moment of inertia and the end conditions. If we assume
pinned end conditions and the cross-section shape is a solid circular rod
then the buckling loads for these elements would be 19250, 38500, and
19250 respectively. Thus, we also have a reasonable factor of safety
against buckling.
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Table 2-2. Results Data File for Truss Structure Model
|

DI SPLACEMENTS
NODE X- DI SP Y- DI SP Z- DI SP
1 0. 000000 0. 000000 0. 000000
2 0. 005833 - 0. 035436 0. 000000
3 0. 011667 -0. 037694 0. 000000
4 0. 017500 0. 000000 0. 000000
5 0. 015233 - 0. 035436 0. 000000
6 0. 008091 -0. 037694 0. 000000
STRESSES I N TRUSS ELEMENT
GROUP 1
ELEM # FORCE STRESS
1 7000. 17500.
2 7000. 17500.
3 7000. 17500.
4 -7071. -10102.
5 0. 0.
6 -5000. - 7143.
7 0. 0.
8 0. 0.

Axial Stress

123 4567 89

Blement Number

Axial Stress
Levels

1 3500.
2 7000.
3 10500.
4 14000.
5 17500.

Figure 2-8. Truss Structure Member Stresses
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2.6 Closure

There are few situations in mechanical design where a truss element is the
right element for modeling the behavior. Itisasimple element with which
to discuss and learn finite element concepts. It may make an important
contribution to the analysis by use as a boundary supporting spring or a
gap element that connects two or more separate parts of a machine that
must interact in the analysis. Therefore, the engineer must understand its
nature well to interpret its effect on the overall response of any analysis
that includes truss or truss-based elements.

Problems

2.1 A three-member truss structure is shown in Figure P2-1 with corre-
sponding node and element numbering for a finite element model.
Elements 1 and 2 are aluminum, and element 3 is steel. The cross-
section areas are 1.5 sq. in. for element 1 and 1.0 sq. in. for elements
2 and 3. Determine the displacement of node 2 and the stresses in
each member. Solve by use of a computer program and by hand
calculation. Report in a neat and concise informal engineering
communication. Please include the hand-calculated struc-ture
stiffness matrix in its full (8-by-8) and reduced form.

y 8000 Ib. lF
4 1 | _40000m. 30"
HON®,
(2] 40 in. e
10’
® ) § g
L 20i L »
20 in><—30 in— F‘IO'T‘ 30"
Figure P2-1. Figure P2-2.

2.2 Design the derrick structure shown for a load capacity of 20 kips.
Choose a suitable steel and, using a factor of safety of 4.0, determine
the cross-section area for all the members. Recommend a cross-
section shape that will prevent any member from buckling.
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Design a cantilevered boom to support the loads shown in Figure P2-
3. All members are steel with a cross-section area of 1 sq. in. The
material has an allowable stress of 20 kpsi. First determine if the
design is satisfactory as illustrated. Next redesign the structure
within the geometric boundaries shown and the same allowable
stress. A redesign may change the member arrangements, eliminate
members, or change cross-section areas. One of the redesign goals
should be to reduce the overall weight of the structure. Determine
a suitable cross-section shape to prevent buckling for each member
in compression.

. | 120008,
"\ 15,000 .
1f" 45°
/,
f
18"
|

‘<’ 30" ‘4(' 18"—><— 22" —
Figure P2-3.

2.4 Repeat Problem 2.3 for the boom in Figure P2-4.

7

T

1 5"

i

15"

!

l 25 n l 25 n )4 15" x
20°—\ 30,000 Ib.

Figure P2-4.
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CHAPTER 3

BEAMS AND FRAMES

Application of straight beam theory readily solves simple beam problems
especially if the problem is statically determinant. If the beam is not
particularly simple, in that it may have cross-section changes, multiple
supports, or complex loading distributions, then we can use beam theory,
but it is very tedious to develop the solution by hand. Also, many 2-D or 3-
D framework structures may require solutions in which the truss member
assumption is inadequate and therefore needs the beam flexure formula-
tion. Further applications may include beam members as re-inforcement
members in combination beam, plate, and shell structures. These
applications are readily attacked with the finite element formulation.

3.1 Element Formulation

Here we follow the direct approach for formulating the element stiffness
matrix [3.1]. The element equations relating general displacement and
force components are given by

[kl{d} = {f} 3.1)

where [Kk] is the element stiffness matrix, {d} is the node displacement
component column matrix, and {f} is the internal force component column
matrix. The stiffness matrix terms derive from superposition of simple
beam solutions. Apply aunitdisplacement of one component with the other
components held to zero and evaluate the magnitude of resulting force
components. For example, taking the element shown in Figure 3-1 and

28
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applying a unit vertical displacement v, with ¢, = v, = ¢, = 0 results in the
deformation illustrated in Figure 3-2.

M,.(F,1 |) "

Figure 3-1. Beam Element

v, =1
@M,

Figure 3-2. Deformed Beam Element

The forces shown, which are the superposition of the solutions for a
cantilever beam with an end load and an end moment, produce this
deformation. The superposition is done to yield a unit value of lateral
displacement with a zero slope at the end. The element equations written
in matrix form yield equation (3.2), which in turn yields the relations in
equation (3.3).

IO r (3.2)
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kiy =Fiy Ky =My, Ky =F;,and k,; =M (3.3)

Using superposition of beam deflection equations available in any
mechanics of materials text, we write equations (3.4). Solve these
equations for the values of F; and M, in equations (3.5).

L F,L® M,L?
V. = = - _ !
: 3EI 2EI

F,L?
2El  EI

(3.4)

(3.5)

Use static equilibrium equations to get the values of F; and M; in equation
(3.6).

12EI _ 6EI
I M = — (3.6)

F, -

We now have all the terms of column 1 of the 4x4 element stiffness
matrix as shown in equation (3.7).

[ 12E]1

[k] = (3.7)
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Similarly applying a unit value of rotation for ¢, and fixing all other
components to zero, we derive the force and moment values in Figure 3-3.
These come from superposition of the same solutions for end load and
moment to satisfy the displacement conditions.

@ =1

-6EIN? 2EI/L

VAN E:
AEIL

Figure 3-3. Deformed Beam Element

Notice that the sign convention employed here is common in the finite
element formulation such that the component's sign always agrees with the
positive direction of a right-handed coordinate system. This does not agree
with most beam sign conventions employed in mechanics of material texts.
Therefore, the user should be aware that the output components will
normally be expressed using this finite element sign convention. This
means, for example, that a positive value of moment at the first node of the
element will produce a tensile stress at the top surface of the beam. In
contrast, a positive moment on the second node will produce a compressive
stress at the top surface of the beam.

Obtain the remaining terms in the stiffness matrix by application of the
same procedures to the second node. The final element stiffness is then
given in equation (3.8).

[ 12EI  6ElI  12El  6EI |
L3 L2 L3 L2
6EI  4El  6EI 2EI
L2 L L? L
K] = (3.8)
_12El1 _6ElI  12ElI  6EI
L3 L2 L3 L2
6EI 2EI  6El  4EI
L2 L L? L
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Thisformulation provides an exact representation of a beam span within
the assumptions involved in straight beam theory, provided there are no
loads applied along the span. Therefore, in modeling considerations, place
a node at all locations where concentrated forces, or moments, act in
creating the element assembly. In spans where there is a distributed load,
the assumed displacement field does not completely satisfy the governing
differential equation; therefore, the solution is not exact but approximate.
One approach to modeling in this area is to make enough subdivisions of
the span with distributed load to lessen the error. If awork equivalent load
set acting on the nodes replaces the distributed load, then the influence of
any error in this element will not propagate to other elements. In other
words, the displacement components at the nodes will be correct if we use
the equivalent load set. The equivalent load components for a distributed
load on the element span are the negative of the end reaction force and
moment found in the solution of a fixed end beam with the same distrib-
uted load as shown by Logan [3.2].

This formulation provides the ability to analyze simple beams, but does
not account for the axial load that may exist in beam members connected
in aframework. By adding the truss element formulation by superposition
with the previous formulation, we have an element that can support both
lateral and axial loads. The axial stiffness terms at each node are added
to the element stiffness matrix formulation to create the frame element
stiffness matrix in equation (3.9).

