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In Chap. 6 we considered the analysis and design of parts subjected to static loading.
The behavior of machine parts is entirely different when they are subjected to time-
varying loading. In this chapter we shall examine how parts fail under variable loading
and how to proportion them to successfully resist such conditions.

7–1 Introduction to Fatigue in Metals
In most testing of those properties of materials that relate to the stress-strain diagram,
the load is applied gradually, to give sufficient time for the strain to fully develop.
Furthermore, the specimen is tested to destruction, and so the stresses are applied only
once. Testing of this kind is applicable, then, to what are known as static conditions;
such conditions closely approximate the actual conditions to which many structural and
machine members are subjected.

The condition frequently arises, however, in which the stresses vary or they fluctuate
between levels. For example, a particular fiber on the surface of a rotating shaft subjected
to the action of bending loads undergoes both tension and compression for each revolu-
tion of the shaft. If the shaft is part of an electric motor rotating at 1725 rev/min, the fiber
is stressed in tension and compression 1725 times each minute. If, in addition, the shaft is
also axially loaded (as it would be, for example, by a helical or worm gear), an axial com-
ponent of stress is superposed upon the bending component. In this case, some stress is
always present in any one fiber, but now the level of stress is fluctuating. These and other
kinds of loading occurring in machine members produce stresses that are called variable,
repeated, alternating, or fluctuating stresses.

Often, machine members are found to have failed under the action of repeated or
fluctuating stresses; yet the most careful analysis reveals that the actual maximum
stresses were well below the ultimate strength of the material, and quite frequently even
below the yield strength. The most distinguishing characteristic of these failures is that
the stresses have been repeated a very large number of times. Hence the failure is called
a fatigue failure.

When machine parts fail statically, they usually develop a very large deflection,
because the stress has exceeded the yield strength, and the part is replaced before fracture
actually occurs. Thus many static failures give visible warning in advance. But a fatigue
failure gives no warning! It is sudden and total, and hence dangerous. It is relatively sim-
ple to design against a static failure, because our knowledge is comprehensive. Fatigue
is a much more complicated phenomenon, only partially understood, and the engineer
seeking competence must acquire as much knowledge of the subject as possible.

A fatigue failure has an appearance similar to a brittle fracture, as the fracture sur-
faces are flat and perpendicular to the stress axis with the absence of necking. The frac-
ture features of a fatigue failure, however, are quite different from a static brittle fracture
arising from three stages of development. Stage I is the initiation of one or more micro-
cracks due to cyclic plastic deformation followed by crystallographic propagation
extending from two to five grains about the origin. Stage I cracks are not normally dis-
cernible to the naked eye. Stage II progresses from microcracks to macrocracks forming
parallel plateau-like fracture surfaces separated by longitudinal ridges. The plateaus are
generally smooth and normal to the direction of maximum tensile stress. These surfaces
can be wavy dark and light bands referred to as beach marks or clamshell marks, as seen
in Fig. 7–1. During cyclic loading, these cracked surfaces open and close, rubbing to-
gether, and the beach mark appearance depends on the changes in the level or frequency
of loading and the corrosive nature of the environment. Stage III occurs during the final
stress cycle when the remaining material cannot support the loads, resulting in a sudden,
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Figure 7–1

Fatigue failure of a bolt due
to repeated unidirectional
bending. The failure started
at the thread root at A,
propagated across most of the
cross section shown by the
beach marks at B, before final
fast fracture at C. (From
ASM Handbook, Vol. 12: Fractography,
ASM International, Materials Park, OH
44073-0002, fig 50, p. 120. Reprinted
by permission of ASM International ®,
www.asminternational.org.)

1See the ASM Handbook, Fractography, ASM International, Metals Park, Ohio, vol. 12, 9th ed., 1987.

fast fracture. A stage III fracture can be brittle, ductile, or a combination of both. Quite
often the beach marks, if they exist, and possible patterns in the stage III fracture called
chevron lines, point toward the origins of the initial cracks.

There is a good deal to be learned from the fracture patterns of a fatigue failure.1

Figure 7–2 shows representations of failure surfaces of various part geometries under
differing load conditions and levels of stress concentration. Note that, in the case of
rotational bending, even the direction of rotation influences the failure pattern.

Fatigue failure is due to crack formation and propagation. A fatigue crack will typ-
ically initiate at a discontinuity in the material where the cyclic stress is a maximum.
Discontinuities can arise because of:

• Design of rapid changes in cross section, keyways, holes, etc. where stress concen-
trations occur as discussed in Secs. 4–14 and 6–2.

• Elements that roll and/or slide against each other (bearings, gears, cams, etc.) under
high contact pressure, developing concentrated subsurface contact stresses (Sec. 4–20)
that can cause surface pitting or spalling after many cycles of the load.

• Carelessness in locations of stamp marks, tool marks, scratches, and burrs; poor joint
design; improper assembly; and other fabrication faults.

• Composition of the material itself as processed by rolling, forging, casting, extrusion,
drawing, heat treatment, etc. Microscopic and submicroscopic surface and subsurface
discontinuities arise, such as inclusions of foreign material, alloy segregation, voids,
hard precipitated particles, and crystal discontinuities.

Various conditions that can accelerate crack initiation include residual tensile stresses, el-
evated temperatures, temperature cycling, a corrosive environment, and high-frequency
cycling.

The rate and direction of fatigue crack propagation is primarily controlled by local-
ized stresses and by the structure of the material at the crack. However, as with crack
formation, other factors may exert a significant influence, such as environment, temper-
ature, and frequency. As stated earlier, cracks will grow along planes normal to the

shi20361_ch07.qxd  6/3/03  5:00 PM  Page 307



308 Mechanical Engineering Design

Figure 7–2

Schematics of fatigue fracture
surfaces produced in smooth
and notched components with
round and rectangular cross
sections under various loading
conditions and nominal stress
levels. (From ASM Handbook, Vol. 11:
Failure Analysis and Prevention, ASM
International, Materials Park, OH
44073-0002, fig 18, p. 111. Reprinted
by permission of ASM International®,
www.asminternational.org.)
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Figure 7–3

Fatigue fracture of an AISI
4320 drive shaft. The fatigue
failure initiated at the end of
the keyway at points B and
progressed to final rupture at
C. The final rupture zone is
small, indicating that loads
were low. (From ASM Handbook,
Vol. 11: Failure Analysis and Prevention,
ASM International, Materials Park, OH
44073-0002, fig 18, p. 111. Reprinted by
permission of ASM International ®,
www.asminternational.org.)

Figure 7–4

Fatigue fracture surface of an
AISI 8640 pin. Sharp corners
of the mismatched grease
holes provided stress
concentrations that initiated
two fatigue cracks indicated
by the arrows. (From ASM
Handbook, Vol. 12: Fractography, ASM
International, Materials Park, OH
44073-0002, fig 520, p. 331. Reprinted
by permission of ASM International ®,
www.asminternational.org.)

maximum tensile stresses. The crack growth process can be explained by fracture
mechanics (see Sec. 7–6).

A major reference source in the study of fatigue failure is the 21-volume ASM
Metals Handbook. Figures 7–1 to 7–8, reproduced with permission from ASM Interna-
tional, are but a minuscule sample of examples of fatigue failures for a great variety of
conditions included in the handbook. Comparing Fig. 7–3 with Fig. 7–2, we see that
failure occurred by rotating bending stresses, with the direction of rotation being clock-
wise with respect to the view and with a mild stress concentration and low nominal
stress.
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Figure 7–5

Fatigue fracture surface of a
forged connecting rod of AISI
8640 steel. The fatigue crack
origin is at the left edge, at the
flash line of the forging, but no
unusual roughness of the flash
trim was indicated. The
fatigue crack progressed
halfway around the oil hole
at the left, indicated by the
beach marks, before final fast
fracture occurred. Note the
pronounced shear lip in the
final fracture at the right edge.
(From ASM Handbook, Vol. 12:
Fractography, ASM International, Materials
Park, OH 44073-0002, fig 523, p. 332.
Reprinted by permission of ASM
International ®, www.asminternational.org.)

Figure 7–6

Fatigue fracture surface of a 200-mm (8-in) diameter piston rod of an alloy
steel steam hammer used for forging. This is an example of a fatigue fracture
caused by pure tension where surface stress concentrations are absent and
a crack may initiate anywhere in the cross section. In this instance, the initial
crack formed at a forging flake slightly below center, grew outward
symmetrically, and ultimately produced a brittle fracture without warning.
(From ASM Handbook, Vol. 12: Fractography, ASM International, Materials Park, OH 44073-0002, fig 570,
p. 342. Reprinted by permission of ASM International ®, www.asminternational.org.)
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Figure 7–7

Fatigue failure of an ASTM A186 steel double-flange trailer wheel caused by stamp marks. (a) Coke-oven car wheel showing position of
stamp marks and fractures in the rib and web. (b) Stamp mark showing heavy impression and fracture extending along the base of the lower
row of numbers. (c) Notches, indicated by arrows, created from the heavily indented stamp marks from which cracks initiated along the top
at the fracture surface. (From ASM Handbook, Vol. 11: Failure Analysis and Prevention, ASM International, Materials Park, OH 44073-0002, fig 51, p. 130. Reprinted by permission of ASM
International ®, www.asminternational.org.)
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Figure 7–8

Aluminum alloy 7075-T73
landing-gear torque-arm
assembly redesign to eliminate
fatigue fracture at a lubrication
hole. (a) Arm configuration,
original and improved design
(dimensions given in inches).
(b) Fracture surface where
arrows indicate multiple crack
origins. (From ASM Handbook, Vol. 11:
Failure Analysis and Prevention, ASM
International, Materials Park, OH
44073-0002, fig 23, p. 114. Reprinted
by permission of ASM International ®,
www.asminternational.org.)
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7–2 Approach to Fatigue Failure in Analysis and Design
As noted in the previous section, there are a great many factors to be considered, even
for very simple load cases. The methods of fatigue failure analysis represent a combi-
nation of engineering and science. Often science fails to provide the complete answers
that are needed. But the airplane must still be made to fly—safely. And the automobile
must be manufactured with a reliability that will ensure a long and troublefree life and
at the same time produce profits for the stockholders of the industry. Thus, while science
has not yet completely explained the complete mechanism of fatigue, the engineer must
still design things that will not fail. In a sense this is a classic example of the true mean-
ing of engineering as contrasted with science. Engineers use science to solve their prob-
lems if the science is available. But available or not, the problem must be solved, and
whatever form the solution takes under these conditions is called engineering.

In this chapter, we will take a structured approach in the design against fatigue
failure. As with static failure, we will attempt to relate to test results performed on sim-
ply loaded specimens. However, because of the complex nature of fatigue, there is much
more to account for. From this point, we will proceed methodically, and in stages. In an
attempt to provide some insight as to what follows in this chapter, a brief description of
the remaining sections will be given here.

Fatigue-Life Methods (Secs. 7–3 to 7–6)
Three major approaches used in design and analysis to predict when, if ever, a cyclically
loaded machine component will fail in fatigue over a period of time are presented. The
premises of each approach are quite different but each adds to our understanding of the
mechanisms associated with fatigue. The application, advantages, and disadvantages of
each method are indicated. Beyond Sec. 7–6, only one of the methods, the stress-life
method, will be pursued for further design applications.

Fatigue Strength and the Endurance Limit (Secs. 7–7 and 7–8)
The strength-life (S-N) diagram provides the fatigue strength Sf versus cycle life N of a
material. The results are generated from tests using a simple loading of standard
laboratory-controlled specimens. The loading often is that of sinusoidally reversing pure
bending. The laboratory-controlled specimens are polished without geometric stress
concentration at the region of minimum area.

For steel and iron, the S-N diagram becomes horizontal at some point. The strength
at this point is called the endurance limit S′

e and occurs somewhere between 106 and 107

cycles. The prime mark on S′
e refers to the endurance limit of the controlled laboratory

specimen. For nonferrous materials that do not exhibit an endurance limit, a fatigue
strength at a specific number of cycles, S′

f , may be given, where again, the prime de-
notes the fatigue strength of the laboratory-controlled specimen.

The strength data are based on many controlled conditions that will not be the same
as that for an actual machine part. What follows are practices used to account for the
differences between the loading and physical conditions of the specimen and the actual
machine part.

Endurance Limit Modifying Factors (Sec. 7–9)
Modifying factors are defined and used to account for differences between the specimen
and the actual machine part with regard to surface conditions, size, loading, tempera-
ture, reliability, and miscellaneous factors. Loading is still considered to be simple and
reversing.
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Stress Concentration and Notch Sensitivity (Sec. 7–10)
The actual part may have a geometric stress concentration by which the fatigue behavior
depends on the static stress concentration factor and the component material’s sensitivity
to fatigue damage.

Fluctuating Stresses (Secs. 7–11 to 7–13)
These sections account for simple stress states from fluctuating load conditions that are
not purely sinusoidally reversing axial, bending, or torsional stresses.

Combinations of Loading Modes (Sec. 7–14)
Here a procedure based on the distortion-energy theory is presented for analyzing com-
bined fluctuating stress states, such as combined bending and torsion. Here it is assumed
that the levels of the fluctuating stresses are not time varying.

Varying, Fluctuating Stresses; Cumulative
Fatigue Damage (Sec. 7–15)
The fluctuating stress levels on a machine part may be time varying. Methods are pro-
vided to assess the fatigue damage on a cumulative basis.

Remaining Sections
The remaining two sections of the chapter pertain to the special topics of surface fatigue
strength and stochastic analysis.

7–3 Fatigue-Life Methods
The three major fatigue life methods used in design and analysis are the stress-life
method, the strain-life method, and the linear-elastic fracture mechanics method. These
methods attempt to predict the life in number of cycles to failure, N, for a specific level
of loading. Life of 1 ≤ N ≤ 103 cycles is generally classified as low-cycle fatigue,
whereas high-cycle fatigue is considered to be N > 103 cycles. The stress-life method,
based on stress levels only, is the least accurate approach, especially for low-cycle ap-
plications. However, it is the most traditional method, since it is the easiest to implement
for a wide range of design applications, has ample supporting data, and represents high-
cycle applications adequately.

The strain-life method involves more detailed analysis of the plastic deformation at
localized regions where the stresses and strains are considered for life estimates. This
method is especially good for low-cycle fatigue applications. In applying this method,
several idealizations must be compounded, and so some uncertainties will exist in the
results. For this reason, it will be discussed only because of its value in adding to the
understanding of the nature of fatigue.

The fracture mechanics method assumes a crack is already present and detected. It
is then employed to predict crack growth with respect to stress intensity. It is most prac-
tical when applied to large structures in conjunction with computer codes and a periodic
inspection program.

7–4 The Stress-Life Method
To determine the strength of materials under the action of fatigue loads, specimens are
subjected to repeated or varying forces of specified magnitudes while the cycles or stress
reversals are counted to destruction. The most widely used fatigue-testing device is the
R. R. Moore high-speed rotating-beam machine. This machine subjects the specimen
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An S-N diagram plotted from
the results of completely
reversed axial fatigue tests.
Material: UNS G41300
steel, normalized;
Sut = 116 kpsi; maximum
Sut = 125 kpsi. (Data from
NACA Tech. Note 3866, December 1966.)

to pure bending (no transverse shear) by means of weights. The specimen, shown in
Fig. 7–9, is very carefully machined and polished, with a final polishing in an axial
direction to avoid circumferential scratches. Other fatigue-testing machines are avail-
able for applying fluctuating or reversed axial stresses, torsional stresses, or combined
stresses to the test specimens.