AE 4 4 AE
L L
0 12El1  6EI 0 12ElI
L3 L? L3
0 6EI 4EI 0 _ BEI
L2 L L2
K] = (3.9)
AE o AE
L L
o _12El _GEI 0 12EI
L3 L? L3
0 6EI 2EI 0 _ BEI
L2 L L2

This assumes that superposition is valid for this case. If displacements
are small it will be accurate; however, there is an interaction that occurs



Section 3.2 The Finite Element Model 33

between axial and lateral loading on beams. If the axial load is tensile it
reduces the effect of lateral loads, and when the axial load is compressive
it amplifies the effect of lateral loads. To gain further information on this
interaction, consult an advanced mechanics of materials text [3.3] for the
equations that apply to members called beam-columns or struts. The
equations for these members are a nonlinear function of the size of lateral
displacement. Therefore, a linear analysis cannot account for the effect.

The user should be aware of this consideration. Remember that if the
axial load is tensile, the results from beam elements will be higher than
they actually are; thus results are conservative. Also, if the axial load is
compressive, the results will be less than actual and may be in serious
error. Thesize of error associated with the compressive loading is normally
quite small until the axial load exceeds roughly 25 percent of the Euler
column buckling load. In most cases a design should have a factor of safety
against buckling greater than four anyway.

Now the formulation includes the u and v displacement components and
the section rotation at the nodes in the element local coordinate system.
Using the coordinate transformations developed for truss members, we may
orient this two-dimensional beam element in 2-D space. Through this
transformation, then, the element formulation applies to any 2-D frame-
work.

3.2 The Finite Element Model

In planning the mesh for a structure to be modeled with beam elements,
the factors just revealed in element formulation provide guidance about the
proper element subdivision and connections. Since the element formulation
is exact for a beam span with no intermediate loads, then we need only one
element to model any member of the structure that has constant cross-
section properties and no intermediate loads. Where a span has a
distributed load, we may subdivide it with several elements to lessen the
error depending on the solution accuracy desired.

There should be a node placed at every location in the structure where
a point load is applied. Also, where frame members connect such that the
line element changes direction or cross-section properties change, we should
place a node and end an element at that point. Remember that the
connection of two or more elements at a node guarantees that each element
connecting at that node will have the same value of linear and rotation
displacement components at that node. Physically, think of this as a solid,
continuous, or welded configuration.
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3.3  Output Processing and Evaluation

A complete printout, or listing file, lists a reflection of model input data, the
displacement results including rotations, and output of stresses resulting
from moment, axial, and shear forces. The graphical presentation of the
deformed shape ideally would use the rotations at the nodes with the
assumed displacement shape function for the element to plot the actual
curved shape the elements take when loaded. However, most programs
only plot the deformed shape using the node translation displacements and
straight line connections to represent the elements. In this case it is
difficult to determine from the graphic if we applied the rotational
boundary conditions. In order to check boundary conditions and get a
smooth visualization of the deformation curvatures, the user may resort to
remodeling with several element subdivisions within each span.

The stresses in 2-D beam elements consist of a normal stress acting
normal to the beam cross section and a transverse shear stress acting on
the face of the cross section. The normal stress comes from superposition
of the axial stress that is uniform across the section with the bending stress
due to the moment on the section. This combination will result in the
maximum normal stress occurring either at the top or bottom surface. The
transverse shear stress is usually an average across the cross section
calculated by the transverse load divided by the area. This obviously does
not account for the shear stress variation that occurs across the section
from top to bottom [3.3]. The transverse shear stress must be zero at the
top and bottom surfaces and has some nonuniform distribution in between
that is a function of the cross-section geometry. This variation is usually
of minor importance, but the analyst may calculate it if desired.

Most of the available finite programs do not make graphical presentation
of the beam stress results. So it reverts to the engineer to evaluate the
stress output usually based on values from the printout listing. The
engineer also must check for Euler buckling in members that have an axial
compressive stress. If the factor of safety against buckling in these mem-
bers is less than about 4, then the stresses may need correction for the
interaction between the axial and flexural stress in that member.

3.4 Case Study

We show a simple beam structure in Figure 3-4 with two different cross
sections and two loads. It has simple supports, and we develop a mesh plan
in Figure 3-5 with five nodes and four elements. The model input data list
isin Table 3-1. The title line is first with the control data line next. Node
definition begins with its number, then boundary condition restraints and
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coordinate locations following. The z boundary condition for the 2-D beam
element applies to the rotation degree-of-freedom. All the z boundary
conditions are free in this model.

7/ /7

Figure 3-4. Simple Beam with a Cross-Section Change and Two
Loads

D — Element

Figure 3-5. Finite Element Model of the Simple Beam

Load specification consists of the node number of application with the
load direction and magnitude. The type of element is a beam. The
material data is shown with two table entries. Entry 1 has a modulus of
elasticity for steel with a cross-section area of 0.4 in?, moment of inertia of
0.04 in*, and distance from neutral axis to the surface of 0.5 in. Entry 2 is
aluminum with a cross-section area of 0.7 in?, moment of inertia of 0.06 in®,
and distance from neutral axis of 0.75 in. The element definitions are given
by the entry of two node numbers at the endpoints of the element with a
material table assignment.

Following execution of the program, the deformed shape plot appears in
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Table 3-1. Input Data File for Beam Model

*rxxxkkkkkx| notes inside vertical bars are for data expl ana-

tion only|
Beam Case Study
|title line|

5 1 1 | 5 nodes, 1 elenent group, 1
| oad case|

1 1 1 0 0. 000 0. 000 0. 000 | node
nunber, |

2 0 0 O 5. 000 0. 000 0. 000 | x,vy,z
boundary |

3 0 0 O 8. 000 0. 000 0. 000 | condi -
tions |

4 0 0 O 10. 000 0. 000 0. 000 | O-free,
1-fixed|

5 0 1 0 15. 000 0. 000 0. 000 | x,y,z
coord |

0 | number of inclined boundary
condi tions|

1 2 |l oad case 1,
2 | oads|

Figure 3-6, and the results printout is in Table 3-2. In this table the z
displacements are the angular rotations of the nodes. The axial stress is
the value from any axial load acting on the element. The flexure stress is
due to the resulting bending moment and is the value on the beam top
surface when the element definition has nodes | and J arranged left to
right. The average shear stress is simply the transverse shear load divided
by the cross-section area. The shape of the cross section determines the
actual shear stress distribution across the beam height. Finally, a bar
graph display of the beam element stresses is given in Figure 3-7.

DEFORMED
GEOMETRY
Maximum
Displacement

X 0.0000
Y -0.0316

e e

Figure 3-6. Deformed Shape of the Simple Beam

These results show that while the finite element method provides
solutions as valid as straight beam theory will allow, there has been no
accounting for stress concentration effects where the cross-section change
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Table 3-2. Results Data File for the Beam Model
|

DI SPLACEMENTS
NODE X- DI SP Y- DI SP Z- DI SP
1 0. 000000 0. 000000 -0. 006026
2 0. 000000 -0. 025789 -0. 003422
3 0. 000000 - 0. 031555 -0. 000484
4 0. 000000 -0. 028968 0. 003016
5 0. 000000 0. 000000 0. 007182
STRESSES I N BEAM ELEMENT
GROUP 1
ELEM AXI AL FLEXURE STRESS AVG SHEAR
# STRESS NODE | NODE J STRESS
1 0. 0. -15625. 625.
2 0. -15625. -13750. -125.
3 0. -13750. -12500. - 83.

5-
Axial + Flexure
Stress Levels
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Figure 3-7. Beam Element Stress Display

occurred. The designer's job here is to take the results from these analyses
and then do more detailed modeling of the exact configuration where the
cross-section change occurred to evaluate the potential for failure at that

location.



38 Chapter 3 Beams and Frames

35 Closure

The use of beam elements in models provides the engineer with the
opportunity to solve rather complex beam structures or frameworks that
could not easily be done with conventional approaches. It also can include
the effects of the stiffness of supporting structures through connection with
truss elements or beam elements selected to approximate the support
stiffness. In the case of statically indeterminant structures where the
supports might have different stiffnesses, the finite element model will
provide much better solutions than we can get by conventional approaches.
It also can provide the loading that exists at localized areas where cross-
section changes or member connections occur. Then we can use the loading
in much more detailed models of those regions.

Problems

3.1 The structure shown in Figure P3-1 has a horizontal steel beam
welded to a rigid column on the left and simply supported on the
right end. There is also a steel rod with pinned attachments to the
column and the beam providing support for the beam. The beam
cross section is shown on the right, and the rod diameter is 25mm.
Evaluate the effectiveness of the steel rod for reducing stress in the
beam by analyzing models with and without the rod and comparing
results.

:

2
/ B 100 mm
é 1.0mL B
<—1.5m
~=—3.0m

Figure P3-1.