To establish the fatigue strength of a material, quite a number of tests are necessary
because of the statistical nature of fatigue. For the rotating-beam test, a constant bend-
ing load is applied, and the number of revolutions (stress reversals) of the beam required
for failure is recorded. The first test is made at a stress that is somewhat under the ulti-
mate strength of the material. The second test is made at a stress that is less than that
used in the first. This process is continued, and the results are plotted as an S-N diagram
(Fig. 7–10). This chart may be plotted on semilog paper or on log-log paper. In the case
of ferrous metals and alloys, the graph becomes horizontal after the material has been
stressed for a certain number of cycles. Plotting on log paper emphasizes the bend in
the curve, which might not be apparent if the results were plotted by using Cartesian
coordinates.
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S-N bands for representative
aluminum alloys, excluding
wrought alloys with
Sut < 38 kpsi. (From R. C. Juvinall,
Engineering Considerations of Stress, Strain
and Strength. Copyright © 1967 by The
McGraw-Hill Companies, Inc. Reprinted by
permission.)

The ordinate of the S-N diagram is called the fatigue strength Sf ; a statement of this
strength value must always be accompanied by a statement of the number of cycles N to
which it corresponds.

Soon we shall learn that S-N diagrams can be determined either for a test specimen
or for an actual mechanical element. Even when the material of the test specimen and
that of the mechanical element are identical, there will be significant differences
between the diagrams for the two.

In the case of the steels, a knee occurs in the graph, and beyond this knee failure
will not occur, no matter how great the number of cycles. The strength corresponding to
the knee is called the endurance limit Se, or the fatigue limit. The graph of Fig. 7–10
never does become horizontal for nonferrous metals and alloys, and hence these mate-
rials do not have an endurance limit. Figure 7–11 shows scatter bands indicating the S-N
curves for most common aluminum alloys excluding wrought alloys having a tensile
strength below 38 kpsi. Since aluminum does not have an endurance limit, normally the
fatigue strength Sf is reported at a specific number of cycles, normally N = 5(108)

cycles of reversed stress (see Table A–24).
We note that a stress cycle (N = 1) constitutes a single application and removal of

a load and then another application and removal of the load in the opposite direction.
Thus N = 1

2 means the load is applied once and then removed, which is the case with
the simple tension test.

The body of knowledge available on fatigue failure from N = 1 to N = 1000
cycles is generally classified as low-cycle fatigue, as indicated in Fig. 7–10. High-cycle
fatigue, then, is concerned with failure corresponding to stress cycles greater than 103

cycles.
We also distinguish a finite-life region and an infinite-life region in Fig. 7–10. The

boundary between these regions cannot be clearly defined except for a specific material;
but it lies somewhere between 106 and 107 cycles for steels, as shown in Fig. 7–10.

As noted previously, it is always good engineering practice to conduct a testing
program on the materials to be employed in design and manufacture. This, in fact, is a
requirement, not an option, in guarding against the possibility of a fatigue failure.
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2L. Bairstow, “The Elastic Limits of Iron and Steel under Cyclic Variations of Stress,” Philosophical
Transactions, Series A, vol. 210, Royal Society of London, 1910, pp. 35–55.
3R. W. Landgraf, Cyclic Deformation and Fatigue Behavior of Hardened Steels, Report no. 320, Department
of Theoretical and Applied Mechanics, University of Illinois, Urbana, 1968, pp. 84–90.

Because of this necessity for testing, it would really be unnecessary for us to proceed
any further in the study of fatigue failure except for one important reason: the desire to
know why fatigue failures occur so that the most effective method or methods can be
used to improve fatigue strength. Thus our primary purpose in studying fatigue is to un-
derstand why failures occur so that we can guard against them in an optimum manner.
For this reason, the analytical design approaches presented in this book, or in any other
book, for that matter, do not yield absolutely precise results. The results should be taken
as a guide, as something that indicates what is important and what is not important in
designing against fatigue failure.

As stated earlier, the stress-life method is the least accurate approach especially for
low-cycle applications. However, it is the most traditional method, with much published
data available. It is the easiest to implement for a wide range of design applications and
represents high-cycle applications adequately. For these reasons the stress-life method
will be emphasized in subsequent sections of this chapter. However, care should be
exercised when applying the method for low-cycle applications, as the method does not
account for the true stress-strain behavior when localized yielding occurs.

7–5 The Strain-Life Method
The best approach yet advanced to explain the nature of fatigue failure is called by some
the strain-life method. The approach can be used to estimate fatigue strengths, but when
it is so used it is necessary to compound several idealizations, and so some uncertainties
will exist in the results. For this reason, the method is presented here only because of its
value in explaining the nature of fatigue.

A fatigue failure almost always begins at a local discontinuity such as a notch,
crack, or other area of stress concentration. When the stress at the discontinuity exceeds
the elastic limit, plastic strain occurs. If a fatigue fracture is to occur, there must exist
cyclic plastic strains. Thus we shall need to investigate the behavior of materials subject
to cyclic deformation.

In 1910, Bairstow verified by experiment Bauschinger’s theory that the elastic limits
of iron and steel can be changed, either up or down, by the cyclic variations of stress.2 In
general, the elastic limits of annealed steels are likely to increase when subjected to cy-
cles of stress reversals, while cold-drawn steels exhibit a decreasing elastic limit.

Test specimens subjected to reversed bending are not suitable for strain cycling, be-
cause of the difficulty of measuring plastic strains. Consequently, most of the research
has been done on axial specimens. By using electrical transducers, it is possible to gen-
erate signals that are proportional to the stress and strain, respectively. These signals can
then be displayed on an oscilloscope or plotted on an XY plotter. R. W. Landgraf has in-
vestigated the low-cycle fatigue behavior of a large number of very high-strength steels,
and during his research he made many cyclic stress-strain plots.3 Figure 7–12 has been
constructed to show the general appearance of these plots for the first few cycles of con-
trolled cyclic strain. In this case the strength decreases with stress repetitions, as evi-
denced by the fact that the reversals occur at ever-smaller stress levels. As previously
noted, other materials may be strengthened, instead, by cyclic stress reversals.
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Monotonic and cyclic stress-
strain results. (a) Ausformed
H-11 steel, 660 Brinell;
(b) SAE 4142 steel,
400 Brinell.

4Ibid., pp. 58–62.
5Technical Report on Fatigue Properties, SAE J1099, 1975.

Slightly different results may be obtained if the first reversal occurs in the com-
pressive region; this is probably due to the fatigue-strengthening effect of compression.

Landgraf’s paper contains a number of plots that compare the monotonic stress-
strain relations in both tension and compression with the cyclic stress-strain curve.4 Two
of these have been redrawn and are shown in Fig. 7–13. The importance of these is that
they emphasize the difficulty of attempting to predict the fatigue strength of a material
from known values of monotonic yield or ultimate strengths in the low-cycle region.

The SAE Fatigue Design and Evaluation Steering Committee released a report in
1975 in which the life in reversals to failure is related to the strain amplitude �ε/2.5 The
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A log-log plot showing how
the fatigue life is related to
the true-strain amplitude for
hot-rolled SAE 1020 steel.
(Reprinted with permission from 
SAE J1099_200208 © 2002 
SAE International.)

report contains a plot of this relationship for SAE 1020 hot-rolled steel; the graph has
been reproduced as Fig. 7–14. To explain the graph, we first define the following terms:

• Fatigue ductility coefficient ε′
F is the true strain corresponding to fracture in one re-

versal (point A in Fig. 7–12). The plastic-strain line begins at this point in Fig. 7–14.

• Fatigue strength coefficient σ ′
F is the true stress corresponding to fracture in one

reversal (point A in Fig. 7–12). Note in Fig. 7–14 that the elastic-strain line begins at
σ ′

F/E .

• Fatigue ductility exponent c is the slope of the plastic-strain line in Fig. 7–14 and is
the power to which the life 2N must be raised to be proportional to the true plastic-
strain amplitude. If the number of stress reversals is 2N, then N is the number of
cycles.

• Fatigue strength exponent b is the slope of the elastic-strain line, and is the power to
which the life 2N must be raised to be proportional to the true-stress amplitude.

Now, from Fig. 7–12, we see that the total strain is the sum of the elastic and plastic
components. Therefore the total strain amplitude is

�ε

2
= �εe

2
+ �εp

2
(a)

The equation of the plastic-strain line in Fig. 7–14 is

�εp

2
= ε′

F(2N )c (7–1)

The equation of the elastic strain line is

�εe

2
= σ ′

F

E
(2N )b (7–2)

Therefore, from Eq. (a), we have for the total-strain amplitude

�ε

2
= σ ′

F

E
(2N )b + ε′

F(2N )c (7–3)
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Table 7–1

Cyclic Properties of Some High-Strength Steels Source: Data from R. W. Landgraf, Cyclic Deformation and
Fatigue Behavior of Hardened Steels, Report no. 320, Department of Theoretical and Applied Mechanics, University of
Illinois, Urbana, 1968.

Fatigue
Cyclic Fatigue Fatigue Fatigue Fatigue Strain-

Brinell Yield Strength Ductility Strength Ductility Hardening
AISI Hardness Strength Coefficient Coefficient Exponent Exponent Exponent

Number Processing HB S�y, kpsi σ�F, kpsi ε�F b c m

1045 Q & T 80°F 705 · · · 310 · · · −0.065 −1.0 0.10
1045 Q & T 360°F 595 250 395 0.07 −0.055 −0.60 0.13
1045 Q & T 500°F 500 185 330 0.25 −0.08 −0.68 0.12
1045 Q & T 600°F 450 140 260 0.35 −0.07 −0.69 0.12
1045 Q & T 720°F 390 110 230 0.45 −0.074 −0.68 0.14
4142 Q & T 80°F 670 300 375 · · · −0.075 −1.0 0.05
4142 Q & T 400°F 560 250 385 0.07 −0.076 −0.76 0.11
4142 Q & T 600°F 475 195 315 0.09 −0.081 −0.66 0.14
4142 Q & T 700°F 450 155 290 0.40 −0.080 −0.73 0.12
4142 Q & T 840°F 380 120 265 0.45 −0.080 −0.75 0.14
4142* Q & D 550°F 475 160 300 0.20 −0.082 −0.77 0.12
4142 Q & D 650°F 450 155 305 0.60 −0.090 −0.76 0.13
4142 Q & D 800°F 400 130 275 0.50 −0.090 −0.75 0.14

*Deformed 14 percent.

6J. F. Tavernelli and L. F. Coffin, Jr., “Experimental Support for Generalized Equation Predicting Low Cycle
Fatigue,’’ and S. S. Manson, discussion, Trans. ASME, J. Basic Eng., vol. 84, no. 4, pp. 533–537.
7For further discussion of the strain-life method see N. E. Dowling, Mechanical Behavior of Materials,
2nd ed., Prentice-Hall, Englewood Cliffs, N.J., 1999, Chap. 14.

which is the Manson-Coffin relationship between fatigue life and total strain.6 Some
values of the coefficients and exponents are listed in Table 7–1. Many more are included
in the SAE J1099 report.

Though Eq. (7–3) is a perfectly legitimate equation for obtaining the fatigue life of
a part when the strain and other cyclic characteristics are given, it appears to be of little
use to the designer. The question of how to determine the total strain at the bottom of a
notch or discontinuity has not been answered. There are no tables or charts of strain con-
centration factors in the literature. It is possible that strain concentration factors will
become available in research literature very soon because of the increase in the use of
finite-element analysis. Moreover, finite element analysis can of itself approximate the
strains that will occur at all points in the subject structure.7

7–6 The Linear-Elastic Fracture Mechanics Method
The first phase of fatigue cracking is designated as stage I fatigue. Crystal slip that extends
through several contiguous grains, inclusions, and surface imperfections is presumed to
play a role. Since most of this is invisible to the observer, we just say that stage I involves
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several grains. The second phase, that of crack extension, is called stage II fatigue. The
advance of the crack (that is, new crack area is created) does produce evidence that can
be observed on micrographs from an electron microscope. The growth of the crack is
orderly. Final fracture occurs during stage III fatigue, although fatigue is not involved.
When the crack is sufficiently long that KI = KIc for the stress amplitude involved, then
KIc is the critical stress intensity for the undamaged metal, and there is sudden, cata-
strophic failure of the remaining cross section in tensile overload (see Sec. 6–13).
Stage III fatigue is associated with rapid acceleration of crack growth then fracture.

Crack Growth
Fatigue cracks nucleate and grow when stresses vary and there is some tension in each
stress cycle. Consider the stress to be fluctuating between the limits of σmin and σmax,
where the stress range is defined as �σ = σmax − σmin. From Eq. (6–51) the stress
intensity is given by KI = βσ

√
πa. Thus, for �σ, the stress intensity range per cycle is

�KI = β(σmax − σmin)
√

πa = β�σ
√

πa (7–4)

To develop fatigue strength data, a number of specimens of the same material are tested
at various levels of �σ. Cracks nucleate at or very near a free surface or large disconti-
nuity. Assuming an initial crack length of ai , crack growth as a function of the number
of stress cycles N will depend on �σ, that is, �KI. For �KI below some threshold
value (�KI)th a crack will not grow. Figure 7–15 represents the crack length a as a func-
tion of N for three stress levels (�σ)3 > (�σ)2 > (�σ)1, where (�KI)3 > (�KI)2 >

(�KI)1. Notice the effect of the higher stress range in Fig. 7–15 in the production of
longer cracks at a particular cycle count.

When the rate of crack growth per cycle, da/d N in Fig. 7–15, is plotted as shown
in Fig. 7–16, the data from all three stress range levels superpose to give a sigmoidal
locus. The three stages of crack development are observable, and the stage II data are
linear on log-log coordinates, within the domain of linear elastic fracture mechanics
(LEFM) validity. A group of similar curves can be generated by changing the stress ratio
R = σmin/σmax of the experiment.

Here we present a simplified procedure for estimating the remaining life of a cycli-
cally stressed part after discovery of a crack. This requires the assumption that plane

Log N

Stress cycles N

C
ra

ck
 le

ng
th

 a

a

ai

(∆KI)3 (∆KI)2 (∆KI)1

da

dN

Figure 7–15

The increase in crack length a
from an initial length of ai as
a function of cycle count for
three stress ranges, (�σ ) 3 >

(�σ ) 2 > (�σ ) 1.
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8Recommended references are: Dowling, op. cit.; J. A. Collins, Failure of Materials in Mechanical Design,
John Wiley & Sons, New York, 1981; H. O. Fuchs and R. I. Stephens, Metal Fatigue in Engineering, John
Wiley & Sons, New York, 1980; and Harold S. Reemsnyder, “Constant Amplitude Fatigue Life Assessment
Models,” SAE Trans. 820688, vol. 91, Nov. 1983.

Log ∆K

Log da
dN

Increasing
stress ratio

R

Crack
propagation

Region II

Crack
initiation

Region I

Crack
unstable

Region III

(∆K)th

Kc

Figure 7–16

When da/dN is measured in
Fig. 7–15 and plotted on
loglog coordinates, the data
for different stress ranges
superpose, giving rise to a
sigmoid curve as shown.
(�K I ) th is the threshold value
of �K I , below which a crack
does not grow. From threshold
to rupture an aluminum alloy
will spend 85--90 percent of
life in region I, 5--8 percent in
region II, and 1--2 percent in
region III.