3.2 Curved beams can be approximated by a group of straight beam
elements. Opposed diametral forces load the thin circular ring in
Figure P3-2. Use symmetry and determine the number of elements
required to achieve 5 percent accuracy for the maximum momentand
the displacements along and perpendicular to the loaded diameter.
Assume that the thickness, t = r/10, and that the cross section of the
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3.3
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ring is square. The maximum moment and radial displacements are
given by

3 3
Ma:ﬂ ,5a:P_rn_§ 5b:_P_rﬂ_1
T 8EI T 4EI\ =

where a is the diameter parallel to the loads, and b is perpendicular
to the loads.

Analyze the bicycle frame design sketched in Figure P3-3. Use a
vertical load of 150 Ib. at the seat location and 25 Ib. at the handle-
bar location and apply a load factor of 2.5 for inertial loading.
Assume for the first analysis that all the members are tubular steel
with a 1-in. outside diameter and 0.062-in. wall thickness. From the
first analysis, determine if any yield failures are likely if the
material is a high-carbon steel with a yield strength of 110 kpsi. If
yielding will occur, refine the design by replacement of highly
stressed members with a more substantial section or by altering the
design layout to eliminate yield failures. If the frame is
overdesigned, refine the design to reduce weight. Do the deflections
seem excessive? Is there a specific location that seems to be too

flexible?
31"
<10">

3 ;

. =< 36"

Figure P3-2 ;;7;;7/ V/////A
Figure P3-3.
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CHAPTER 4

TWO-DIMENSIONAL SOLIDS

While the finite element method is very helpful for the solution of truss,
beam, and frame problems, the real power of the method shows in
application to two- and three-dimensional solid analysis. There are very
few closed form solutions to two-dimensional problems, and they are only
available for simple geometries and loading conditions. The finite element
method, on the other hand, if correctly applied, can provide the solution to
most any two-dimensional problem. The correct application is of prime
importance, and the analyst makes decisions involving the layout and
planning of the model to represent the member under analysis. The correct
application must be done to limit solution errors.

Equations derived in theory of elasticity govern the solution to problems
in two dimensions. The finite element formulation must satisfy, at least
approximately, the relations among displacements, strains, and stresses to
find a solution for general two-dimensional problems.

4.1 Element Formulation

There are two shapes of elements used in two-dimensional analysis: the
triangle and the quadrilateral. The two basic element shapes may be
linear elements or quadratic elements, where linear and quadratic refer to
the order of the assumed polynomial displacement interpolation function
used within the element area. The linear triangle is the simplest and was
the first two-dimensional element developed. Analysts do not use it much
now because it requires many more elements to produce a converged and
accurate solution compared with the quadrilateral. However, we still
examine its formulation both for academic purposes and for its occasional

40
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use in coarse to fine mesh transitions for refining models.

The triangular elementillustrated in Figure 4-1 defines an area bounded
by the three sides connecting three node points. Within the element area
the displacement function is assumed to be of the form in equation (4.1),

U=a; +a,X +azy
(4.1)
V =a, +aX+ agy

where u and v are displacement components of a material point within the
element field, x and y are coordinates of the point, and a,, i=1,2,...6, are
constant coefficients to be determined. This is a linear distribution of the
two displacement components for any material point within the element
area. The linear function has three undetermined coefficients for each
component, and since we have three nodes we may evaluate the three
constants by use of the node point values of each component.

©,

©)
®

X

Figure 4-1. Triangular Two-Dimensional Finite Element

Application of the strain-displacement equations to the expressions for
u and v illustrates that all three strain components are constant within the
element for this assumed displacement field as derived in equation (4.2).

au
o
6y=5=ae 4.2)
au ov
yxy:_+_:a3+a5
o X

Also, for homogeneous material throughout the element, the stress-
strain relations are all constant; therefore, the stress components are also
constant.
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This displacement formulation also satisfies the compatibility require-
ments in the theory of elasticity [4.1] for the continuum. The compatibility
requirements are that no gaps or overlaps of material may occur during the
process of deformation under load. From these equations, we can see that
the continuous nature of the function enforces compatibility within the
element. On a triangular element, since the interpolation is linear, any
edge formed by connecting two nodes that is a straight line before
deformation will remain a straight line after deformation. Therefore, any
connecting element using the same two nodes for its shared edge satisfies
compatibility.

Some of the early finite element programs [4.2] used the triangle
element to create a quadrilateral element by subdividing a quadrilateral
shape into four triangles using the centroid of the quadrilateral as their
apex. After finding the stiffness matrix for each triangle element, assembly
of the triangles and condensation of the internal node resulted in the
stiffness matrix of the quadrilateral element. This was an effective way to
use the triangular element formulation and employ many more elements
without tedious input. However, the element of choice now is an
isoparametric quadrilateral formulation.

Next we examine the displacement basis for formulation of the isopara-
metric quadrilateral element. Taig [4.3] developed the element, and Irons
[4.4] published its formulation. The quadrilateral element formulation
derives from the formulation of a square element. It uses a co-ordinate
system transformation to convert the square to a quadrilateral. Begin with
the square element shown in Figure 4-2 with corner nodes.

® ®

.
® ©)

X

Figure 4-2. Square Two-Dimensional Finite Element

Recognizing that four constants can be evaluated with four nodes, a
logical expression for the displacement function components becomes
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U =a; +a,X+agy + a,Xxy

4.3)
V =a; + agX +ay + agXy .
Use of the strain-displacement relations here shows that
€, = a, +a,y
€, = a; + agX (4.4)
Vg = 83 + 34X + @5 + gy .

These equations show that the strain approximation within the element
allows ¢, to be a linear function of y and ¢, to be a linear function of x, while
Y« Is @ linear function in x and y. So by the addition of one node we have
gained a much better approximate solution within the element field for the
general case where the strains vary with both x and y throughout the
structure domain. Since the stress-strain relations are constant, the stress
components may vary similarly within the element field.

Also, in this case the function satisfies compatibility within the element
because the function is continuous. Along the element edges for x =
constant or y = constant the displacement takes a linear form, and thus
remains a straight line between any two of the corner nodes. Therefore
element connections to other elements satisfy compatibility as long as
corner nodes of one element connect to the corner nodes of the adjacent
element. Connection of two adjacent elements to a third element such that
the edge of the third element spans two of the adjacent elements’ edges, as
shown in Figure 4-3, violates compatibility.

X

Figure 4-3. Two-Dimensional Element Compatibility Violation
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Before continuing the discussion of the square element, make a change
of coordinate systems to transform the square into a quadrilateral shape.
Square elements can geometrically model very few structures. A co-ordinate
transformation from x,y to £ n produces the quadrilateral element sketched
in Figure 4-4. We call the element an isoparametric quadrilateral because
the same interpolation functions (parameters) used to define the displace-
ment field define the geometric transformation.

X

Figure 4-4. Two-Dimensional Quadrilateral Element

4.2 The Finite Element Model

The model plan should begin by choosing the type of element for use. The
linear triangle element can easily develop into a mesh inside almost any
arbitrary geometry. However, to produce accurate results there must be
many of these elements in the model.

In the line element models we have covered thus far, there was little
reason for element subdivision other than to define the geometry of the
structure. However, two-dimensional cases require element subdivision to
achieve an accurate solution. Since element subdivision is required and the
exact solution is unknown, a sequence of models with successive mesh
refinement is proper. Mesh refinement by further and further subdivision
using compatible elements converges to the exact solution. This procedure
is known as h-convergence because h is a common symbol for step size in
numerical operations, and its reduction leads to convergence.

Reaching a refined solution by increasing the order of polynomial
approximation within the element is another way to achieve convergence.
This has become known as p-convergence. A direct conversion of a linear
element mesh to quadratic elements will yield a more accurate solution.
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This is the first step in the p-convergence method for numerical convergence
on the correct solution. The user may easily use h-convergence by successive
model building in all finite element programs. However, there are usually
only linear and quadratic order elements in the element library of most
programs that limit the pursuit of p-convergence. There are several new
commercial codes becoming available now, and a recent text by Szabo and
Babuska [4.5] provides good coverage of the p-convergence method theory
and application.

In planning the mesh, try to use symmetry whenever possible. The
advantages include a reduction of labor of model input, reduction of
computer time and cost, and a decrease in computer round-off error in the
equation solution because fewer equations exist in the model. There are
some drawbacks. Sometimes it becomes more difficult to picture the model.
Also, peak stresses may occur along symmetry lines and make it difficult to
locate elements properly to show the peak.

Recognize symmetry in two-dimensional objects by observation of
geometric patterns that may occur. These may develop by incrementing
plane sections, rotating sections about an axis, periodically rotating sections
about an axis, or by reflecting a section about a plane. For the symmetric
model to provide a solution, the load distribution must also be symmetric on
the object. In some cases, we can find solutions for anti-symmetric loading
conditions on symmetric objects by proper imposition of displacement
boundary conditions.