Table 7–2

Conservative Values of
Factor C and Exponent
m in Eq. (7–5) for
Various Forms of Steel
(R .= 0)

Material
C,

m/cycle(
MPa

√
m

)m
C,

in/cycle(
kpsi

√
in

)m

Ferritic-pearlitic steels 6.89(10−12 ) 3.60(10−10 ) 3.00
Martensitic steels 1.36(10−10 ) 6.60(10−9 ) 2.25
Austenitic stainless steels 5.61(10−12 ) 3.00(10−10 ) 3.25

From J.M. Barsom and S.T. Rolfe, Fatigue and Fracture Control in Structures, 2nd ed., Prentice Hall,
Upper Saddle River, NJ, 1987, pp. 288–291, Copyright ASTM International. Reprinted with
permission.

m

strain conditions prevail.8 Assuming a crack is discovered early in stage II, the crack
growth in region II of Fig. 7–16 can be approximated by the Paris equation, which is of
the form

da

d N
= C(�KI)

m (7–5)

where C and m are empirical constants and �KI is given by Eq. (7–4). Representative,
but conservative, values of C and m for various classes of steels are listed in Table 7–2.
Substituting Eq. (7–4) and integrating gives∫ Nf

0
d N = Nf = 1

C

∫ af

ai

da

(β�σ
√

πa)m
(7–6)
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Figure 7–17

M M

Nick

in1
2

in1
4

Here ai is the initial crack length, af is the final crack length corresponding to failure,
and Nf is the estimated number of cycles to produce a failure after the initial crack is
formed. Note that β may vary in the integration variable (e.g., see Figs. 6–35 to 6–40).
If this should happen, then Reemsnyder9 suggests the use of numerical integration
employing the algorithm

δaj = C(�KI )
m
j (δN )j

aj+1 = aj + δaj

Nj+1 = Nj + δNj (7–7)

Nf =
∑

δNj

Here δaj and δNj are increments of the crack length and the number of cycles. The pro-
cedure is to select a value of δNj , using ai determine β and compute �KI, determine
δaj , and then find the next value of a. Repeat the procedure until a = af .

The following example is highly simplified with β constant in order to give some
understanding of the procedure. Normally, one uses fatigue crack growth computer pro-
grams such as NASA/FLAGRO 2.0 with more comprehensive theoretical models to
solve these problems.

9Op. cit.

EXAMPLE 7–1 The bar shown in Fig. 7–17 is subjected to a repeated moment 0 ≤ M ≤ 1200 lbf · in.
The bar is AISI 4430 steel with Sut = 185 kpsi, Sy = 170 kpsi, and KIc = 74 kpsi

√
in.

Material tests on various specimens of this material with identical heat treatment
indicate worst-case constants of C = 3.8(10−11)(in/cycle)�(kpsi

√
in)m and m = 3.0.

As shown, a nick of size 0.004 in has been discovered on the bottom of the bar. Estimate
the number of cycles of life remaining.

Solution The stress range �σ is always computed by using the nominal (uncracked) area. Thus

I

c
= bh2

6
= 0.25(0.5)2

6
= 0.0104 in3

Therefore, before the crack initiates, the stress range is

�σ = �M

I/c
= 1200

0.0104
= 115.4(103) psi = 115.4 kpsi

which is below the yield strength. As the crack grows, it will eventually become long
enough such that the bar will completely yield or undergo a brittle fracture. For the ratio
of Sy/Sut it is highly unlikely that the bar will reach complete yield. For brittle fracture,
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10But see H. O. Fuchs and R. I. Stephens, Metal Fatigue in Engineering, Wiley, New York, 1980, pp. 69–71,
which reports a range of 35 to 60 percent for steels having Sut < 1400 MPa and as low as 20 percent for
high-strength steels.

designate the crack length as af . If β = 1, then from Eq. (6–51) with KI = KIc , we
approximate af as

af = 1

π

(
KIc

βσmax

)2
.= 1

π

(
73

115.4

)2

= 0.127 in

From Fig. 6–37, we compute the ratio af /h as

af

h
= 0.127

0.5
= 0.254

Thus af /h varies from near zero to approximately 0.254. From Fig. 6–37, for this range
β is nearly constant at approximately 1.07. We will assume it to be so, and re-evaluate
af as

af = 1

π

(
73

1.07(115.4)

)2

= 0.111 in

Thus, from Eq. (7–6), the estimated remaining life is

Nf = 1

C

∫ af

ai

da

(β�σ
√

πa)m
= 1

3.8(10−11)

∫ 0.111

0.004

da

[1.07(115.4)
√

πa]3

= −5.02(103)√
a

∣∣∣∣
0.111

0.004

= 64.3 (103) cycles

7–7 The Endurance Limit
The determination of endurance limits by fatigue testing is now routine, though a lengthy
procedure. Generally, stress testing is preferred to strain testing for endurance limits.

For preliminary and prototype design and for some failure analysis as well, a quick
method of estimating endurance limits is needed. There are great quantities of data in
the literature on the results of rotating-beam tests and simple tension tests of specimens
taken from the same bar or ingot. By plotting these as in Fig. 7–18, it is possible to see
whether there is any correlation between the two sets of results. The graph appears to
suggest that the endurance limit ranges from about 40 to 60 percent of the tensile
strength for steels up to about 212 kpsi (1460 MPa). Beginning at about Sut = 212 kpsi
(1460 MPa), the scatter appears to increase, but the trend seems to level off, as sug-
gested by the dashed horizontal line at S′

e = 107 kpsi (740 MPa).
Another series of tests, this time for various microstructures, is shown in Table 7–3.

In this table the endurance limits vary from about 23 to 63 percent of the tensile
strength.10

Now, it is important to observe that the dispersion of the endurance limit is not due
to a dispersion in the tensile strengths of the specimen, but rather that the spread occurs
even when the tensile strengths of a large number of specimens remain exactly the same.
Keep this in mind when choosing factors of safety.
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11Charles R. Mischke, “Prediction of Stochastic Endurance Strength,” Trans. of ASME, Journal of Vibration,
Acoustics, Stress, and Reliability in Design, vol. 109, no. 1, January 1987, pp. 113–122.

We wish now to present a method for estimating endurance limits. Note that esti-
mates obtained from quantities of data obtained from many sources probably have a
large spread and might deviate significantly from the results of actual laboratory tests of
the mechanical properties of specimens obtained through strict purchase-order specifi-
cations. Since the area of uncertainty is greater, compensation must be made by employ-
ing larger design factors than would be used for static design.

Mischke11 has analyzed a great deal of actual test data from several sources and
concluded that endurance limit can, indeed, be related to tensile strength. For steels, the
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Figure 7–18

Graph of endurance limits versus tensile strengths from actual test results for a large number of wrought
irons and steels. Ratios of S′

e/Sut of 0.60, 0.50, and 0.40 are shown by the solid and dashed lines.
Note also the horizontal dashed line for S′

e = 107 kpsi. Points shown having a tensile strength greater
than 214 kpsi have a mean endurance limit of S′

e = 107 kpsi and a standard deviation of 13.5 kpsi.
(Collated from data compiled by H. J. Grover, S. A. Gordon, and L. R. Jackson in Fatigue of Metals and Structures, Bureau of Naval Weapons
Document NAVWEPS 00-25-534, 1960; and from Fatigue Design Handbook, SAE, 1968, p. 42.)

Table 7–3

Endurance-Limit Ratio
S′

e�Sut for Various Steel
Microstructures
Source: Adapted from L. Sors,
Fatigue Design of Machine
Components, Pergamon Press,
Oxford, England, 1971.

Ferrite Pearlite Martensite
Range Average Range Average Range Average

Carbon steel 0.57–0.63 0.60 0.38–0.41 0.40 · · · 0.25
Alloy steel · · · · · · · · · · · · 0.23–0.47 0.35
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12J. E. Shigley and C. R. Mischke, Standard Handbook of Machine Design, 2nd ed., McGraw-Hill,
New York, 1996, pp. 13.34–13.37.
13Fatigue Design Handbook, vol. 4, Society of Automotive Engineers, New York, 1958, p. 27.

relationship is

S′
e =




0.504Sut kpsi or MPa Sut ≤ 212 kpsi (1460 MPa)

107 kpsi Sut > 212 kpsi

740 MPa Sut > 1460 MPa

(7–8)

where Sut is the minimum tensile strength. The prime mark on S′
e in this equation refers

to the rotating-beam specimen itself. We wish to reserve the unprimed symbol Se for the
endurance limit of any particular machine element subjected to any kind of loading.
Soon we shall learn that the two strengths may be quite different.

The data of Table 7–3 emphasize the difficulty of attempting to provide a single rule
for deriving the endurance limit from the tensile strength. The table also shows a part of
the cause of this difficulty. Steels treated to give different microstructures have different
S′

e/Sut ratios. It appears that the more ductile microstructures have a higher ratio.
Martensite has a very brittle nature and is highly susceptible to fatigue-induced crack-
ing; thus the ratio is low. When designs include detailed heat-treating specifications to
obtain specific microstructures, it is possible to use an estimate of the endurance limit
based on test data for the particular microstructure; such estimates are much more reli-
able and indeed should be used.

The endurance limits for various classes of cast irons, polished or machined, are
given in Table A–24. Aluminum alloys do not have an endurance limit. The fatigue
strengths of some aluminum alloys at 5(108) cycles of reversed stress are given in
Table A–24.

7–8 Fatigue Strength
As shown in Fig. 7–10, a region of low-cycle fatigue extends from N = 1 to about 103

cycles. In this region the fatigue strength Sf is only slightly smaller than the tensile
strength Sut . An analytical approach has been given by Mischke12 for both high-cycle
and low-cycle regions, requiring the parameters of the Manson-Coffin equation plus the
strain-strengthening exponent m. Engineers often have to work with less information.

Figure 7–10 indicates that the high-cycle fatigue domain extends from 103 cycles
for steels to the endurance limit life Ne, which is about 106 to 107 cycles. The purpose of
this section is to develop methods of approximation of the S-N diagram in the high-cycle
region, when information may be as sparse as the results of a simple tension test. Expe-
rience has shown high-cycle fatigue data are rectified by a logarithmic transform to both
stress and cycles-to-failure. Engineers can work with Eq. (7–2) in the following way:

(Sf )103 cycles = σ ′
F(2 · 103)b = f Sut

where f is the fraction of Sut represented by (Sf )103 cycles. Solving for f gives

f = σ ′
F

Sut
(2 · 103)b (7–9)

Now, from Eq. (3–11), σ ′
F = σ0ε

m , with ε = ε′
F . If this true-stress–true-strain equation

is not known, the SAE approximation13 for steels with HB ≤ 500 may be used:

σ ′
F = Sut + 50 kpsi or σ ′

F = Sut + 345 MPa (7–10)
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The exponent b is found from σa = Se = σ ′
F(2Ne)

b as

b = − log(σ ′
F/Se)

log(2Ne)
(7–11)

Thus the equation Sf = σ ′
F(2N )b is known. For example, if Sut = 105 kpsi and

Se = 52.5 kpsi at 106 cycles-to-failure,

σ ′
F = 105 + 50 = 155 kpsi

b = − log(155/52.5)

log(2 · 106)
= −0.0746

f = 155

105
(2 · 103)−0.0746 = 0.837

and

Sf = 155(2N )−0.0746 (a)

Empirically, the common curve fit is 

Sf = aN b (7–12)

where N is cycles to failure and the constants a and b are defined by the points 103,(Sf )103

and 106, Se, with (Sf )103 = f Sut . Substituting these two points in Eq. (7–12) gives

a = ( f Sut)
2

Se
( 7–13)

b = −1

3
log

(
f Sut

Se

)
( 7–14)

Continuing the informal example,

a = 0.83721052

52.5
= 147.1 kpsi

b = −1

3
log

0.837(105)

52.5
= −0.0746

and the resulting equation is

Sf = 147.1N−0.0746 (b)

Note that 2−0.0746(155) = 147.2, so Eqs. (a) and (b) are really the same. There are
popular curve fits with f treated as a constant, normally 0.9, but f varies with Sut . The
following table shows the nature of such an approximation:

Sut, kpsi 60 90 120 200

f 0.93 0.86 0.82 0.77

If a completely reversed stress σa is given, setting Sf = σa in Eq. (7–12), the number of
cycles-to-failure can be expressed as

N =
(

σa

a

)1/b

(7–15)
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Low-cycle fatigue is often defined (see Fig. 7–10) as failure that occurs in a range
of 1 ≤ N ≤ 103 cycles. On a loglog plot such as Fig. 7–10 the failure locus in this range
is nearly linear below 103 cycles. A straight line between 103, f Sut and 1, Sut (trans-
formed) is conservative, and it is given by

Sf ≥ Sut N (log f )/3 1 ≤ N ≤ 103 (7–16)

EXAMPLE 7–2 A 1050 HR steel has an ultimate tensile strength of Sut = 105 kpsi and a yield strength
of 60 kpsi.
(a) Estimate the rotating-beam endurance limit at 106 cycles.
(b) Estimate the endurance strength for a polished rotating-beam specimen correspond-
ing to 104 cycles to failure.
(c) Estimate the expected life under a completely reversed stress of 55 kpsi.

Solution (a) From Eq. (7–8),

Answer S′
e = 0.504(105) = 52.9 kpsi

(b) From Eq. (7–10),

σ ′
F = 105 + 50 = 155 kpsi

From Eq. (7–11), with Se = S′
e ,

b = − log(155/52.9)

log(2 · 106)
= −0.0741

From Eq. (7–9),

f = 155

105
(2 · 103)−0.0741 = 0.840

From Eq. (7–13),

a = [(0.840)(105)]2

52.9
= 147.1 kpsi

From Eq. (7–14),

b = −1

3
log

[
0.840(105)

52.9

]
= −0.0740

Sf = 147.2N−0.0740

Answer (Sf )104 = 147.1(104)−0.0740 = 74.4 kpsi

(c) From Eq. (7–15),

Answer N =
(

55

147.1

)1/−0.0740

= 593 810 = 5.9(105) cycles
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14Joseph Marin, Mechanical Behavior of Engineering Materials, Prentice-Hall, Englewood Cliffs, N.J.,
1962, p. 224.
15Complete stochastic analysis is presented in Sec. 7–17. Until that point the presentation is one of a
deterministic nature. However, we must take care of the known scatter in the fatigue data. This means that
we will not carry out a true reliability analysis at this time but will attempt to answer the question: What is
the probability that a known (assumed) stress will exceed the strength of a randomly selected component
made from this material population?

7–9 Endurance Limit Modifying Factors
We have seen that the rotating-beam specimen used in the laboratory to determine en-
durance limits is prepared very carefully and tested under closely controlled conditions.
It is unrealistic to expect the endurance limit of a mechanical or structural member to
match the values obtained in the laboratory. Some differences include

• Material: composition, basis of failure, variability

• Manufacturing: method, heat treatment, fretting corrosion, surface condition, stress
concentration

• Environment: corrosion, temperature, stress state, relaxation times

• Design: size, shape, life, stress state, stress concentration, speed, fretting, galling

Marin14 identified factors that quantified the effects of surface condition, size, loading,
temperature, and miscellaneous items. The question of whether to adjust the endurance
limit by subtractive corrections or multiplicative corrections was resolved by an exten-
sive statistical analysis of a 4340 (electric furnace, aircraft quality) steel, in which a
correlation coefficient of 0.85 was found for the multiplicative form and 0.40 for the
additive form. A Marin equation is therefore written as

Se = kakbkckdkek f S′
e (7–17)

where ka = surface condition modification factor

kb = size modification factor

kc = load modification factor

kd = temperature modification factor

ke = reliability factor15

kf = miscellaneous-effects modification factor

S′
e = rotary-beam test specimen endurance limit

Se = endurance limit at the critical location of a machine part in the geometry
and condition of use

When endurance tests of parts are not available, estimations are made by applying Marin
factors to the endurance limit.