Displacement boundary conditions enforce symmetry by restricting node
points that lie on lines of symmetry to motion along the line of symmetry.
For example, look at the simply supported beam with central load in Figure
4-5. It has a vertical plane of symmetry at coordinate x = 0.

Figure 4-5. Simple Beam with Central Load

When the load applies, the beam will deflect downward and the displace-
ment of every material particle in the right half will be a mirror image of the
corresponding particle in the left half. So if the body is symmetric before
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loading, it is also symmetric after loading. Then we only need to model one
half of this beam. If we take the right half, then the outline of the model is
in Figure 4-6. The model load reduces by one half because each half of the
beam carries its share. The node points that lie on the plane where x=0 are
restrained against x-direction motion, but left free to move in the y direction.

Nl

Y
x

Figure 4-6. One-half Simple Beam Model with Central Load

In a 2-D model, rigid body motion could occur by x translation, y
translation, or rotation about the z axis. Examine the displacement
restraints applied for symmetry and support conditions, and determine if
these restraints will automatically prevent these three rigid body motions.
If not, then we need to apply additional boundary conditions to assure that
rigid body motion does not occur. If there is a possible rigid body motion and
a net external force acting on the body in that direction, then we have not
recognized all the support restraints because the body is not in static
equilibrium. If there is no net external force, then we may select any single
node location for restraint to prevent that motion.

For example, in the simply supported beam in Figure 4-5, assume we
model the whole beam and the only restraints are vertical fixed displace-
ment at the two support points. Then the body would be free to move in the
x direction with a rigid body translation. To prevent this motion, select any
node and apply one x-direction restraint. This one restraint is adequate to
prevent rigid body motion. In fact, applying more than one restraint
artificially prevents the structure from displacing normally and therefore
falsifies the solution. Application of displacement restraints to preventrigid
body motion should not induce any stress conditions in the body.

4.3 Computer Input Assistance
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At this point, the analyst should have roughly defined the model. In two-
dimensional analyses, we want to develop an adequate subdivision within
the area defined by the geometrical boundary. For simple geometries and
loadings, typically a regular array of elements will be suitable and are not
very difficult to create with simple replication schemes. However, for more
complex geometry involving hundreds or thousands of elements, we need the
aid of an area or two-dimensional mesh generator. Most programs provide
a mesh generation capability in their preprocessor.

One approach for irregular areas is to perform a coordinate transforma-
tion mapping from an approximate fit of squares in an integer geometry to
the actual physical geometry. This mapping may be done by laying out a
rough equivalent of the actual geometry in an integer space where each
square in the integer space corresponds to an element. This procedure is
illustrated in Figure 4-7.

X i

Figure 4-7. Two-Dimensional Mapping Mesh Generation

Sides in the integer geometry correspond to sides in the actual geometry.
Sides in the integer geometry must be horizontal or vertical, while sides in
the actual geometry can be either straight or curved line segments at any
orientation. Correspondence of the closed boundary of the actual geometry
with the closed boundary of the integer geometry sets up the mapping. Use
of the difference equations, that result from a finite difference approximation
of the Laplace equation, determines the interior node locations.

The interior locations result from an iterative solution beginning with a
linear interpolation between boundary nodes. Sometimes, in areas of
sharply concave boundaries of the actual geometry, linear interpolation of
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nodes may fall outside the boundary and may not pull back inside the
boundary with the iterations. Therefore, the user must examine the
generated mesh carefully before proceeding to make sure the mapping was
successful. Additional examples of this type of mesh generation are shown
in Figure 4-8. In this approach, the user usually has some control over the
resulting bandwidth and wavefront by selection of starting location and
direction for node and element generation.

C)
Figure 4-8. Other Mapping Mesh Generation Examples

4.4  The Analysis Step

In most two-dimensional analyses, there are many more nodes and elements
used than with truss, beam, and frame models. Therefore, there is more
potential for error in both the analysis execution errors and overall
numerical precision errors. If we checked the model thoroughly in the
preprocessor, then we should have caught most execution errors. Execution
errors arise by not preventing rigid body motion in the model, improperly
defining any element, entering incorrect material and physical properties,
and many other factors. The error messages presented by the program
usually identify these errors rather easily when they occur.

Numerical precision errors may come about through element distortion,
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Figure 4-8. (Continued)

element compatibility violations, and stiffness matrix ill-conditioning caused
by large differences in stiffness values of elements [4.6]. Examples of severe
element distortion of quadrilateral elements are shown in Figure 4-9.
Ideally the elements would remain close to square shape. High aspect
ratios, large differences in side length, and very small or large inside angles
all contribute to numerical precision errors. In fact, inside angles greater
than 180 degrees may cause negative stiffnesses. Most commercial
programs will check the element distortion and issue warning messages or
cancel execution if the distortion is too high.

Even though most two-dimensional element formulations guarantee
satisfaction of the compatibility requirements in theory of elasticity,
modeling errors may still violate compatibility. Some of these are illustrated
in Figure 4-10.

To satisfy compatibility in corner-noded elements, each element side may
only join to a side of one other element. For elements with midside nodes,
each must connect to another element at the corners, and all three nodes on
a side must connect by use of common nodes.

The solution accuracy in two-dimensional analyses is very dependent on
the user's ability to evaluate the results and produce a numerically
converged solution. In the truss and beam elements, the element formula-
tion was exact, and therefore there was no concern about interpolation
accuracy. However, these two-dimensional elements require numerical
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Figure 4-9. Severe Element Distortion

(@) (b)

(© (d
Figure 4-10. Model Compatibility Errors

convergence. We accomplish this convergence through careful evaluation of
the output and refinement of the model.

4.5 Output Processing and Evaluation

Completion of the analysis run will produce a listing file and data files for
graphic postprocessing. As mentioned before, scan the printout file for
errors in interpretation of input data. The data that represent element
selection and options, analysis conditions, material and physical properties,
and these types of data are relatively easy to scan. Obviously, we cannot
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easily check the lists of node point and element definitions.

Graphic display of two-dimensional data results is necessary to have any
chance at making a complete evaluation. Display graphics will be useful for
overall checking of model response as well as location of critical areas. This
allows examination of the detailed listing file for specific and accurate values
in these critical areas. The deformed shape plots have an exaggeration
factor adequate to see the deformation. Check boundary condition
enforcement, and make a visual judgment as to whether the deformation
agrees with the expected response. In some cases, the exaggeration factor
may need to be very high to understand fully how the structure is respond-
ing. It may help to visualize the shape you would expect if the material of
the actual structure were very soft and easily deformed.

Postprocessors normally present stress results in a contour plot form with
a range of stress levels. In examining the plots we can make some simple
checks. The boundary conditions of the problem require that any stress
component perpendicular to a free surface must be zero. Any stress
component perpendicular to a pressure-loaded surface must equal the
pressure value. Where a plane of symmetry exists, the stress contour lines
should become normal to the symmetry boundary. There should not be any
abrupt changes in contour line direction and it should be continuous. The
plot should have expected or understandable shape and location of peak
values. These plots result from stress component values at the node points.
However, in general, the values at a node common to several elements will
not be equal. So there must be some manipulation of the computed stresses
to produce these contour plots.

Upon examination of the stress contours, the user must make some
judgment about the validity of the solution. With only results from one
model, we can never be sure that we have a converged or accurate solution.
The plan is then to produce multiple models using more refined meshes until
the solution has converged. The two-dimensional elements presented in this
chapter have mathematically guaranteed convergence to the exact solution
as the element size approaches zero. Itis then appropriate to run multiple
solutions with refined meshes to estimate when the convergence has
occurred.

Although the individual stress components may be of interest, the failure
criterion should not be the maximum normal stress theory for ductile
materials. Its use can result in serious error when the minimum normal
stress is of the opposite sign. The maximum shear stress failure criterion is
accurate, but be sure to use the true maximum shear stress and not just the
maximum in-plane value. The Von Mises equivalent stress based on the
distortion energy theory is considered to be the most accurate for ductile
materials. If the material is brittle or a composite or some other class of
material, then the user must determine what failure criterion is proper to
use for the given material.
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4.6  Case Study

The case study analyzes a flat bar in tension with a central hole as a typical
stress concentration problem. We will analyze this case with the finite
element method and compare the results with the theoretical stress
concentration factor. The geometry is shown in Figure 4-11. By taking
advantage of symmetry, a one-quarter shaded section of the bar defines the
model geometry.