Surface Factor ka

The surface of a rotating-beam specimen is highly polished, with a final polishing in the
axial direction to smooth out any circumferential scratches. The surface modification
factor depends on the quality of the finish of the actual part surface and on the tensile
strength of the part material. To find quantitative expressions for common finishes of ma-
chine parts (ground, machined, or cold-drawn, hot-rolled, and as-forged), the coordinates
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Surface Factor a Exponent
Finish Sut, kpsi Sut, MPa b

Ground 1.34 1.58 −0.085
Machined or cold-drawn 2.70 4.51 −0.265
Hot-rolled 14.4 57.7 −0.718
As-forged 39.9 272. −0.995

Table 7–4

Parameters for Marin
Surface Modification
Factor, Eq. (7–18)

16C. J. Noll and C. Lipson, “Allowable Working Stresses,” Society for Experimental Stress Analysis, vol. 3,
no. 2, 1946, p. 29. Reproduced by O. J. Horger (ed.), Metals Engineering Design ASME Handbook,
McGraw-Hill, New York, 1953, p. 102.
17Mischke, op. cit., Table 3.

of data points were recaptured from a plot of endurance limit versus ultimate tensile
strength of data gathered by Lipson and Noll and reproduced by Horger.16 The result of
regression analysis by Mischke was of the form

ka = aSb
ut (7–18)

where Sut is the minimum tensile strength and a and b are to be found in Table 7–4.

From C.J. Noll and C. Lipson, “Allowable Working Stresses,” Society for Experimental
Stress Analysis, vol. 3, no. 2, 1946 p. 29. Reproduced by O.J. Horger (eds.) Metals
Engineering Design ASME Handbook, McGraw-Hill, New York. Copyright © 1953 by
The McGraw-Hill Companies, Inc. Reprinted by permission.

EXAMPLE 7–3 A steel has a minimum ultimate strength of 520 MPa and a machined surface. Esti-
mate ka.

Solution From Table 7–4, a = 4.51 and b =−0.265. Then, from Eq. (7–18)

ka = 4.51(520)−0.265 = 0.860

Size Factor kb

The size factor has been evaluated using 133 sets of data points.17 The results for bend-
ing and torsion may be expressed as

kb =




(d/0.3)−0.107 = 0.879d−0.107 0.11 ≤ d ≤ 2 in

0.91d−0.157 2 < d ≤ 10 in

(d/7.62)−0.107 = 1.24d−0.107 2.79 ≤ d ≤ 51 mm

1.51d−0.157 51 < d ≤ 254 mm

( 7–19)

For axial loading there is no size effect, so

kb = 1 (7–20)
but see kc.

One of the problems that arise in using Eq. (7–19) is what to do when a round bar
in bending is not rotating, or when a noncircular cross section is used. For example,
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what is the size factor for a bar 6 mm thick and 40 mm wide? The approach to be used
here employs an effective dimension de obtained by equating the volume of material
stressed at and above 95 percent of the maximum stress to the same volume in the
rotating-beam specimen.18 It turns out that when these two volumes are equated,
the lengths cancel, and so we need only consider the areas. For a rotating round section,
the 95 percent stress area is the area in a ring having an outside diameter d and an inside
diameter of 0.95d. So, designating the 95 percent stress area A0.95σ , we have

A0.95σ = π

4
[d2 − (0.95d)2] = 0.0766d2 (7–21)

This equation is also valid for a rotating hollow round. For nonrotating solid or hollow
rounds, the 95 percent stress area is twice the area outside of two parallel chords having
a spacing of 0.95d, where d is the diameter. Using an exact computation, this is

A0.95σ = 0.01046d2 (7–22)

with de in Eq. (7–12), setting Eqs. (7–21) and (7–22) equal to each other enables us to
solve for the effective diameter. This gives

de = 0.370d (7–23)

as the effective size of a round corresponding to a nonrotating solid or hollow round.
A rectangular section of dimensions h × b has A0.95σ = 0.05hb. Using the same

approach as before,

de = 0.808(hb)1/2 (7–24)

Table 7–5 provides A0.95σ areas of common structural shapes undergoing non-
rotating bending.

18See R. Kuguel, “A Relation between Theoretical Stress Concentration Factor and Fatigue Notch Factor
Deduced from the Concept of Highly Stressed Volume,” Proc. ASTM, vol. 61, 1961, pp. 732–748.

EXAMPLE 7–4 A steel shaft loaded in bending is 32 mm in diameter, abutting a filleted shoulder 38 mm
in diameter. The shaft material has a mean ultimate tensile strength of 690 MPa. Esti-
mate the Marin size factor kb if the shaft is used in
(a) A rotating mode.
(b) A nonrotating mode.

Solution (a) From Eq. (7–19),

Answer kb =
(

d

7.62

)−0.107

=
(

32

7.62

)−0.107

= 0.858

(b) From Table 7–5,

de = 0.37d = 0.37(32) = 11.84 mm

From Eq. (7–19),

Answer kb =
(

11.84

7.62

)−0.107

= 0.954
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A0.95σ =
{ 0.05ab axis 1-1

0.052xa + 0.1t f (b − x) axis 2-2

1
22

1

a

b tf

x

A0.95σ =
{ 0.10at f axis 1-1

0.05ba t f > 0.025a axis 2-2

1

2 2

1

a

b
tf

A0.95σ = 0.05hb
de = 0.808

√
hb

b

h

2

2

11

A0.95σ = 0.01046d2

de = 0.370d
d

Table 7–5

A0.95σ Areas of
Common Nonrotating
Structural Shapes

19Use this only for pure torsional fatigue loading. When torsion is combined with other stresses, such
as bending, kc = 1 and the combined loading is managed by using the effective von Mises stress as in
Sec. 6–5. Note: For pure torsion, the distortion energy predicts that (kc)torsion = 0.577.

Loading Factor kc

When fatigue tests are carried out with rotating bending, axial (push-pull), and torsional
loading, the endurance limits differ with Sut. This is discussed further in Sec. 7–17. Here,
we will specify average values of the load factor as

kc =
{ 1 bending

0.85 axial
0.59 torsion19

(7–25)

Temperature Factor kd

When operating temperatures are below room temperature, brittle fracture is a strong
possibility and should be investigated first. When the operating temperatures are higher
than room temperature, yielding should be investigated first because the yield strength
drops off so rapidly with temperature; see Fig. 3–8. Any stress will induce creep in a
material operating at high temperatures; so this factor must be considered too. Finally,
it may be true that there is no fatigue limit for materials operating at high temperatures.
Because of the reduced fatigue resistance, the failure process is, to some extent, depen-
dent on time.
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The limited amount of data available show that the endurance limit for steels in-
creases slightly as the temperature rises and then begins to fall off in the 400 to 700°F
range, not unlike the behavior of the tensile strength shown in Fig. 3–8. For this reason
it is probably true that the endurance limit is related to tensile strength at elevated tem-
peratures in the same manner as at room temperature.20 It seems quite logical, therefore,
to employ the same relations to predict endurance limit at elevated temperatures as are
used at room temperature, at least until more comprehensive data become available. At
the very least, this practice will provide a useful standard against which the performance
of various materials can be compared.

Table 7–6 has been obtained from Fig. 3–8 by using only the tensile-strength data.
Note that the table represents 145 tests of 21 different carbon and alloy steels. A fourth-
order polynomial curve fit to the data underlying Fig. 3–8 gives

kd = 0.975 + 0.432(10−3)TF − 0.115(10−5)T 2
F

+ 0.104(10−8)T 3
F − 0.595(10−12)T 4

F ( 7–26)

where 70 ≤ TF ≤ 1000◦F.
Two types of problems arise when temperature is a consideration. If the rotating-

beam endurance limit is known at room temperature, then use

kd = ST

SRT
(7–27)

from Table 7–6 or Eq. (7–26) and proceed as usual. If the rotating-beam endurance limit
is not given, then compute it using Eq. (7–8) and the temperature-corrected tensile
strength obtained by using the factor from Table 7–6. Then use kd = 1.

20For more, see Table 2 of ANSI/ASME B106. 1M-1985 shaft standard, and E. A. Brandes (ed.), Smithell’s
Metals Reference Book, 6th ed., Butterworth, London, 1983, pp. 22–134 to 22–136, where endurance limits
from 100 to 650°C are tabulated.

Temperature, °C ST/SRT Temperature, °F ST/SRT

20 1.000 70 1.000
50 1.010 100 1.008

100 1.020 200 1.020
150 1.025 300 1.024
200 1.020 400 1.018
250 1.000 500 0.995
300 0.975 600 0.963
350 0.943 700 0.927
400 0.900 800 0.872
450 0.843 900 0.797
500 0.768 1000 0.698
550 0.672 1100 0.567
600 0.549

*Data source: Fig. 3–8.

Table 7–6

Effect of Operating
Temperature on the
Tensile Strength of
Steel.* (ST = tensile
strength at operating
temperature;
SRT = tensile strength
at room temperature; 
0.099 ≤ σ̂ ≤ 0.110)
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21E. B. Haugen and P. H. Wirsching, “Probabilistic Design,” Machine Design, vol. 47, no. 12, 1975,
pp. 10–14.

EXAMPLE 7–5 A 1035 steel has a tensile strength of 70 kpsi and is to be used for a part that sees 450°F
in service. Estimate the Marin temperature modification factor and (Se)450◦ if
(a) The room-temperature endurance limit by test is (S′

e)70◦ = 39.0 kpsi.
(b) Only the tensile strength at room temperature is known.

Solution (a) First, from Eq. (7–26),

kd = 0.975 + 0.432(10−3)(450) − 0.115(10−5)(4502)

+ 0.104(10−8)(4503) − 0.595(10−12)(4504) = 1.007

Thus,

Answer (Se)450◦ = kd(S′
e)70◦ = 1.007(39.0) = 39.3 kpsi

(b) Interpolating from Table 7–6 gives

(ST /SRT )450◦ = 1.018 + (0.995 − 1.018)
450 − 400

500 − 400
= 1.007

Thus, the tensile strength at 450°F is estimated as

(Sut)450◦ = (ST /SRT )450◦(Sut)70◦ = 1.007(70) = 70.5 kpsi

From Eq. (7–8) then,

Answer (Se)450◦ = 0.504 (Sut)450◦ = 0.504(70.5) = 35.5 kpsi

Part a gives the better estimate due to actual testing of the particular material.

Reliability Factor ke

The discussion presented here accounts for the scatter of data such as shown in
Fig. 7–18 where the mean endurance limit is shown to be S′

e/Sut
.= 0.5, or as given by

Eq. (7–8). Most endurance strength data are reported as mean values. Data presented
by Haugen and Wirching21 show standard deviations of endurance strengths of less than
8 percent. Thus the reliability modification factor to account for this can be written as

ke = 1 − 0.08 za (7–28)

where za is defined by Eq. (2–16) and values for any desired reliability can be deter-
mined from Table A–10. Table 7–7 gives reliability factors for some standard specified
reliabilities.

For a more comprehensive approach to reliability, see Sec. 7–17.

Miscellaneous-Effects Factor kf

Though the factor kf is intended to account for the reduction in endurance limit due to
all other effects, it is really intended as a reminder that these must be accounted for, be-
cause actual values of kf are not always available.

Residual stresses may either improve the endurance limit or affect it adversely.
Generally, if the residual stress in the surface of the part is compression, the endurance
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Se (case)

� or �

Se (core)

Case

Core

Figure 7–19

The failure of a case-hardened
part in bending or torsion. In
this example, failure occurs in
the core.

limit is improved. Fatigue failures appear to be tensile failures, or at least to be caused
by tensile stress, and so anything that reduces tensile stress will also reduce the possi-
bility of a fatigue failure. Operations such as shot peening, hammering, and cold rolling
build compressive stresses into the surface of the part and improve the endurance limit
significantly. Of course, the material must not be worked to exhaustion.

The endurance limits of parts that are made from rolled or drawn sheets or bars,
as well as parts that are forged, may be affected by the so-called directional character-
istics of the operation. Rolled or drawn parts, for example, have an endurance limit
in the transverse direction that may be 10 to 20 percent less than the endurance limit in
the longitudinal direction.

Parts that are case-hardened may fail at the surface or at the maximum core radius,
depending upon the stress gradient. Figure 7–19 shows the typical triangular stress dis-
tribution of a bar under bending or torsion. Also plotted as a heavy line in this figure are
the endurance limits Se for the case and core. For this example the endurance limit of the
core rules the design because the figure shows that the stress σ or τ, whichever applies, at
the outer core radius, is appreciably larger than the core endurance limit.

Of course, if stress concentration is also present, the stress gradient is much steeper,
and hence failure in the core is unlikely.

Corrosion
It is to be expected that parts that operate in a corrosive atmosphere will have a lowered
fatigue resistance. This is, of course, true, and it is due to the roughening or pitting of the
surface by the corrosive material. But the problem is not so simple as the one of finding

Reliability, % Transformation Variate za Reliability Factor ke

50 0 1.000
90 1.288 0.897
95 1.645 0.868
99 2.326 0.814
99.9 3.091 0.753
99.99 3.719 0.702
99.999 4.265 0.659
99.9999 4.753 0.620

Table 7–7

Reliability Factors ke

Corresponding to
8 Percent Standard
Deviation of the
Endurance Limit
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the endurance limit of a specimen that has been corroded. The reason for this is that the
corrosion and the stressing occur at the same time. Basically, this means that in time any
part will fail when subjected to repeated stressing in a corrosive atmosphere. There is no
fatigue limit. Thus the designer’s problem is to attempt to minimize the factors that
affect the fatigue life; these are:

• Mean or static stress

• Alternating stress

• Electrolyte concentration

• Dissolved oxygen in electrolyte

• Material properties and composition

• Temperature

• Cyclic frequency

• Fluid flow rate around specimen

• Local crevices

Electrolytic Plating
Metallic coatings, such as chromium plating, nickel plating, or cadmium plating, reduce
the endurance limit by as much as 50 percent. In some cases the reduction by coatings
has been so severe that it has been necessary to eliminate the plating process. Zinc
plating does not affect the fatigue strength. Anodic oxidation of light alloys reduces
bending endurance limits by as much as 39 percent but has no effect on the torsional
endurance limit.

Metal Spraying
Metal spraying results in surface imperfections that can initiate cracks. Limited tests
show reductions of 14 percent in the fatigue strength.

Cyclic Frequency
If, for any reason, the fatigue process becomes time-dependent, then it also becomes
frequency-dependent. Under normal conditions, fatigue failure is independent of fre-
quency. But when corrosion or high temperatures, or both, are encountered, the cyclic
rate becomes important. The slower the frequency and the higher the temperature, the
higher the crack propagation rate and the shorter the life at a given stress level.

Frettage Corrosion
The phenomenon of frettage corrosion is the result of microscopic motions of tightly fit-
ting parts or structures. Bolted joints, bearing-race fits, wheel hubs, and any set of
tightly fitted parts are examples. The process involves surface discoloration, pitting, and
eventual fatigue. The frettage factor kf depends upon the material of the mating pairs
and ranges from 0.24 to 0.90.

7–10 Stress Concentration and Notch Sensitivity
In Sec. 4–14 it was pointed out that the existence of irregularities or discontinuities, such
as holes, grooves, or notches, in a part increases the theoretical stresses significantly in
the immediate vicinity of the discontinuity. Equation (4–48) defined a stress concentra-
tion factor Kt (or Kts), which is used with the nominal stress to obtain the maximum
resulting stress due to the irregularity or defect. It turns out that some materials are not
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Figure 7–20

Notch-sensitivity charts for
steels and UNS A92024-T
wrought aluminum alloys
subjected to reversed bending
or reversed axial loads. For
larger notch radii, use the
values of q corresponding
to the r = 0.16-in (4-mm)
ordinate. (From George Sines and J. L.
Waisman (eds.), Metal Fatigue, McGraw-
Hill, New York. Copyright © 1969 by The
McGraw-Hill Companies, Inc. Reprinted by
permission.)

fully sensitive to the presence of notches and hence, for these, a reduced value of Kt can
be used. For these materials, the maximum stress is, in fact,

σmax = K f σ0 or τmax = K f sτ0 (7–29)

where K f is a reduced value of Kt and σ0 is the nominal stress. The factor K f is com-
monly called a fatigue stress-concentration factor, and hence the subscript f. So it is
convenient to think of Kf as a stress-concentration factor reduced from Kt because of
lessened sensitivity to notches. The resulting factor is defined by the equation

K f = maximum stress in notched specimen

stress in notch-free specimen
(a)

Notch sensitivity q is defined by the equation

q = K f − 1

Kt − 1
or qshear = K f s − 1

Kts − 1
(7–30)

where q is usually between zero and unity. Equation (7–30) shows that if q = 0, then
K f = 1, and the material has no sensitivity to notches at all. On the other hand, if
q = 1, then K f = Kt , and the material has full notch sensitivity. In analysis or design
work, find Kt first, from the geometry of the part. Then specify the material, find q, and
solve for Kf from the equation

K f = 1 + q(Kt − 1) or K f s = 1 + qshear(Kts − 1) (7–31)

For steels and 2024 aluminum alloys, use Fig. 7–20 to find q for bending and axial
loading. For shear loading, use Fig. 7–21. In using these charts it is well to know that the
actual test results from which the curves were derived exhibit a large amount of scatter.
Because of this scatter it is always safe to use K f = Kt if there is any doubt about the
true value of q. Also, note that q is not far from unity for large notch radii.

The notch sensitivity of the cast irons is very low, varying from 0 to about 0.20,
depending upon the tensile strength. To be on the conservative side, it is recommended
that the value q = 0.20 be used for all grades of cast iron.
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Figure 7–20 has as its basis the Neuber equation, which is given by

K f = 1 + Kt − 1

1 + √
a/r

(7–32)

where 
√

a is defined as the Neuber constant and is a material constant. Equating
Eqs. (7–30) and (7–32) yields the notch sensitivity equation

q = 1

1 +
√

a√
r

(7–33)

For steel, with Sut in kpsi, the Neuber constant can be approximated by a third-order
polynomial fit of data as√

a = 0.245 799 − 0.307 794(10−2)Sut

+ 0.150 874(10−4)S2
ut − 0.266 978(10−7)S3

ut

(7–34)

To use Eq. (7–32) or (7–33) for torsion for low-alloy steels, increase the ultimate
strength by 20 kpsi in Eq. (7–34) and apply this value of 

√
a.

A distinction in the configuration of the notch is accounted for in the modified
Neuber equation (after Heywood), where the fatigue stress-concentration factor Kf is
given as

K f = Kt

1 + 2(Kt − 1)

Kt

√
a√
r

(7–35)

where Table 7–8 gives values of 
√

a for steels for transverse holes, shoulders, and
grooves.

Table 7–8

Heywood’s Parameter√
a for Steels

√
a

(√
in

)
,

√
a

(√
mm

)
,

Feature Sut in kpsi Sut in MPa

Transverse hole 5�Sut 174�Sut

Shoulder 4�Sut 139�Sut

Groove 3�Sut 104�Sut
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Notch-sensitivity curves for
materials in reversed torsion.
For larger notch radii, use
the values of qshear

corresponding to r = 0.16 in
(4 mm).
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EXAMPLE 7–6 A steel shaft in bending has an ultimate strength of 690 MPa and a shoulder with a fillet
radius of 3 mm connecting a 32-mm diameter with a 38-mm diameter. Estimate Kf

using:
(a) Figure 7–20.
(b) Equations (7–32) and (7–34).
(c) Equation (7–35).

Solution From Fig. A–15–9, using D/d = 38/32 = 1.1875, r/d = 3/32 = 0.093 75, we read the
graph to find Kt

.= 1.65.
(a) From Fig. 7–20, for Sut = 690 MPa and r = 3 mm, q

.= 0.84. Thus, from Eq. (7–31)

K f = 1 + q(Kt − 1)
.= 1 + 0.84(1.65 − 1) = 1.55

(b) From Eq. (7–34) with Sut = 690 MPa = 100 kpsi, 
√

a = 0.062
√

in = 0.312
√

mm.

Substituting this into Eq. (7–32) with r = 3 mm gives

K f = 1 + Kt − 1

1 + √
a/r

.= 1 + 1.65 − 1

1 + 0.312√
3

= 1.55

(c) From Table 7–8,

√
a = 139

Sut
= 139

690
= 0.2015

√
mm

From Eq. (7–35),

K f = Kt

1 + 2(Kt − 1)

Kt

√
a√
r

= 1.65

1 + 2(1.65 − 1)

1.65

0.2015√
3

= 1.51

which is 2.5 percent lower than in parts a and b.

For simple loading, it is acceptable to reduce the endurance limit by either dividing
the unnotched specimen endurance limit by K f or multiplying the reversing stress by K f .
However, in dealing with combined stress problems that may involve more than one
value of fatigue-concentration factor, the stresses are multiplied by K f .

EXAMPLE 7–7 Consider an unnotched specimen with an endurance limit of 55 kpsi. If the specimen
was notched such that K f = 1.6, what would be the factor of safety against failure for
N > 106 cycles at a reversing stress of 30 kpsi?
(a) Solve by reducing S′

e.

(b) Solve by increasing the applied stress.

Solution (a) The endurance limit of the notched specimen is given by

Se = S′
e

K f
= 55

1.6
= 34.4 kpsi
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and the factor of safety is

n = Se

σa
= 34.4

30
= 1.15

(b) The maximum stress can be written as

(σa)max = K f σa = 1.6(30) = 48.0 kpsi

and the factor of safety is

n = S′
e

K f σa
= 55

48
= 1.15

When cycles to failure, Nf, are less than 106 there is experimental evidence that the
fatigue stress-concentration factor (K f )Nf is less than K f . Studies have shown that as Nf

approaches 103 cycles, (K f )Nf for high-strength (usually low-ductility) metals ap-
proaches Kf, whereas for low-strength (usually ductile) metals (K f )Nf approaches unity.
A conservative approach is to keep K f constant within the range 103 ≤ N ≤ 106. To
account for a reduction in K f , Shigley and Mischke22 suggest defining a notch sensitivity
at 103 cycles, q103, given by

q103 = (K f )103 − 1

K f − 1
= −0.18 + 0.43(10−2)Sut − 0.45(10−5)S2

ut (7–36)

where Sut is in kpsi, Sut < 330 kpsi, and Kf is the fatigue stress-concentration factor for
106 cycles. Solving for (K f )103 yields

(K f )103 = 1 − (K f − 1)
[
0.18 − 0.43(10−2)Sut + 0.45(10−5)S2

ut

]
(7–37)

Assuming a straight-line loglog S-N plot for the notched specimen from f Sut/ (K f )103,

103 to S′
e/K f , 106 gives for Sf /(K f )N , N

(K f )N = (K f )
2
103

K f
N (1/3) log[K f /(K f )103 ] (7–38)

EXAMPLE 7–8 Using the results of Ex. 7–6, find the value of (K f )105 .

Solution From Ex. 7–6, Kf = 1.51 (part c), Sut = 690/6.89 = 100 kpsi. From Eq. (7–37),

(K f )103 = 1 − (K f − 1)
[
0.18 − 0.43(10−2)Sut + 0.45(10−5)S2

ut

]
= 1 − (1.51 − 1)[0.18 − 0.43(10−2)100 + 0.45(10−5)1002]

= 1.105

22J. E. Shigley and C. R. Mischke, Mechanical Engineering Design, 6th ed., McGraw-Hill, New York, 2001,
p. 386–387.
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From Eq. (7–38),

Answer (K f )103 = 1.1052

1.51
105(1/3) log(1.51/1.105) = 1.36

Up to this point, examples illustrated each factor in Marin’s equation and stress
concentrations alone. Let us consider a number of factors occurring simultaneously.

EXAMPLE 7–9 A 1015 hot-rolled steel bar has been machined to a diameter of 1 in. It is to be placed
in reversed axial loading for 70 000 cycles to failure in an operating environment of
550°F. Using ASTM minimum properties, and a reliability of 99 percent, estimate the
endurance limit and fatigue strength at 70 000 cycles.

Solution From Table A–20, Sut = 50 kpsi at 70°F. Since the rotating-beam specimen endurance
limit is not known at room temperature, we determine the ultimate strength at the ele-
vated temperature first, using Table 7–6. From Table 7–6,(

ST

SRT

)
550◦

= 0.995 + 0.963

2
= 0.979

The ultimate strength at 550°F is then

(Sut)550◦ = (ST /SRT )550◦ (Sut)70◦ = 0.979(50) = 49.0 kpsi

The rotating-beam specimen endurance limit at 550°F is then estimated from Eq. (7–8)
as

S′
e = 0.504(49) = 24.7 kpsi

Next, we determine the Marin factors. For the machined surface, Eq. (7–18) with
Table 7–4 gives

ka = aSb
ut = 2.70(49−0.265) = 0.963

For axial loading, from Eq. (7–20), the size factor kb = 1, and the loading factor is
kc = 0.85, from Eq. (7–25). The temperature factor kd = 1, since we accounted for the
temperature in modifying the ultimate strength and consequently the endurance limit.
For 99 percent reliability, from Table 7–7, ke = 0.814. Finally, since no other conditions
were given, the miscellaneous factor is kf = 1. The endurance limit for the part is esti-
mated by Eq. (7–17) as

Answer
Se = kakbkckdkek f S′

e

= 0.963(1)(0.85)(1)(0.814)(1)24.7 = 16.5 kpsi

For the fatigue strength at 70 000 cycles we need to construct the S-N equation. From
Sec. 7–8, Eq. (7–10),

σ ′
F = 49 + 50 = 99 kpsi
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From Eq. (7–11),

b = − log(σ ′
F/Se)

log(2Ne)
= − log(99/16.5)

log(2 · 106)
= −0.1235

Equation (7–9) then gives

f = σ ′
F

Sut
(2 · 103)b = 99

49
(2 · 103)−0.1235 = 0.790

From Eq. (7–13),

a = ( f Sut)
2

Se
= [0.790(49)]2

16.5
= 90.8 kpsi

Finally, Eq. (7–12) gives

Answer Sf = aN b = 90.8(70 000)−0.1235 = 22.9 kpsi

EXAMPLE 7–10 Figure 7–22a shows a rotating axle simply supported in ball bearings at A and D and
loaded by a nonrotating force F of 6.8 kN. Using ASTM “minimum” strengths, estimate
the life of the part.

Solution From Fig. 7–22b we learn that failure will probably occur at B rather than at C or at the
point of maximum moment. Point B has a smaller cross section, a higher bending
moment, and a higher stress-concentration factor than C, and the location of maximum
moment has a larger size and no stress-concentration factor.

(a)

(b)

A B

MB

MC

Mmax

C D

30 30
32 3538

10 10

A B C D6.8 kN

250 12510075

R2R1

Figure 7–22

(a) Shaft drawing showing all
dimensions in millimeters; all
fillets 3-mm radius. The shaft
rotates and the load is
stationary; material is
machined from AISI 1050
cold-drawn steel. (b) Bending-
moment diagram.
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We shall solve the problem by first estimating the strength at point B, since the
strength will be different elsewhere, and comparing this strength with the stress at the
same point.

From Table A–20 we find Sut = 690 MPa and Sy = 580 MPa. The endurance limit
S′

e is estimated as

S′
e = 0.504(690) = 347.8 MPa

From Eq. (7–18) and Table 7–4,

ka = 4.51(690)−0.265 = 0.798

From Eq. (7–19),

kb = (32/7.62)−0.107 = 0.858

Since kc = kd = ke = kf = 1,

Se = 0.798(0.858)347.8 = 238 MPa

To find the geometric stress-concentration factor Kt we enter Fig. A–15–9 with D/d =
38/32 = 1.1875 and r/d = 3/32 = 0.093 75 and read Kt

.= 1.65. From Table 7–8,√
a = 139/690 = 0.201

√
mm. From Eq. (7–35),

K f = Kt

1 + 2(Kt − 1)

Kt

√
a√
r

.= 1.65

1 + 2(1.65 − 1)

1.65

0.201√
3

= 1.51

This stress-concentration factor applies to 106 cycles or more.
The next step is to estimate the bending stress at point B. The bending moment is

MB = R1x = 225F

550
250 = 225(6.8)

550
250 = 695 N · m

Just to the left of B the section modulus is I/c = πd3/32 = π3.23/32 = 3.22 cm3. The
reversing bending stress is, assuming infinite life,

σ = K f
MB

I/c
= 1.51

695

3.22
= 325.9 MPa

This stress is greater than Se and less than Sy. This means we have both finite life and no
yielding on the first cycle. There are two approaches we may take at this point. The first,
conservative, approach is to assume that Kf is constant regardless of N. The second ap-
proach is to use Eq. (7–38). We will see that for this problem, approach 1 is far easier.

Approach 1. From Eq. (7–10),

σ ′
F = Sut + 345 = 690 + 345 = 1035 MPa

From Eq. (7–11),

b = − log(σ ′
F/Se)

log(2Ne)
= − log(1035/238)

log(2 · 106)
= −0.1013

From Eq. (7–9),

f = σ ′
F

Sut
(2 · 103)b = 1035

690
(2 · 103)−0.1013 = 0.695

From Eq. (7–13),

a = ( f Sut)
2

Se
= [0.695(690)]2

238
= 966.3 MPa
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Answer From Eq. (7–15),
(Approach 1)

N =
(

σa

a

)1/b

=
(

325.9

966.3

)−1/0.1013

= 45.7(103) cycles

Approach 2. Using Eq. (7–38) requires a value of N, which is unknown. Because
we don’t know KN, instead of applying the fatigue stress-concentration factor to stress
σ we will reduce the strengths in the S-N diagram by the factor. Note that this approach
is not advisable for combined stress problems. The nominal stress is

σnom = MB

I/c
= 695

3.22
= 215.8 MPa

From Eq. (7–37), with Sut = 690/6.9 = 100 kpsi,

(K f )103 = 1 − (K f − 1)
[
0.18 − 0.43(10−2)Sut + 0.45(10−5)S2

ut

]
= 1 − (1.51 − 1)[0.18 − 0.43(10−2)100 + 0.45(10−5)1002]

= 1.105

The S-N equation incorporating the fatigue stress-concentration factor can be written as
N = (σa/a′)1/b′

, where in form similar to that of Eqs. (7–13) and (7–14),

a′ = [ f Sut/(K f )103 ]2

Se/K f
= a

K f

(K f )
2
103

= 966.3
1.51

1.1052
= 1195 MPa

b′ = −1

3
log

[
f Sut/(K f )103

Se/K f

]
= b − 1

3
log

K f

(K f )103

= −0.1013 − 1

3
log

1.51

1.105
= −0.147

where use of a and b from approach 1 was used. The number of cycles can now be
determined from Eq. (7–15) as

Answer N =
(σa

a′
)1/b′

=
(

215.8

1195

)−1/0.147

= 113.9(103) cycles
(Approach 2)

We see that approach 1 is indeed more conservative than approach 2, by a factor of
2.5. This is the effect of a logarithmic scale. Approach 2 predicts a fatigue stress-
concentration factor according to Eq. (7–38) of

(K f )113.9(103) = (K f )
2
103

K f
N (1/3) log[K f /(K f )103 ]

= 1.1052

1.51
[113.9(103)](1/3) log(1.51/1.105) = 1.37

Without any further knowledge of the behavior of the material given, one might select
the solution of approach 1. However, if it is known that Kf approaches unity for 103

cycles for this material, then approach 2 would be appropriate.
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Figure 7–23

Some stress-time relations:
(a) fluctuating stress with high-
frequency ripple; (b and c)
nonsinusoidal fluctuating
stress; (d) sinusoidal fluctuating
stress; (e) repeated stress;
(f ) completely reversed
sinusoidal stress.