Figure 4-11. Flat Bar with a Central Hole in Tension

The plan for the first finite element model shown in Figure 4-12 has a
more refined mesh near the hole because the stress is naturally higher in
that area with steeper slopes of change. Displacement restraints apply to
the vertical symmetry edge to prevent displacement in the horizontal
direction and to the horizontal symmetry edge to prevent displacement in
the vertical direction. Node forces calculated and distributed on the right
edge provide a uniform stress there of 1 kpsi.

VVVVY
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A A A A A JAY .
Figure 4-12. First Finite Element Model
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After running the analysis, a contour plot of the x-direction stress
component appears as shown in Figure 4-13. The contour lines labels
correspond to the legend on the left. The element outlines are also shown.
The maximum level occurs at the edge of the hole as expected. A clearer
view of this region is shown in the enlargement of Figure 4-14. As
mentioned before, the finite element method gives an approximate, not an
exact, solution. An estimate of the error in the analysis is the range of stress
change relative to the average element value across an element. In this case
the corner element includes contour levels from 6 to 9 with a total range of
about 1500 psi, or about 750 psi from the average. The estimated error is
23 percent.
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Figure 4-13. Contour Plot of the X Stress Component
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Figure 4-14. Zoom View of the X Stress Contour Plot
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This error margin is large, so we should refine the model. A second model
produced was still not sufficiently accurate, so we created a third model.
This model is shown in Figure 4-15, and it is much more refined around the
hole. The zoom view of the x stress component is given in Figure 4-16. We
now have a stress range in the corner element of about 700 psi, or about 350
psi from the average, for a 9 percent estimated error. The maximum value
at the edge of the hole is 4300 psi. The nominal or average stress on the
reduced area section at the hole is 2000 psi which gives a stress concentra-
tion factor of 2.15. The theoretical stress concentration factor is 2.18, so the
actual error is only -1.4 percent.
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Figure 4-15. Third Finite Element Model
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Figure 4-16. Zoom View of the X Stress Contour Plot (Third Model)
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4.7 Closure

The application of the finite element method to two- and three-dimensional
problems is where its power is really useful. There are very few closed form
solutions to these problems, especially for any but the simplest of geome-
tries. As shown by this case study, the engineer can reach a very accurate
solution by application of proper techniques and modeling procedures. The
accuracy is usually only limited by our willingness to model all the
significant features of the problem and pursue the analysis until we reach
convergence.

Problems

4.1 Show the convergence of finite element models of a simply supported
beam with a uniformly distributed load. Refine meshes to determine
the maximum displacement and maximum stress within about 5
percent accuracy. Use a beam length of eight times its height and a
unit thickness. Perform the study using each of the following element
types if available in the computer program:

(a) linear triangle,
(b) linear quadrilateral,
(c) parabolic triangle, and
(d) parabolic quadrilateral.
Referring to Figure P4-1, the flexural stress and the center
deflection including shear deformation are listed in the following

equations.
q
o, - B2 by by by by er
4bc? T x
5 - 5gL* | 3qL*(1+v) - ¢
16EDbc?3 5Ebc —L y L i
Figure P4-1.

4.2 A machine member illustrated in Figure P4-2 carries an end load.
Simple beam equations furnish the nominal flexure stresses in this
member but do not account for stress concentration effects. Deter-
mine the stress concentration factors for the two underside radius
locations. How do these compare with the values found for similar
geometries in many mechanics of materials or machine design books?
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1000 Ib
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Dimensions in inches.
Figure P4-2,

4.3 Analyze the two tensile bar configurations shown in Figure P4-3.
Compare your results with published stress concentration factors. Is
there a significant interaction effect between the two geometrical
discontinuities for the bar in (b)?

1000 b T 1.0in. dia. 1000 Ib
- —+

- |
@

|

0.5in. rad.

1(IX)IbT \M%Tmomb
-— + - —
l < ) 11
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Dimensions in inches. b)
Figure P4-3.

4.4  Analyze the tensile loaded bar with an off-center hole shown in Figure
P4-4. Compare results with the closest published results available.
Make successive models with the hole moving closer to the side and
see if any pattern develops.

- _ 10in. dia. —_—
< —
-~ 2.0 T —
< JL 1.25 —
- i —_—
< 25
- 50 — 5

Dimensions in inches Figure P4-4.
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4.5

Determine the stress concentration factor(s) for the notched bar with
a center hole in Figure P4-5. Compare with published results for the
individual geometries and evaluate any interaction caused by their
proximity. You may wish to evaluate additional values of notch
radius or varying depths of a constant notch radius.

0.3 in. rad.

- ¢ 1.0in. dia. | —>
2.6
D —_—

|
-— 4\ —_—
| 5.0 |
Dimensions in inches. Figure P4-5.
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APPENDIX

This user's guide is written to describe the operation of the FEPCIP,
FEPC, and FEPCOP programs. It assumes the user has been instructed
in use of the finite element method to solve stress analysis problems. The
programs will be described with their capabilities and general sequence of
use for solving a problem. The first-time user should refer to the README
file on the program disk for initial setup. In some parts of this guide the
user is referred to more complete documentation in the file on the program
disk.

These FEPC programs are provided as shareware for educational
purposes. They are copyrighted programs and you are not authorized to
sell or distribute them for COMMERCIAL purposes. You are free to use,
copy, and distribute them for NONCOMMERCIAL uses only if no fee is
charged for use, copying, or distribution. Specifically, the programs were
designed for use by students in university courses.

If you are an instructor and use the programs in a university course, |
would appreciate a simple registration (no fee) of your university, course
name or description, and approximate number of students taking the
course.

If you use the programs for COMMERCIAL purposes, i.e., employed
engineering, consulting, sponsored research, etc., a partial registration fee
to continue the software development would be appreciated. For a full
registration fee, you will receive the latest version, fully dimensioned, to
run on an IBM-PC or compatible with 640K RAM. Please state the current
version number of the software you are using. Send inquiries to:

Dr. C. E. Knight

Professor of Mechanical Engineering
914 Ballard Ct.

Blacksburg, VA 24060

The programs are continually under development and your comments
concerning present features or future enhancements would be appreciated.
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USING FEPC, FEPCIP, AND FEPCOP

FEPC is a program that performs finite element stress analysis of two-
dimensional truss, beam, plane solid, or axisymmetric solid structures.
There are two companion programs. FEPCIP is the FEPC INPUT
PROCESSOR that is used to input and check a model and prepare data
files for FEPC. FEPCOP is the FEPC OUTPUT PROCESSOR that reads
FEPC output data files and produces graphic displays.

The shareware version of the FEPC programs are currently dimensioned
to run in a PC with 640K memory. The dimension limits in the programs
are 600 nodes, 600 elements, 10 materials, 100 points, 30 lines, and 20
arcs. Also, the overall model size is limited in FEPC based on number of
nodes and average nodal bandwidth. For example, 600 nodes with an
average nodal bandwidth of 15, 500 with 18, or 400 with 24 are all
maximum model sizes that can be run in FEPC. Dimension limits of the
automatic mesh generation grid in FEPCIP are 1=25 by J=60. Therefore,
amodel can be built in FEPCIP even within the 600 node and element limit
that is too large to run in FEPC, so plan carefully.

The procedure for solving a problem is to run FEPCIP to create the
model, run FEPC to solve the equations, and run FEPCOP to display the
results. The FEPCIP program presents the user with menus for interactive
input, checking, and storing a model. This creates an analysis file used as
input for FEPC. Running FEPC produces a listing file of printout results
and files of results used as input for FEPCOP. Graphic displays of de-
formed shape and stress plots may then be produced by FEPCOP.

ENTERING THE MODEL IN FEPCIP

Before starting to enter the model, develop a node and element numbering
plan, boundary conditions, and the load placement for the model. With the
FEPCIP.EXE file in the current drive and directory, begin by typing

FEPCIP<CR>

where <CR> means to press the enter or return key. After the FEPCIP logo
appears, the program will continue after a short pause.

The screen will clear and the program will automatically detect the
proper graphics mode for the supported graphics cards.

After making the selection the main menu and graphics windows will
then appear along with a prompt to SELECT A FUNCTION KEY.
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INPUT PROCESSOR FINITE ELEMENT PERSONAL COMPUTER DATE TIME
TITLE:

F1FILES MODEL
F2 MODEL DATA SUMMARY
F3 2D AUTOMSH WINDOW
F4 TITLE

MODEL
F6 CLEAR MEM GRAPHICS
F7 EXIT WINDOW
F8 VIEW OPTS
F9 DSPLY OPTS

SELECT A
FUNCTION KEY

Selection of a menu item by its function key brings up a branch menu for
many of the selections.

Key F1 branches to a menu for recalling a previously stored model,

storing a new model, or adding a title.