7–11 Characterizing Fluctuating Stresses
Fluctuating stresses in machinery often take the form of a sinusoidal pattern because of
the nature of some rotating machinery. However, other patterns, some quite irregular, do
occur. It has been found that in periodic patterns exhibiting a single maximum and a
single minimum of force, the shape of the wave is not important, but the peaks on both
the high side (maximum) and the low side (minimum) are important. Thus Fmax and
Fmin in a cycle of force can be used to characterize the force pattern. It is also true that
ranging above and below some baseline can be equally effective in characterizing the
force pattern. If the largest force is Fmax and the smallest force is Fmin, then a steady
component and an alternating component can be constructed as follows:

Fm = Fmax + Fmin

2
Fa =

∣∣∣∣ Fmax − Fmin

2

∣∣∣∣
where Fm is the midrange component of force, and Fa is the amplitude component of
force.

Figure 7–23 illustrates some of the various stress-time traces that occur. The com-
ponents of stress, some of which are shown in Fig. 7–23d, are

σmin = minimum stress σm = midrange component

σmax = maximum stress σr = range of stress

σa = amplitude component σs = static or steady stress
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23R. C. Juvinall, Stress, Strain, and Strength, McGraw-Hill, New York, 1967, articles 14.9–14.12; R. C.
Juvinall and K. M. Marshek, Fundamentals of Machine Component Design, Wiley, New York, 1991,
Sec. 8.11; M. E. Dowling, Mechanical Behavior of Materials, 2nd ed., Prentice Hall, Englewood Cliffs,
N.J., 1999, Secs. 10.3–10.5.
24Dowling, op. cit., p. 437–438.

The steady, or static, stress is not the same as the midrange stress; in fact, it may have
any value between σmin and σmax. The steady stress exists because of a fixed load or pre-
load applied to the part, and it is usually independent of the varying portion of the load.
A helical compression spring, for example, is always loaded into a space shorter than the
free length of the spring. The stress created by this initial compression is called the
steady, or static, component of the stress. It is not the same as the midrange stress.

We shall have occasion to apply the subscripts of these components to shear
stresses as well as normal stresses.

The following relations are evident from Fig. 7–23:

σm = σmax + σmin

2

σa =
∣∣∣∣σmax − σmin

2

∣∣∣∣
(7–39)

In addition to Eq. (7–39), the stress ratio

R = σmin

σmax
(7–40)

and the stress ratio

A = σa

σm
(7–41)

are also defined and used in connection with fluctuating stresses.
Equations (7–39) utilize symbols σa and σm as the stress components at the location

under scrutiny. This means, in the absence of a notch, σa and σm are equal to the nomi-
nal stresses σao and σmo induced by loads Fa and Fm , respectively; in the presence of a
notch they are K f σao and K f σmo, respectively, as long as the material remains without
plastic strain. In other words, the fatigue stress concentration factor K f is applied to
both components.

When the steady stress component is high enough to induce localized notch yield-
ing, the designer has a problem. The first-cycle local yielding produces plastic strain and
strain-strengthening. This is occurring at the location where fatigue crack nucleation
and growth are most likely. The material properties (Sy and Sut ) are new and difficult
to quantify. The prudent engineer controls the concept, material and condition of
use, and geometry so that no plastic strain occurs. There are discussions concerning
possible ways of quantifying what is occurring under localized and general yielding in
the presence of a notch, referred to as the nominal mean stress method, residual stress
method, and the like.23 The nominal mean stress method (set σa = K f σao and
σm = σmo) gives roughly comparable results to the residual stress method, but both are
approximations.

There is the method of Dowling24 for ductile material, which, for materials with a
pronounced yield point and approximated by an elastic–perfectly plastic behavior
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Figure 7–24

Modified Goodman diagram
showing all the strengths and
the limiting values of all the
stress components for a
particular midrange stress.
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model, quantitatively expresses the steady stress component stress-concentration factor
K f m as

K f m = K f K f |σmax,o| < Sy

K f m = Sy − K f σao

|σmo| K f |σmax,o| > Sy

K f m = 0 K f |σmax,o − σmin,o| > 2Sy

(7–42)

For the purposes of this book, for ductile materials in fatigue,

• Avoid localized plastic strain at a notch. Set σa = K f σa,o and σm = K f σmo .

• When plastic strain at a notch cannot be avoided, use Eqs. (7–42); or conservatively,
set σa = K f σao and use Km f = 1, that is, σm = σmo .

7–12 Fatigue Failure Criteria for Fluctuating Stress
Now that we have defined the various components of stress associated with a part sub-
jected to fluctuating stress, we want to vary both the midrange stress and the stress
amplitude, or alternating component, to learn something about the fatigue resistance of
parts when subjected to such situations. Three methods of plotting the results of such
tests are in general use and are shown in Figs. 7–24, 7–25, and 7–26.

The modified Goodman diagram of Fig. 7–24 has the midrange stress plotted along
the abscissa and all other components of stress plotted on the ordinate, with tension in
the positive direction. The endurance limit, fatigue strength, or finite-life strength,
whichever applies, is plotted on the ordinate above and below the origin. The midrange-
stress line is a 45◦ line from the origin to the tensile strength of the part. The modified
Goodman diagram consists of the lines constructed to Se (or Sf ) above and below the
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Figure 7–26

Master fatigue diagram
created for AISI 4340 steel
having Sut = 158 and
Sy = 147 kpsi. The stress
components at A are
σmin = 20, σmax = 120,
σm = 70, and σa = 50, all in
kpsi. (Source: H. J. Grover, Fatigue of
Aircraft Structures, U.S. Government Printing
Office, Washington, D.C., 1966, pp. 317,
322. See also J. A. Collins, Failure of
Materials in Mechanical Design, Wiley,
New York, 1981, p. 216.)
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origin. Note that the yield strength is also plotted on both axes, because yielding would
be the criterion of failure if σmax exceeded Sy .

Another way to display test results is shown in Fig. 7–25. Here the abscissa repre-
sents the ratio of the midrange strength Sm to the ultimate strength, with tension plotted
to the right and compression to the left. The ordinate is the ratio of the alternating
strength to the endurance limit. The line BC then represents the modified Goodman

Figure 7–25

Plot of fatigue failures for midrange stresses in both tensile and compressive regions. Normalizing
the data by using the ratio of steady strength component to tensile strength Sm/Sut , steady strength
component to compressive strength Sm/Suc, and strength amplitude component to endurance limit
Sa/S′

e enables a plot of experimental results for a variety of steels. [Data source: Thomas J. Dolan, “Stress Range,”
Sec. 6.2 in O. J. Horger (ed.), ASME Handbook—Metals Engineering Design, McGraw-Hill, New York, 1953.]
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25It is difficult to date Goodman’s work because it went through several modifications and was never
published.

criterion of failure. Note that the existence of midrange stress in the compressive region
has little effect on the endurance limit.

The very clever diagram of Fig. 7–26 is unique in that it displays four of the stress
components as well as the two stress ratios. A curve representing the endurance limit for
values of R beginning at R = −1 and ending with R = 1 begins at Se on the σa axis and
ends at Sut on the σm axis. Constant-life curves for N = 105 and N = 104 cycles have
been drawn too. Any stress state, such as the one at A, can be described by the minimum
and maximum components, or by the midrange and alternating components. And safety
is indicated whenever the point described by the stress components lies below the
constant-life line.

When the midrange stress is compression, failure occurs whenever σa = Se or
whenever σmax = Syc , as indicated by the left-hand side of Fig. 7–25. Neither a fatigue
diagram nor any other failure criteria need be developed.

In Fig. 7–27, the tensile side of Fig. 7–25 has been redrawn in terms of strengths,
instead of strength ratios, with the same modified Goodman criterion together with four
additional criteria of failure. Such diagrams are often constructed for analysis and
design purposes; they are easy to use and the results can be scaled off directly.

The early viewpoint expressed on a σaσm diagram was that there existed a locus
which divided safe from unsafe combinations of σa , σm . Ensuing proposals included the
parabola of Gerber (1874), the Goodman (1890)25 (straight) line, and the Soderberg
(1930) (straight) line. As more data were generated it became clear that a fatigue crite-
rion, rather than being a “fence,” was more like a zone or band wherein the probability
of failure could be estimated. We include the failure criterion of Goodman because

• It is a straight line and the algebra is linear and easy.

• It is easily graphed, every time for every problem.

• It reveals subtleties of insight into fatigue problems.

• Answers can be scaled from the diagrams as a check on the algebra.

We also caution that it is deterministic and the phenomenon is not. It is biased and we
cannot quantify the bias. It is not conservative. It is a stepping-stone to understanding; it
is history; and to read the work of other engineers and to have meaningful oral exchanges
with them, it is necessary that you understand the Goodman approach should it arise.

Figure 7–27

Fatigue diagram showing
various criteria of failure. For
each criterion, points on or
“above” the respective line
indicate failure. Some point A
on the Goodman line, for
example, gives the strength Sm

as the limiting value of σm

corresponding to the strength
Sa, which, paired with σm , is
the limiting value of σa.
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Either the fatigue limit Se or the finite-life strength Sf is plotted on the ordinate of
Fig. 7–27. These values will have already been corrected using the Marin factors of
Eq. (7–17). Note that the yield strength Syt is plotted on the ordinate too. This serves as
a reminder that first-cycle yielding rather than fatigue might be the criterion of failure.

The midrange-stress axis of Fig. 7–27 has the yield strength Syt and the tensile
strength Sut plotted along it. 

Five criteria of failure are diagrammed in Fig. 7–27: the Soderberg, the modified
Goodman, the Gerber, the ASME-elliptic, and yielding. The diagram shows that only the
Soderberg criterion guards against any yielding, but is biased low.

Considering the modified Goodman line as a criterion, point A represents a limiting
point with an alternating strength Sa and midrange strength Sm. The slope of the load line
shown is defined as r = Sa/Sm .

The criterion equation for the Soderberg line is

Sa

Se
+ Sm

Syt
= 1 (7–43)

Similarly, we find the modified Goodman relation to be

Sa

Se
+ Sm

Sut
= 1 (7–44)

Examination of Fig. 7–25 shows that both a parabola and an ellipse have a better
opportunity to pass among the midrange tension data and to permit quantification of the
probability of failure. The Gerber failure criterion is written as

Sa

Se
+

(
Sm

Sut

)2

= 1 (7–45)

and the ASME-elliptic is written as(
Sa

Se

)2

+
(

Sm

Sy

)2

= 1 (7–46)

The Langer first-cycle-yielding criterion is used in connection with the fatigue locus:

Sa

Syt
+ Sm

Syt
= 1 (7–47)

The stresses nσa and nσm can replace Sa and Sm , where n is the design factor or factor
of safety. Then, Eq. (7–43), the Soderberg line, becomes

σa

Se
+ σm

Sy
= 1

n
(7–48)

Equation (7–44), the modified Goodman line, becomes

σa

Se
+ σm

Sut
= 1

n
(7–49)

Equation (7–45), the Gerber line, becomes

nσa

Se
+

(
nσm

Sut

)2

= 1 (7–50)

Equation (7–46), the ASME-elliptic line, becomes(
nσa

Se

)2

+
(

nσm

Sy

)2

= 1 (7–51)

We will emphasize the Gerber and ASME-elliptic for fatigue failure criterion and the
Langer for first-cycle yielding. However, conservative designers often use the modified
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Intersecting Equations Intersection Coordinates

Sa

Se
+

(
Sm

Sut

)2

= 1 Sa = r 2 S2
ut

2Se


−1 +

√
1 +

(
2Se

r Sut

)2



Load line r = Sa

Sm
Sm = Sa

r

Sa

Sy
+ Sm

Sy
= 1 Sa = r Sy

1 + r

Load line r = Sa

Sm
Sm = Sy

1 + r

Sa

Se
+

(
Sm

Sut

)2

= 1 Sm = S2
ut

2Se


1 −

√
1 +

(
2Se

Sut

)2 (
1 − Sy

Se

) 


Sa

Sy
+ Sm

Sy
= 1 Sa = Sy − Sm , rcrit = Sa/Sm

Fatigue factor of safety

nf = 1
2

(
Sut

σm

)2
σa

Se


−1 +

√
1 +

(
2σm Se

Sut σa

)2

 σm > 0

Table 7–10

Amplitude and Steady
Coordinates of Strength
and Important
Intersections in First
Quadrant for Gerber
and Langer Failure
Criteria

Goodman criterion, so we will continue to include it in our discussions. The failure cri-
teria are used in conjunction with a load line, r = Sa/Sm = σa/σm . Principal intersec-
tions are tabulated in Tables 7–9 to 7–11. Formal expressions for fatigue factor of safety
are given in the lower panel of Tables 7–9 to 7–11.

Some examples will help solidify the ideas just discussed.

Intersecting Equations Intersection Coordinates

Sa

Se
+ Sm

Sut
= 1 Sa = r SeSut

r Sut + Se

Load line r = Sa

Sm
Sm = Sa

r
Sa

Sy
+ Sm

Sy
= 1 Sa = r Sy

1 + r

Load line r = Sa

Sm
Sm = Sy

1 + r
Sa

Se
+ Sm

Sut
= 1 Sm =

(
Sy − Se

)
Sut

Sut − Se

Sa

Sy
+ Sm

Sy
= 1 Sa = Sy − Sm , rcrit = Sa/Sm

Fatigue factor of safety

nf = 1
σa

Se
+ σm

Sut

Table 7–9

Amplitude and Steady
Coordinates of Strength
and Important
Intersections in First
Quadrant for Modified
Goodman and Langer
Failure Criteria
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EXAMPLE 7–11 A 1.5-in-diameter bar has been machined from an AISI 1050 cold-drawn bar. This part
is to withstand a fluctuating tensile load varying from 0 to 16 kip. Because of the ends,
and the fillet radius, a fatigue stress-concentration factor K f is 1.85 for 106 or larger life.
Find Sa and Sm and the factor of safety guarding against fatigue and first-cycle yielding,
using (a) the Gerber fatigue line and (b) the ASME-elliptic fatigue line.

Solution We begin with some preliminaries. From Table A–20, Sut = 100 kpsi and Sy = 84 kpsi.
Note that Fa = Fm = 8 kip. The Marin factors are, deterministically,

ka = 2.70(100)−0.265 = 0.797: Eq. (7–18), Table 7–4

kb = 1 (axial loading, see kc)

kc = 0.85: Eq. (7–25)

kd = ke = kf = 1

Se = 0.797(1)0.850(1)(1)(1)0.504(100) = 34.1 kpsi: Eqs. (7–8), (7–17)

The nominal axial stress components σao and σmo are

σao = 4Fa

πd2
= 4(8)

π1.52
= 4.53 kpsi σmo = 4Fm

πd2
= 4(8)

π1.52
= 4.53 kpsi

Applying K f to both components σao and σmo constitutes a prescription of no notch
yielding:

σa = K f σao = 1.85(4.53) = 8.38 kpsi = σm

Intersecting Equations Intersection Coordinates

(
Sa

Se

)2

+
(

Sm

Sy

)2

= 1 Sa =
√√√√ r 2 S2

e S2
y

S2
e + r 2 S2

y

Load line r = Sa/Sm Sm = Sa

r
Sa

Sy
+ Sm

Sy
= 1 Sa = r Sy

1 + r

Load line r = Sa/Sm Sm = Sy

1 + r(
Sa

Se

)2

+
(

Sm

Sy

)2

= 1 Sa = 0,
2Sy S2

e

S2
e + S2

y

Sa

Sy
+ Sm

Sy
= 1 Sm = Sy − Sa, rcrit = Sa/Sm

Fatigue factor of safety

nf =
√√√√ 1

(σa/Se)2 + (
σm/Sy

)2

Table 7–11

Amplitude and Steady
Coordinates of Strength
and Important
Intersections in First
Quadrant for ASME-
Elliptic and Langer
Failure Criteria
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Figure 7–28

Principal points A, B, C, and
D on the designer’s diagram
drawn for Gerber, Langer, and
load line.

The load line slope is r = σa/σm = 1.
(a) From the first panel of Table 7–10,

Sa = (1)21002

2(34.1)


−1 +

√
1 +

[
2(34.1)

(1)100

]2

 = 30.9 kpsi

Sm = Sa

r
= 30.9

1
= 30.9 kpsi

In Fig. 7–28 the intersection of the load line and the Gerber line is point B. Point A on
the load line represents the stress components σa and σm . Point C represents the inter-
section of the load line and the Langer yield line. From Table 7–10,

Sa = r Sy

1 + r
= (1)84

1 + 1
= 42 kpsi Sm = Sa

r
= 42

1
= 42 kpsi

The load line is the locus of possible stress states. As loading increases, point A will
move toward point B and point C. The first encounter is with point B on the Gerber line,
so the threat to the part is from fatigue. The factor of safety in fatigue n f is

n f = O B

O A
= (Sa)Gerber

σa
= 30.9

8.38
= 3.69

Alternatively, from the fourth panel of Table 7–10,

n f = 1

2

(
100

8.38

)2(8.38

34.1

)
−1 +

√
1 +

[
2(8.38)34.1

100(8.38)

]2

 = 3.68
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Figure 7–29

Principal points A, B, C, and
D on the designer’s diagram
drawn for ASME-elliptic,
Langer, and load lines.

indicating rounding error. The factor of safety guarding against first-cycle yielding is

ny = OC

O A
= (Sa)Langer

σa
= 42.0

8.38
= 5.01

This confirms that there is no local yielding at the fillet. Point D represents the changeover
from fatigue failure to first-cycle yielding. The coordinates of point D can be found
from the simultaneous solution of Eqs. (7–45) and (7–47), as shown in the third panel of
Table 7–10:

Sm = 1002

2(34.1)


1 −

√
1 +

(
2(34.1)

100

)2 (
1 − 84

34.1

) 
 = 63.8 kpsi

Sa = Sy − Sm = 84 − 63.8 = 20.2 kpsi

The critical slope of the load line rcrit is

rcrit = Sa

Sm
= 20.2

63.8
= 0.317

The facts that the load line slope is r = 1 and rcrit < r confirm that there is a primary
threat from fatigue.
(b) From panel 1 of Table 7–11, with r = 1, we obtain the coordinates Sa and Sm of
point B in Fig. 7–29:

Sa =
√

(1)234.12842

34.12 + (1)2842
= 31.6 kpsi Sm = Sa

r
= 31.6

1
= 31.6 kpsi
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From panel 3 of Table 7–11, the coordinates Sa and Sm of point D in Fig. 7–29 are

Sa = 2

84(1/34.12 + 1/842)
= 23.8 kpsi Sm = Sy − Sa = 84 − 23.8 = 60.2 kpsi

rcrit = Sa

Sm
= 23.8

60.2
= 0.395

Since rcrit < r , the primary threat is from fatigue. The factor of safety in fatigue n f is
given by

n f = Sa

σa
= 31.6

8.38
= 3.77

Alternatively, from the fourth panel of Table 7–11,

n f =
√

1

(8.38/34.1)2 + (8.38/84)2
= 3.77

The factor of safety guarding against first-cycle yielding ny is

ny = (Sa)y

σa
= 42

8.38
= 5.01

The ASME-Gerber and the ASME-elliptic fatigue failure criteria are very close to each
other and are used interchangeably. The ANSI/ASME Standard B106.1M–1985 uses
ASME-elliptic for shafting.

EXAMPLE 7–12 A flat-leaf spring is used to retain an oscillating flat-faced follower in contact with a
plate cam. The follower range of motion is 2 in and fixed, so the alternating component
of force, bending moment, and stress is fixed, too. The spring is preloaded to adjust to
various cam speeds. The preload must be increased to prevent follower float or jump.
For lower speeds the preload should be decreased to obtain longer life of cam and
follower surfaces. The spring is a steel cantilever 32 in long, 2 in wide, and 1

4 in thick,
as seen in Fig. 7–30a. The spring strengths are Sut = 150 kpsi, Sy = 127 kpsi, and Se =
28 kpsi fully corrected. The total cam motion is 2 in. The designer wishes to preload
the spring by deflecting it 2 in for low speed and 5 in for high speed.
(a) Plot the Gerber-Langer failure lines with the load line.
(b) What are the strength factors of safety corresponding to 2 in and 5 in preload?
(c) What are the factors of safety based on preload deflection?

Solution We begin with preliminaries. The second area moment of the cantilever cross section is

I = bh3

12
= 2(0.25)3

12
= 0.00260 in4

Since, from Table A–9, beam 1, force F and deflection y in a cantilever are related by
F = 3E I y/ l3, then stress σ and deflection y are related by

σ = Mc

I
= 32Fc

I
= 32(3E I y)

l3

c

I
= 96Ecy

l3
= K y
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where K = 96(30 · 106)0.125

323
= 10.99(103) psi/in = 10.99 kpsi/in

Now the minimums and maximums of F, y, and σ can be defined by

ymin = δ ymax = 2 + δ

Fmin = 3E I δ/ l3 Fmax = 3E I (2 + δ)/ l3

σmin = K δ σmax = K (2 + δ)

2 in

32 in

(a)

� = 2 in

� = 5 in

� = 2 in preload

� = 5 in preload

1
4

in
+

+

+

Figure 7–30

Cam follower retaining spring.
(a) Geometry; (b) designer’s
fatigue diagram for Ex. 7–12.
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The stress components are thus

σa = K (2 + δ) − K δ

2
= K

σm = K (2 + δ) + K δ

2
= K (1 + δ)

For δ = 0,

σmax = K (2 + δ) = 10.99(2) = 22 kpsi σa = (22 − 0)/2 = 11 kpsi

σmin = K δ = 0 kpsi σm = (22 + 0)/2 = 11 kpsi

For δ = 2,

σmax = K (2 + 2) = 10.99(4) = 44 kpsi σa = (44 − 22)/2 = 11 kpsi

σmin = K δ = 10.99(2) = 22 kpsi σm = (44 + 22)/2 = 33 kpsi

For δ = 5,

σmax = K (2 + δ) = 10.99(2 + 5) = 76.9 kpsi σa = (76.9 − 54.9)/2 = 11 kpsi

σmin = K δ = 10.99(5) = 54.9 kpsi σm = (76.9 + 54.9)/2 = 65.6 kpsi

(a) A plot of the Gerber and Langer criteria is shown in Fig. 7–30b. The three preload
deflections of 0, 2, and 5 in are shown as points A, A′, and A′′. Note that since σa is
constant at 11 kpsi, the load line is horizontal and does not contain the origin. The
intersection between the Gerber line and the load line is found from solving Eq. (7–45)
for Sm and substituting 11 kpsi for Sa :

Sm = Sut

√
1 − Sa

Se
= 150

√
1 − 11

28
= 116.9 kpsi

The intersection of the Langer line and the load line is found from solving Eq. (7–47)
for Sm and substituting 11 kpsi for Sa :

Sm = Sy − Sa = 127 − 11 = 116 kpsi

The threats from fatigue and first-cycle yielding are approximately equal.
(b) For δ = 2 in,

n f = Sm

σm
= 116.9

33
= 3.54 ny = 116

33
= 3.52

and for δ = 5 in,

n f = 116.9

65.9
= 1.77 ny = 116

65.9
= 1.76

(c) A factor of safety based on preload deflection involves finding the preload deflection
associated with failure. Treating fatigue as the threat, Gerber’s relation can be expressed
as

11

28
+

(
K δ∗

150

)2

= 1
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from which

δ∗ = 150

K

√
1 − 11

28
= 150

11

√
1 − 11

28
= 10.6 in

For slower speeds the factor of safety can be defined as

Answer n = loss-of-function preload deflection

working preload deflection
= δ∗

δ
= 10.6

2
= 5.3

For higher speeds the same definition applies and the factor of safety is

Answer n = 10.6

5
= 2.12

EXAMPLE 7–13 A steel bar undergoes cyclic loading such that σmax = 60 kpsi and σmin = −20 kpsi. For
the material, Sut = 80 kpsi, Sy = 65 kpsi, a fully corrected endurance limit of Se =
40 kpsi, and f = 0.9. Estimate the number of cycles to a fatigue failure using:
(a) Modified Goodman criterion.
(b) Gerber criterion.

Solution From the given stresses,

σa = 60 − (−20)

2
= 40 kpsi σm = 60 + (−20)

2
= 20 kpsi

From the material properties, Eqs. (7–13) to (7–15) give

a = ( f Sut)
2

Se
= [0.9(80)]2

40
= 129.6 kpsi

b = −1

3
log

(
f Sut

Se

)
= −1

3
log

[
0.9(80)

40

]
= −0.0851

N =
(

Sf

a

)1/b

=
(

Sf

129.6

)−1/0.0851

(1)

where Sf replaced σa in Eq. (7–15).
(a) For the Goodman criterion with n = 1, Se = Sf , Eq. (7–49) gives

Sf = σa

1 − σm

Sut

= 40

1 − 20

80

= 53.3 kpsi

Substituting this into Eq. (1) yields

Answer N =
(

53.3

129.6

)−1/0.0851

= 3.40(104) cycles
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(b) For Gerber, similar to part (a), from Eq. (7–50),

Sf = σa

1 −
(

σm

Sut

)2 = 40

1 −
(

20

80

)2 = 42.7 kpsi

Again, from Eq. (1),

Answer N =
(

42.7

129.6

)−1/0.0851

= 4.68(105) cycles

Comparing the answers, we see a large difference in the results. Again, the modified
Goodman criterion is conservative as compared to Gerber for which the moderate dif-
ference in Sf is then magnified by a logarithmic S, N relationship.

For many brittle materials, the first quadrant fatigue failure criteria follows a con-
cave upward Smith-Dolan locus represented by

Sa

Se
= 1 − Sm/Sut

1 + Sm/Sut
(7–52)

or as a design equation,

nσa

Se
= 1 − nσm/Sut

1 + nσm/Sut
(7–53)

For a radial load line of slope r, we substitute Sa/r for Sm in Eq. (7–52) and solve for
Sa , obtaining

Sa = r Sut + Se

2

[
−1 +

√
1 + 4r Sut Se

(r Sut + Se)2

]
(7–54)

The fatigue diagram for a brittle material differs markedly from that of a ductile material:

• Yielding is not involved since the material may not have a yield strength.

• Characteristically, the compressive ultimate strength exceeds the ultimate tensile
strength severalfold.

• First-quadrant fatigue failure locus is concave-upward (Smith-Dolan), for example,
and as flat as Goodman. Brittle materials are more sensitive to midrange stress, being
lowered, but compressive midrange stresses are beneficial.

• Not enough work has been done on brittle fatigue to discover insightful generalities,
so we stay in the first and a bit of the second quadrant.

The most likely domain of designer use is in the range from −Sut ≤ σm ≤ Sut . The
locus in the first quadrant is Goodman, Smith-Dolan, or something in between. The por-
tion of the second quadrant that is used is represented by a straight line between the
points −Sut , Sut and 0, Se, which has the equation

Sa = Se +
(

Se

Sut
− 1

)
Sm −Sut ≤ Sm ≤ 0 (for cast iron) (7–55)
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Sa = 18.5 kpsi

Sa = 7.63

Se

Sut

–Sut –9.95 7.630 10 20 30 Sut
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Alternating stress, �a

1
4 in D. drill

F

F

1 in

Sm

r = 1

r = –1.86

(b)(a)

3
8 in

Figure 7–31

The grade 30 cast-iron part in axial fatigue with (a) its geometry displayed and (b) its designer’s fatigue diagram for the
circumstances of Ex. 7–14.

Table A–24 gives properties of gray cast iron. The endurance limit stated is really kakb S′
e

and only corrections kc, kd , ke, and kf need be made. The average kc for axial and tor-
sional loading is 0.9.

EXAMPLE 7–14 A grade 30 gray cast iron is subjected to a load F applied to a 1 by 3
8 -in cross-section link

with a 1
4 -in-diameter hole drilled in the center as depicted in Fig. 7–31a. The surfaces

are machined. In the neighborhood of the hole, what is the factor of safety guarding
against failure under the following conditions:
(a) The load F = 1000 lbf tensile, steady.
(b) The load is 1000 lbf repeatedly applied.
(c) The load fluctuates between −1000 lbf and 300 lbf without column action.
Use the Smith-Dolan fatigue locus.

Solution Some preparatory work is needed. From Table A–24, Sut = 31 kpsi, Suc = 109 kpsi,
kakb S′

e = 14 kpsi. Since kc for axial loading is 0.9, then Se = (kakb S′
e)kc = 14(0.9) =

12.6 kpsi. From Table A–15–1, A = t (w − d) = 0.375(1 − 0.25) = 0.281 in2 , d/w =
0.25/1 = 0.25, and Kt = 2.45. The notch sensitivity for cast iron is 0.20 (see p. 336), so

K f = 1 + q(Kt − 1) = 1 + 0.20(2.45 − 1) = 1.29

(a) σa = K f Fa

A
= 1.29(0)

0.281
= 0 σm = K f Fm

A
= 1.29(1000)

0.281
(10−3) = 4.59 kpsi

and

Answer n = Sut

σm
= 31.0

4.59
= 6.75
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(b) Fa = Fm = F

2
= 1000

2
= 500 lbf

σa = σm = K f Fa

A
= 1.29(500)

0.281
(10−3) = 2.30 kpsi

r = σa

σm
= 1

From Eq. (7–54),

Sa = (1)31 + 12.6

2

[
−1 +

√
1 + 4(1)31(12.6)

[(1)31 + (12.6)]2

]
= 7.63 kpsi

Answer n = Sa

σa
= 7.63

2.30
= 3.32

(c) Fa = 1

2
|300 − (−1000)| = 650 lbf σa = 1.29(650)

0.281
(10−3) = 3.0 kpsi

Fm = 1

2
[300 + (−1000)] = −350 lbf σm = 1.29(−350)

0.281
(10−3) = −1.61 kpsi

r = σa

σm
= 3.0

−1.61
= −1.86

From Eq. (7–55), Sa = Se + (Se/Sut − 1)Sm and Sm = Sa/r . It follows that

Sa = Se

1 − 1

r

(
Se

Sut
− 1

) = 12.6

1 − 1

−1.86

(
12.6

31
− 1

) = 18.5 kpsi

Answer n = Sa

σa
= 18.5

3.0
= 6.17

Figure 7–31b shows the portion of the designer’s fatigue diagram that was constructed.

7–13 Torsional Fatigue Strength under
Fluctuating Stresses
Extensive tests by Smith26 provide some very interesting results on pulsating torsional
fatigue. Smith’s first result, based on 72 tests, shows that the existence of a torsional
steady-stress component not more than the torsional yield strength has no effect on the
torsional endurance limit, provided the material is ductile, polished, notch-free, and
cylindrical.