Key F2 branches to a menu for entering or editing all data required for

the model.

Key F3 branches to a menu for two-dimensional area mesh generation.

Key F4 prompts the user to input a title for the current model.

Key F6 will clear all the current model data from memory in order to

start entering a new model.

Key F7 exits the program.

Key F8 branches to a menu to change the current view of the model.

Key F9 branches to a menu to change the visibility of entities (nodes,

elements, loads, etc.) or labels (node numbers, element numbers)
on the next redraw of the model.

Every branch menu has a function key selection to return to the previous
menu. Many of the selections on the branch menus will branch to
additional menus. In each case, following completion of tasks on the
current menu, use the previous menu selection to step back through the
menus until the modeling is complete.

The general procedure for entering a model is to use the MODEL DATA
function key to access the menu for selecting the element type, defining the
material properties, defining nodes and elements, setting node displace-
ment restraints, and applying loads. For truss and beam element models,
all the model data are entered from this menu and its branch menus.

Two-dimensional solid models using plane stress, plane strain, or
axisymmetric elements may first use the 2D AUTOMSH selection to
generate the model mesh of nodes and elements. Once the nodes and
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elements are defined, return to the model data menu to complete the model
by material definition, setting node restraints and loads.

The model must be stored on a disk file before exiting the
program. The model data may be saved to disk at any time in the
progress of building the model. Two files are stored for all complete models
under a user-specified filename with file extensions of .MOD and .ANA. If
the model is incomplete only the .MOD file is stored and messages denoting
the data yet to be defined for the .ANA file are displayed. All the current
model data is saved in the .MOD file.

The program operates by using the function keys to select the operation
from the menu. When data is required, a prompt appears on the data entry
line just below the TITLE: header. The user types in the requested data
separated by commas or spaces, followed by the carriage return or enter
key.

When the prompt to detect an entity appears on the data entry
line, a cursor will appear. If a mouse exists and its driver is loaded,
then use the mouse to position the cursor and press the left button
to detect or the right button to abort.

FILES

F1 RCLEN.MOD @ Selecting FILES from the main menu branches to the

F2 STOFN.MOD | submenu on the left. A previously formed and stored

& FN.ANA model may be recalled from disk by selecting F1 RCL

FN.MOD. The user is prompted to enter the filename,

FN, without its .MOD extension. The filename may

include the drive designation and path, but it may be a

F10 PREVMENU = maximum of 20 characters long including the drive

designator characters. DO NOT enter any leading

blank spaces in the input of the filename. If the file
cannot be found, an error message is displayed.

The current model may be stored on disk by selecting
F2 STO FN.MOD & FN.ANA. The model currently in memory will be
stored in FN.MOD assuming no errors. Also, if the model is complete and
ready for analysis, the input file for the FEPC program will be stored in
FN.ANA. If the model is incomplete, the user is given messages indicating
which data are missing. The store operation may be done at any time
during the progressive construction of the model in order to have a place to
restart in case of destruction of the current model data in memory. If the
files FN.MOD and FN.ANA already exist on the disk, they may be
overwritten with the user's consent by the current data in memory each
time the store function is executed.

After completing use of this branch menu, select F10 PREV MENU to
return to the main menu.

SELECT A
FUNCTION KEY
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MODEL DATA

Begin entering a new model by selecting F2 MODEL DATA on the FEPCIP
~ main menu. This produces the branch menu shown
F1ELEM TYPE | pelow.

Eg ',\\IASQ‘EFI)DRE?:P If a truss or beam element model is to be entered, then

raeLempeg | all the model data will be entered from this menu. If a

F5RESTRAINTS two-dimensional solid is to be entered, then all the data
F6 LOADS may be entered from this menu, or the 2D AUTOMSH

selection may be used to generate the nodes and elements

F8 VIEW OPTS for the mesh. Once these are generated they may be
F9 DSPLY OPTS . . . ;

F10 PREVMENU edited from this menu. If 2D AUTOMSH is to be used it

should be done first, or after the element type is selected

SELECT A and material property sets are defined; it will overwrite

FUNCTION KEY any existing node and element definitions.
ELEMENT TYPE

The F1 ELEM TYPE selection displays the list of available elements.
Use the indicated function key to select the element for the model. Only
one element type may be used in a model. After selection the program
returns to the previous menu. See the documentation file on the program
disk for more detailed instructions.

MATERIAL PROPERTIES

The F2 MATL PROP selection branches to a menu for input and query
of material set definition. Up to 10 material property sets may be defined
and should be defined in numerical order. Material property sets may
include some physical properties depending on the element type. Each
element in the model has a material set number associated with it that
defines its material properties. If different material or physical properties
exist in different parts of the structure, then multiple material sets should
be defined before elements are defined so correct assignments may be made
at the time of element definition. See the documentation file on the
program disk for more detailed instructions.

NODE DEFINITION

The F3 NODE DEF selection branches to a menu to perform node
operations. Nodes for truss and beam element models all will be defined
in this section. If the 2D automesh option is used for the 2D plane and
axisymmetric models, then that should be done first and any additional
node operations will be done in this section. Node operations include
definition, generating a row of nodes between two defined nodes, moving,



Appendix 63

deleting, and querying nodes.

A node is defined by its number and coordinate position. A prompt will
appear on the data entry line to input a node. Simply enter the node
number and its X and Y coordinates. The data must be separated by
commas or spaces. All leading blanks are ignored, but do not enter any
trailing blanks. If the node is generated properly, it will be displayed on
the graphics screen if it lies inside the current window. The starting
window is 10 units by 10 units, but it will change automatically if any of
the view options are exercised. Autoscale will resize the window so that all
currently defined nodes fit inside. The prompt recycles so that the next
node may be input. Terminate input by tapping the return or enter key.
See the documentation file on the program disk for more detailed instruc-
tions.

ELEMENT DEFINITION

The F4 ELEM DEF selection branches to a menu to perform element
operations. Elements for truss and beam element models all will be defined
in this section. If the 2D automesh option is used for the 2D plane and
axisymmetric models, then that should be done first and any addi-tional
element operations will be done in this section. Element operations include
selecting material, definition, generating a row of elements from a starting
element, modifying, deleting, and querying elements.

Single elements are defined by user selection of nodes for each element.
The user is prompted to detect each node needed for the element definition.
The order of node selection on two node elements is of no consequence. The
nodes for four node elements must be picked in a counterclockwise
order surrounding the element area. Elements are numbered in
numerical order as they are defined. Their material set assigned is the
current material set. Each element is drawn on the graphics screen as it
is defined. The node prompts recycle to define the next element, and will
continue until the right mouse button is pressed or the return or enter key
is pressed at the node detect prompt to terminate element definition. See
the documentation file on the program disk for more detailed instructions.

RESTRAINTS

The F5 RESTRAINTS selection is for applying node displacement
boundary conditions. By default all nodes displacement components are
free to take on nonzero values appropriate to the structure response under
load. The components that must be zero for the model to behave properly
are specified to be fixed. The menus that appear allow the user to set
values for the restraints and then pick the nodes to which the set values
apply. See the documentation file on the program disk for more detailed
instructions.



64 Appendix

LOADS

The F6 LOADS selection is for applying loads to the model. Loads may
be node forces or element edge pressures (for 2-D solid elements). The
menus that appear for node forces allow the user to set component values
for the loads and then pick the nodes to which the set values apply. Edge
pressure is applied by input of the pressure value and then selection of the
elements to which the set pressure applies. Menu selections also allow
deletion or query of forces and pressures. See the documentation file on the
program disk for more detailed instructions.

2-D AUTOMESH GENERATION

This section of the program is used for area mesh generation of two-
dimensional plane stress, plane strain, or axisymmetric models. The
principle of the approach is a mapping of an integer area grid into the
geometrical area of the model. The geometrical area is defined using point
locations, lines, and arcs. The perimeter of the geometrical area is defined
by the complete set of lines and arcs that enclose the area.

The integer area grid will have lines that correspond to the lines and
arcs of the geometrical area. Plan the correspondence by imagining or
physically sketching on square grid paper the perimeter in the integer area.
Use integer coordinates | and J with a range of 1 to IMAX and 1 to JMAX,
respectively. IMAX and JMAX values are listed in the first section of this
guide. A 1-by-1 square in the integer area grid will map to an element in
the geometrical area. Grid points in the integer area grid will map to node
points in the geometrical area model.

Lines in the integer area can only be lines of constant | or lines of
constant J. The perimeter must be defined by a head-to-tail connection of
lines in a counterclockwise(ccw) direction around the area. The length of
line in the integer area is equal to the number of elements desired along
the corresponding line or arc in the geometrical area.

The process involves defining the geometrical points needed to describe
the model area, then defining lines or arcs using those points that complete
the model perimeter. Next, plan the corresponding integer area grid to be
mapped into the geometry of the model.

After all the geometric points, lines, and arcs have been entered, area
mesh generation can begin. The genmesh function presents a prompt to
pick the starting point of the area. This point on the geometry will
correspond to the 1,1 1,J coordinate location on the integer area. A series
of prompts then proceeds for the detection of a line or arc, the number of
elements on that line or arc, and the direction of the corresponding line in
the integer 1,J area.

Thefirst line or arc detected must have the selected starting point as one
of its endpoints. The next line or arc picked must have the other endpoint
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of the first line or arc as one of its endpoints. Each successive line or arc
picked must then connect to the other endpoint of the previous line or arc.
This continues until the perimeter of the geometry is closed and the
endpoint of the last line in the integer area must be back at the starting
point; i.e., the perimeter in the geometry area and the perimeter in the
integer area must close simultaneously. Both of these perimeters must
progress ccw around the area.

When aline or arc is picked, the entry of number of elements determines
the length of the line in the integer area. The direction entry chooses one
of four allowable line directions in the integer area. The directions are
labeled 1, 2, 3, and 4, which correspond to right(+1), up(+J), left(-1), and
down(-J), respectively, in the 1,J coordinates.

The integer area of the model must lie in the positive quadrant of 1,J
coordinates. Since the starting point in the integer area is at 1,1, and the
perimeter must be ccw, the direction for the first line or arc must be 1. The
direction for the second line or arc picked may be 1 or 2. Successive lines
may have any direction values as long as some lines with directions 1 and
2 are used before any with directions 3 or 4, so that the | and J coordinate
values always remain positive. The total number of elements on all lines
in the 1 direction must match the total number in the 3 direction, and the
total number in the 2 direction must match the number in the 4 direction.

The bandwidth of the structure stiffness matrix is minimized by making
the number of elements in the I direction smaller than in the J direction.
The limits are IMAX-1 elements in the | direction and IMAX-1 elements in
the J direction. However, no model may have more than the maximum
number of nodes or elements listed in the first section of this guide.

Mapping is an iterative process of distorting the integer area to fit in the
geometry area. After a few iterations a mesh will be drawn on the screen.
If it appears to be suitable then it can be accepted, or more iterations may

be requested to make it smoother. If it is unacceptable

F1 POINT then a different integ_er area may be tried. o
F2 LINE The menu of functions for mesh generation is
F3 ARC

F4 GENMESH POINT

F8 VIEW OPTS Points are used to define lines and arcs that make up
F9DSPLY OPTS the model's geometric perimeter. Two points are needed
F10 PREVMENU to define a line, and three points along the arc are needed
to define an arc. Points are input by their coordinate
location. Selection of key F1 POINT brings up a submenu
for creating, modifying, or deleting points. See the
documentation file on the program disk for more detailed

SELECT A
FUNCTION KEY

instructions.

LINE
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A straight line may be used to represent all or part of any straight edge
on the model. More than one line on an edge might be used to produce
different element spacings along the edge. If two or more lines are used on
any single edge, they should be connected in series with no overlap.
Selection of key F2 LINE produces a submenu for creating, modifying, or
deleting lines. A line is defined by picking two points at the ends of the
line.

ARC

An arc may be used to represent all or part of any circular arc on the
model up to 180 degrees included angle. If more than one arc is used on a
circular arc of the model, then they should be connected in series. Three
points along the arc are needed for the definition. They are the two
endpoints and an intermediate point. Another point is created during
definition of the arc at the arc's center of curvature. This may cause the
autoscale function to reduce the model scale substantially if the arc radius
is very large, in order to fit all the points on the graphics screen. Selection
of key F3 ARC produces a submenu for creating, modifying, and deleting
arcs.

GENERATE MESH

Selection of the F4 GENMESH function begins a series of prompts and
inputs to define the meshing area. If the element type has not been
selected, the element menu will be presented for a choice. If more than one
material set has been defined, then the prompt to enter material set
number will appear. Enter the set number to be assigned to all the
elements defined using the mesh generator.

Following these conditional entries the prompt to detect the start point
appears. This is a geometric point on the model that corresponds to the 1,1
pointin the 1,J integer area. Next, the prompt to detect a line or arc begins
the sequence of perimeter definition. Detect the line or arc that connects
to the starting point and starts on the ccw path around the perimeter by
positioning the cursor on the line or arc center and pressing the spacebar
or the right mouse button. Following detection, enter the number of
elements along the line or arc. Then enter the direction number of the line
in the integer area (1, 2, 3, or 4). The set of prompts to detect line or arc,
enter number of elements, and enter direction all cycle until the user
terminates input by entry of the return key.

The user should be sure the geometry perimeter is closed before
terminating. The program checks that the integer area is closed, and if so
begins iterating on the mapping. This may take a few minutes. If the
integer area is not closed, a program message reports this condition and the
geometry is redrawn. Another trial to input the perimeter may begin with
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selection of the automesh function.

If the integer area did close, after a few iterations the mesh is drawn on
the screen with the prompt for more mesh iteration (Y or N). If it needs
additional smoothing, enter Y. More iterations will then be done and the
prompt will reappear. If it looks acceptable or is to be redone differently,
then enter N.

The next question asks if it's OK to keep (Y OR N). Enter Y to keep the
mesh, or enter N to discard this mesh and redo the GENMESH function
with another plan.

Once an acceptable mesh of nodes and elements is kept, return to the
MODEL DATA menu to apply the displacement boundary conditions and
loads, and perhaps define a material property set.

When the model data is complete, go to the files menu and store the
model and analysis files to disk. This also should be done periodically
during building of the model in case of unexpected termination of the
session or a different path chosen to complete the model.

VIEW OPTIONS

This selection appears on many of the branch menus to allow exercising

the view options without retracing the menus to reach them. The fol-
lowing menu appears on selection of view opts.

F1 AUTOSCALE

F2 ZOOM AUTOSCALE

F3 MAGNIFY

F4 CENTER Selection of autoscale automatically scales the graphics

window to include all currently defined points and nodes.

ZOOM
F10 PREV MENU
SELECT A This function allows the user to select a portion of the
FUNCTION KEY | graphics window which is then scaled to fit the full
window. The user is prompted to detect the two corners
of the zoom area.

MAGNIFY

This option changes the size of the model displayed. The user is
prompted to enter the magnification factor. A positive value must be
entered; values larger than one will increase the size of the drawing and
values smaller than one will decrease the size.

Subsequent use of the magnify command will enlarge (or decrease) the
model display with respect to its current size. For example, magnifying
your model by two and then by three produces an image six times larger
than the original.
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CENTER

The model may be moved by selecting a new center of the graphics
window. The user is prompted to locate the new center.

DISPLAY OPTIONS

Display options control which entities and labels are visible when a
graphics plot is done. A branch menu appears.

F1 ENTITY SW
F2 LABEL SW ENTITY SWITCH

F4 MONO/COLOR An entity switch setting is off or on to control the
individual entity's visibility. Selection of this function
brings up a submenu listing all the entities and prompt-
F10 PREV MENU | ing the user to select one.

Selection of a function key will produce a prompt to
change its current setting by default. A'Y or return key
entry will accept the prompt question.

SELECT A
FUNCTION KEY

LABEL SWITCH

This function controls the display of labels (numerals) for nodes and
elements on the graphic model. A submenu allows selection of a function
key producing a prompt to change its current setting by default. AY or
return key entry will accept the default.

MONO/COLOR

This function switches the display between black and white or color
when the computer has a color graphics board. Switching the color to black
and white allows the screen graphics to be dumped to a black-and-white
printer without the loss of character intensity that sometimes happens in
such screen dumping. Since only the drawing color palette is changed with
this switch, the change occurs when the next drawing is done after the
switch. Execute the function key again to return to a color display.

THE ANALYSIS BY FEPC

When a model has been developed and saved, itis complete and ready to
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be processed by the finite element processor, FEPC. After exit from
FEPCIP, and before starting FEPC, be sure that the filename.ANA file can
be accessed by FEPC. Copy it to the FEPC diskette in the same directory
where FEPC.EXE resides, or use the drive and path designation in the
filename.

RUNNING FEPC

With the FEPC.EXE file in the current drive and directory, begin by
typing

FEPC<CR>

After the FEPC logo appears, a prompt will appear to enter the model
filename (20 characters max), with drive and/or path designation but
without the .ANA extension.

As the computations proceed, messages will appear on the screen
reporting the computation step in progress. If errors occur, error messages
will also appear on the screen. FEPC creates some other files as it runs.
There is a listing file of all the printed output labeled filename.LST. This
file should be studied by the user after an analysis to check the input data
interpreted by FEPC and all the numerical output. A file labeled file-
name.MSH stores the node and element data for FEPCOP. A file labeled
filename.NVL stores the node displacement and element stress data for
FEPCOP.

Some other files are also created during the FEPC run; these are deleted
upon normal termination of the program so the disk that stores the .ANA
file must have some excess space for these files during runtime. If the run
terminates abnormally some of these files may still be on the disk with
extensions of .ELM and .LOD. These and other output files will be
overwritten when running a model with the same filename.

If the FEPC run was successful, then FEPCOP may be used to display
the results in graphic form. If the run was not successful, then examine the
filename.LST file for data errors or error messages that may help to correct
the model.

The output from a FEPC run is stored in a listing file called file-
name.LST, where the filename is the same as the model file name entered
when beginning the FEPC analysis. This file includes a listing of all the
input data as well as all the numerical results.

FEPC ERROR MESSAGES

1 - OUT OF SPACE, MODEL IS TOO LARGE (l)
The model is too large to run in FEPC. Reduce the model size in FEPCIP
and try again. Consult the program limits given before.
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2 - NODE 'n' HAS BEEN PLACED ON AN INCLINED BOUNDARY, BUT IT IS
ALREADY CONSTRAINED AGAINST X OR Y DISP. OR BOTH

Aninclined boundary angle is specified for node n, but an x or y restraint was
also specified which is incompatible. Edit the model in FEPCIP.

3 - FEPC.EXE file not found
The FEPC.EXE file must reside in the current drive and directory to execute.

4 - 5 No longer used.

6 - 'm' ELEM IS HIGHER THAN NO. OF ELEMENTS IN THE GROUP
The filename.ANA file has been corrupted because element number m is
higher than the total number of elements. The *.ANA file is an ASCII file so
it may be printed or edited. Examine its contents in comparison with the
data printout in the filename.LST file.

7 - ELEMENT NO 1 IS NOT DEFINED FIRST
The filename.ANA file has been corrupted because element number 1 is not
defined first in the list of element definitions. The *.ANA file is an ASCII file
so it may be printed or edited. Examine its contents in com-parison with the
data printout in the filename.LST file.

8 - YOU HAVE A ZERO LENGTH ELEMENT #'m'
A beam or truss element is defined using the same node for both ends or the
two nodes defining the element have coincident coordinate locations.

9 - BAD ELEMENT #m’
A quadrilateral element is improperly defined or is too distorted. Check for
cw node order definition around the element ( it should be ccw), inside
angles between sides greater than 180 degrees, butterfly-shaped element,
or atriangle formed by using one node for two corners (this is legal if the last
two nodes in the element definition are the same).

10 - STIFFNESS MATRIX NOT POSITIVE DEFINITE, NEGATIVE STIFFNESS

DIAGONAL TERM FOR EQUATION 'n', VALUE ="#

During solution of the system equations, a hegative diagonal term is found
which means that the equations cannot be solved. The equation number
corresponds to the free node degree-of-freedom in the system ordered
consecutively with node numbers. These are listed in the filename.LST file
produced in the FEPC run. Find the node number from this list, then
examine the elements defined using this node number for errors. If the
equation number is 1 or the last equation number, then the error is probably
due to lack of sufficient displacement restraints to prevent rigid body motion.

11-INCLINED BOUNDARY ANGLE MUST BE BETWEEN -89.99 AND +89.99 DEGR
The inclined boundary angle input is outside the allowable range.

GRAPHIC RESULTS USING FEPCOP

After a successful run by FEPC, results files, filename.MSH and file-
name.NVL, will have been created on the disk. These are the input files for
output processing by FEPCOP.

With the FEPCOP.EXE file in the current drive and directory, begin by

typing

FEPCOP<CR>
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where <CR> means to press the enter or return key. After the FEPCOP
logo appears, the program continues after a short pause.
The screen will clear and a prompt will appear to

ENTER MODEL FILE NAME (NO EXT) -

Enter the filename (20 characters max), with drive and/or path designation,
but without the .MSH or .NVL extension. Some messages will appear
noting the progress of calculations, and then the screen will clear and the
FEPCOP MAIN MENU is displayed along with a prompt to SELECT A
FUNCTION KEY.
F1 DEFORMED Selection of F1 DEFORMED brings up a branch menu.
F2X-STRESS  gelection of F1 PLOT in this branch produces a deformed
Ei IYS;%EEES shape plot of the element mesh superimposed over the
F5T-sTREss | undeformed model. This plot shows the finite element
F6 VON MISES = mesh when the node displacements are scaled and added
F7 TRUSS STRS ' to the node coordinates so that the deformed shape is
Eg g';f\r:\gﬁg% exaggerated. In truss and beam models the deformed
F10 EXIT mesh is superimposed over the undeformed mesh plot.
In 2-D solid models the deformed mesh is superimposed
SELECT A over the outer boundary of the undeformed shape. The
FUNCTION KEY | displacement scale factor may be changed in the OP-
TIONS menu to increase or decrease the plotted
deformation. An additional submenu appears for view
options of the plot.

Selection of F2 ANIMATE in the branch menu produces a sequential
mesh plot of truss and beam models or a boundary outline plot of 2-D
models, showing the progressive deformation as the load is applied cyclicly.
Press any key to terminate the animation.

The next five function key selections on the main menu show the stress
contour plots developed in 2-D solid models for the indicated components
of stress. Each function is accompanied by a legend of the contour values
and the view options menu. The T-stress component is honzero only for the
axisymmetric element models and represents the hoop stress in the
axisymmetric structure. The Von Mises equivalent stress is calculated
based on the distortion energy failure theorem using all the stress
components calculated in the loaded model.

TRUSS STRS

This function is used to display the results in truss element models. The
user may select a plot of the axial force or stress in all truss elements. The
plot is in a bar chart format with the heights scaled to the maximum value
in any element. Plus or minus signs are drawn on the bar near the top to
indicate whether the member is in tension or compression.
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BEAM STRS

This function is used to display the results in beam element models. The
user may select to plot the axial, flexure, average transverse shear, or the
maximum combined axial plus flexure stress. These are also in bar chart
format with signs indicated near the top of each bar. The axial and
transverse shear stresses are constant along an element length, so one bar
per element is sufficient. The flexure stress component varies linearly
along the element length, so a bar is plotted for the value at each end. Two
bars are also plotted for the combined axial plus flexure stress. The sign
of the combined stress is the same as the sign of the axial stress which is
the combination producing the largest magnitude.

OPTIONS
F1 NODE SW Function key F9 OPTIONS produces a submenu.
F2 ELEM SW Selecting F1 adds node symbols to the 2-D stress plots,

F3DISP SCALE ' and F2 adds element outlines inside the 2-D boundary
for stress plots. Both of these selections produce a
F10 PREV MENU Prompt to switch the current setting. Answering Y or by
default a return key entry will make the change.
Selection F3 allows the scale factor for the deformed
SELECT A shape plots to be changed by prompting for a new scale
FUNCTION KEY factor, with the current scale factor shown as the default
value. Enter a larger value to increase the exaggeration
or a smaller value to decrease it.
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Banded matrix 19
Bandwidth 19, 48
Boundary condition
beam 34
Boundary conditions
displacement 16
Compatibility 42, 43
violation 43, 49
Computer program
diagram 7
Coordinate transformations 12
Deformed shape 20, 22, 34,
35,51
Elasticity
theory of 42
Element
distortion 48
frame 32
isoparametric quadrilateral
42
linear triangle 40
matrix 4
truss 12, 14
Elements
continuum 3
spring 3
structural 3
two-dimensional 40
Equations
equilibrium 5, 14
system 5
Error
beam 33
beam element 32
estimate 53
estimated 54
execution 48
of approximation 19
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precision 48

reduction 19

roundoff 19

runtime 19

sources of 2
Euler buckling 21, 34
Force

external 6

node 5

reaction 6
Gauss elimination 19
Gaussian elimination 9
H-convergence 44
lll-conditioning 49
Interpolation functions 44
Mesh

refinement 44
Mesh generation

mapping 47
P-convergence 44
Postprocessor 7, 50
Preprocessor 7
Results

evaluation 21
Rigid body motion 8, 46
Sign convention

beam 31
Stiffness

matrix 5, 13, 15, 31, 32
Stress

contour 51

node 9

transverse shear 34
Structure

beam 34

stiffness matrix 16

truss 21
Superposition 29, 32
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Symmetry 45
Vector transformation 13
Wavefront 48