Smith’s second result applies to materials with stress concentration, notches, or
surface imperfections. In this case, he finds that the torsional fatigue limit decreases
monotonically with torsional steady stress. Since the great majority of parts will have

26James O. Smith, “The Effect of Range of Stress on the Fatigue Strength of Metals,” Univ. of Ill. Eng. Exp.
Sta. Bull. 334, 1942.
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surfaces that are less than perfect, this result indicates Gerber, ASME-elliptic, and other
approximations are useful. Joerres27 of Associated Spring-Barnes Group, confirms
Smith’s results and recommends the use of the modified Goodman relation for pulsating
torsion. In constructing the Goodman diagram, Joerres uses

Ssu = 0.67Sut (7–56)

Also, from Chap. 6, Ssy = 0.577Syt from distortion-energy theory, and the mean load
factor kc is given by Eq. (7–25), or 0.577. This is discussed further in Chap. 10.

7–14 Combinations of Loading Modes
In Sec. 7–9 we learned that a load factor kc is used to obtain the endurance limit and
hence that the result is dependent on whether the loading is axial, bending, or torsion. In
this section we want to answer the question, How do we proceed when the loading is a 
mixture of, say, axial, bending, and torsional loads? In addition to the complication in-
troduced by the fact that a separate endurance limit is associated with each mode of
loading, there may also be multiple stress-concentration factors, one also for each mode
of loading. Fortunately, the answer turns out to be rather simple. Assuming that all stress
components are completely reversing and are always in time phase with each other,

1 For the strength, use the fully corrected endurance limit for bending, Se.
2 Apply the appropriate fatigue stress-concentration factors to the torsional stress,

the bending stress, and the axial stress components.
3 Multiply any alternating axial stress components by the factor 1/kc,ax.
4 Enter the resultant stresses into a Mohr’s circle analysis and find the principal

stresses.
5 Using the results of step 4, find the von Mises alternating stress σ ′

a .
6 Compare σ ′

a with Sa to find the factor of safety.

If the stress components are not in phase but have the same frequency, the maxima can
be found by expressing each component in trigonometric terms, using phase angles, and
then finding the sum. If two or more stress components have differing frequencies, the
problem is difficult; one solution is to assume that the two (or more) components often
reach an in-phase condition, so that their magnitudes are additive.

If midrange stresses are also present, then steps 4 and 5 can be repeated for them
and the resulting steady von Mises stress component σ ′

m used with σ ′
a in forming a

Gerber or ASME-elliptic solution. Both the steady and amplitude components are
augmented by K f or K f s stress-concentration factor.

EXAMPLE 7–15 A rotating shaft is made of 42- × 4-mm AISI 1018 cold-drawn steel tubing and has a
6-mm-diameter hole drilled transversely through it. Estimate the factor of safety guard-
ing against fatigue and static failures using the Gerber and Langer failure criteria for the
following loading conditions:
(a) The shaft is subjected to a completely reversed torque of 120 N · m in phase with a
completely reversed bending moment of 150 N · m.

27Robert E. Joerres, “Springs,” Chap. 24 in Joseph E. Shigley and Charles R. Mischke, Standard Handbook
of Machine Design, 2nd ed., McGraw-Hill, New York, 1996.
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(b) The shaft is subjected to a pulsating torque fluctuating from 20 to 160 N · m and a
steady bending moment of 150 N · m.

Solution Here we follow the procedure of estimating the strengths and then the stresses, followed
by relating the two.

From Table A–20 we find the minimum strengths to be Sut = 440 MPa and Syt =
370 MPa. The endurance limit of the rotating-beam specimen is 0.504(440) = 222 MPa.
The surface factor, obtained from Eq. (7–18) and Table 7–4, is

ka = 4.51S−0.265
ut = 4.51(440)−0.265 = 0.899

From Eq. (7–20) the size factor is

kb =
(

d

7.62

)−0.107

=
(

42

7.62

)−0.107

= 0.833

The remaining Marin factors are all unity, so the modified endurance strength Se is

Se = 0.899(0.833)222 = 166 MPa

(a) Theoretical stress-concentration factors are found from Table A–16. Using a/D =
6/42 = 0.143 and d/D = 34/42 = 0.810, and using linear interpolation, we obtain
A = 0.798 and Kt = 2.366 for bending; and A = 0.89 and Kts = 1.75 for torsion. Thus,
for bending,

Znet = π A

32D
(D4 − d4) = π(0.798)

32(4.2)
[(4.2)4 − (3.4)4] = 3.31 cm3

and for torsion

Jnet = π A

32
(D4 − d4) = π(0.89)

32
[(4.2)4 − (3.4)4] = 15.5 cm4

Next, using Figs. 7–20 and 7–21 with a notch radius of 3 mm we find the notch sensi-
tivities to be 0.78 for bending and 0.96 for torsion. The two corresponding fatigue
stress-concentration factors are obtained from Eq. (7–31) as

K f = 1 + q(Kt − 1) = 1 + 0.78(2.366 − 1) = 2.07

K f s = 1 + 0.96(1.75 − 1) = 1.72

The bending stress is now found to be

σxa = K f
M

Znet
= 2.07

150

3.31
= 93.8 MPa

and the torsional stress is

τxya = K f s
TD

2Jnet
= 1.72

120(4.2)

2(15.5)
= 28.0 MPa

The von Mises steady-stress component σ ′
m is zero. The amplitude component σ ′

a is
given by

σ ′
a = (

σ 2
xa + 3τ 2

xya

)1/2 = [93.82 + 3(282)]1/2 = 105.6 MPa
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Since Se = Sa , the fatigue factor of safety n f is

n f = Sa

σ ′
a

= 166

105.6
= 1.57

The first-cycle yield factor of safety is

ny = Syt

σ ′
a

= 370

105.6
= 3.50

There is no localized yielding; the threat is from fatigue. See Fig. 7–32.
(b) This part asks us to find the factors of safety when the alternating component is due
to pulsating torsion, and a steady component is due to both torsion and bending. We
have Ta = (160 − 20)/2 = 70 N · m and Tm = 20 + 70 = 90 N · m. The corresponding
amplitude and steady-stress components are

τxya = K f s
Ta D

2Jnet
= 1.72

70(4.2)

2(15.5)
= 16.3 MPa

τxym = K f s
Tm D

2Jnet
= 1.72

90(4.2)

2(15.5)
= 21.0 MPa

The steady bending stress component σxm is

σxm = K f
Mm

Znet
= 2.07

150

3.31
= 93.8 MPa

The von Mises components σ ′
a and σ ′

m are

σ ′
a = [3(16.3)2]1/2 = 28.2 MPa

σ ′
m = [93.82 + 3(21)2]1/2 = 100.6 MPa

V
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Figure 7–32

Designer’s fatigue diagram for
Ex. 7–15.
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The slope of the load line is r = σ ′
a/σ

′
m = 28.2/100.6 = 0.28. From Table 7–10, the

strength amplitude component Sa and steady-strength component Sm are

Sa = 0.2824402

2(166)


−1 +

√
1 +

[
2(166)

0.28(440)

]2

 = 85.7 MPa

Sm = 85.7

0.28
= 306.1 MPa

The fatigue factor of safety n f is

Answer n f = Sa

σ ′
a

= 85.7

28.2
= 3.04

The first-cycle yield factor of safety ny is

Answer ny = Sy

σ ′
a + σ ′

m

= 370

28.2 + 100.6
= 2.87

There is no notch yielding. The threat is from first-cycle yielding at the notch. See the
plot in Fig. 7–32.

7–15 Varying, Fluctuating Stresses;
Cumulative Fatigue Damage
Instead of a single fully reversed stress history block composed of n cycles, suppose a
machine part, at a critical location, is subjected to

• A fully reversed stress σ1 for n1 cycles, σ2 for n2 cycles, . . . , or

• A “wiggly” time line of stress exhibiting many and different peaks and valleys.

What stresses are significant, what counts as a cycle, and what is the measure of
damage incurred? Consider a fully reversed cycle with stresses varying 60, 80, 40, and
60 kpsi and a second fully reversed cycle −40, −60, −20, and −40 kpsi as depicted in
Fig. 7–33a. First, it is clear that to impose the pattern of stress in Fig. 7–33a on a part it
is necessary that the time trace look like the solid line plus the dashed line in Fig. 7–33a.
Figure 7–33b moves the snapshot to exist beginning with 80 kpsi and ending with
80 kpsi. Acknowledging the existence of a single stress-time trace is to discover a “hid-
den” cycle shown as the dashed line in Fig. 7–33b. If there are 100 applications of the
all-positive stress cycle, then 100 applications of the all-negative stress cycle, the hid-
den cycle is applied but once. If the all-positive stress cycle is applied alternately with
the all-negative stress cycle, the hidden cycle is applied 100 times.

To ensure that the hidden cycle is not lost, begin on the snapshot with the largest (or
smallest) stress and add previous history to the right side, as was done in Fig. 7–33b.
Characterization of a cycle takes on a max–min–same max (or min–max–same min)
form. We identify the hidden cycle first by moving along the dashed-line trace in
Fig. 7–33b identifying a cycle with an 80-kpsi max, a 60-kpsi min, and returning to
80 kpsi. Mentally deleting the used part of the trace (the dashed line) leaves a 40, 60,
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40 cycle and a −40, −20, −40 cycle. Since failure loci are expressed in terms of stress
amplitude component σa and steady component σm , we use Eq. (7–39) to construct the
table below:

The most damaging cycle is number 1. It could have been lost.
Methods for counting cycles include:

• Number of tensile peaks to failure.

• All maxima above the waveform mean, all minima below.

• The global maxima between crossings above the mean and the global minima be-
tween crossings below the mean.

• All positive slope crossings of levels above the mean, and all negative slope crossings
of levels below the mean.

• A modification of the preceding method with only one count made between succes-
sive crossings of a level associated with each counting level.

• Each local maxi-min excursion is counted as a half-cycle, and the associated ampli-
tude is half-range.

• The preceding method plus consideration of the local mean.

• Rain-flow counting technique.

The method used here amounts to a variation of the rain-flow counting technique.

Cycle Number σmax σmin σa σm

1 80 −60 70 10
2 60 40 10 50
3 −20 −40 10 −30

100

50

0

–50

100

50

0

–50

(a) (b)

Figure 7–33

Variable stress diagram
prepared for assessing
cumulative damage.

shi20361_ch07.qxd  6/3/03  5:00 PM  Page 365



366 Mechanical Engineering Design

The Palmgren-Miner28 cycle-ratio summation rule, also called Miner’s rule, is
written ∑ ni

Ni
= c (7–57)

where ni is the number of cycles at stress level σi and Ni is the number of cycles to fail-
ure at stress level σi . The parameter c has been determined by experiment; it is usually
found in the range 0.7 < c < 2.2 with an average value near unity.

Using the deterministic formulation as a linear damage rule we write

D =
∑ ni

Ni
(7–58)

where D is the accumulated damage. When D = c = 1, failure ensues.

EXAMPLE 7–16 For the loading of Fig. 7–33 on a part, the following properties at the critical location
exist: Sut = 151 kpsi, σ0 = 210 kpsi, ε f = 0.45, m = 0.09, Se = 67.5 kpsi. Estimate
the number of repetitions of the stress-time block in Fig. 7–33 that can be made before
failure.

Solution σ ′
F = σ0ε

m = 210(0.45)0.09 = 195.4 kpsi

From Eq. (7–11),

b = − log(σ ′
F/Se)

log(2Ne)
= − log(195.4/67.5)

log(2 · 106)
= −0.07326

From Eq. (7–9),

f = σ ′
F

Sut
(2 · 103)b = 195.4

151
(2 · 103)−0.07326 = 0.7415

From Eq. (7–13),

a = ( f Sut)
2

Se
= [0.7415(151)]2

67.5
= 186 kpsi

so

Sf = 186N−0.07326 N =
(

σa

186

)−1/0.07326

We prepare to add two columns to the previous table. Using the Gerber fatigue criterion,
Eq. (7–45), with Sa = Sf , on the designer’s fatigue diagram we can write

Sf =




σa

1 − (σm/Sut)2
σm > 0

Se σm ≤ 0
(1)

28A. Palmgren, “Die Lebensdauer von Kugellagern,” ZVDI, vol. 68, pp. 339–341, 1924; M. A. Miner,
“Cumulative Damage in Fatigue,” J. Appl. Mech., vol. 12, Trans. ASME, vol. 67, pp. A159–A164, 1945.
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Cycle 1: r = 70/10 = 7, and the strength amplitude from Table 7–9 is

Sa = 721512

2(67.5)


−1 +

√
1 +

[
2(67.5)

7(151)

]2

 = 67.2 kpsi

Since σa > Sa , that is, 70 > 67.2, life is reduced. From Eq. (1),

Sf = 70

1 − (10/151)2
= 70.3 kpsi N =

(
70.3

186

)−1/0.07326

= 0.586(106) cycles

Cycle 2: r = 10/50 = 0.2, and the strength amplitude is

Sa = 0.221512

2(67.5)


−1 +

√
1 +

[
2(67.5)

0.2(151)

]2

 = 24.2 kpsi

Since σa < Sa , that is 10 < 24.2, then Sf = Se and indefinite life follows.

Cycle 3: r = 10/−30 = −0.333, and since σm < 0, Sf = Se , indefinite life follows.

From Eq. (7–62) the damage per block is

D =
∑ ni

Ni
= N

[
1

0.586(106)
+ 1

∞ + 1

∞
]

= N

0.586(106)

Answer Setting D = 1 yields N = 0.586(106) cycles.

To further illustrate the use of the Miner rule, let us choose a steel having the prop-
erties Sut = 80 kpsi, S′

e,0 = 40 kpsi, and f = 0.9, where we have used the designation
S′

e,0 instead of the more usual S′
e to indicate the endurance limit of the virgin, or un-

damaged, material. The log S–log N diagram for this material is shown in Fig. 7–34 by
the heavy solid line. Now apply, say, a reversed stress σ1 = 60 kpsi for n1 = 3000 cy-
cles. Since σ1 > S′

e,0, the endurance limit will be damaged, and we wish to find the new
endurance limit S′

e,1 of the damaged material using the Miner rule. The equation of the
virgin material failure line in Fig. 7–34 in the 103 to 106 cycle range is

Sf = aN b = 129.6N−0.085 091

The cycles to failure at stress level σ1 = 60 kpsi are

N1 =
(

σ1

129.6

)−1/0.085 091

=
(

60

129.6

)−1/0.085 091

= 8520 cycles

Figure 7–34 shows that the material has a life N1 = 8520 cycles at 60 kpsi, and conse-
quently, after the application of σ1 for 3000 cycles, there are N1 − n1 = 5520 cycles of

Cycle Number Sf, kpsi N, cycles

1 70.3 0.58(106)
2 67.5 ∞
3 67.5 ∞
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life remaining at σ1. This locates the finite-life strength Sf,1 of the damaged material, as
shown in Fig. 7–34. To get a second point, we ask the question: With n1 and N1 given,
how many cycles of stress σ2 = S′

e,0 can be applied before the damaged material fails? 
This corresponds to n2 cycles of stress reversal, and hence, from Eq. (7–57), we have 

n1

N1
+ n2

N2
= 1 (a)

or

n2 =
(

1 − n1

N1

)
N2 (b)

Then

n2 =
[

1 − 3(10)3

8.52(10)3

]
(106) = 0.648(106) cycles

This corresponds to the finite-life strength Sf,2 in Fig. 7–34. A line through Sf,1 and Sf,2

is the log S–log N diagram of the damaged material according to the Miner rule. The
new endurance limit is Se,1 = 38.5 kpsi.

We could leave it at this, but a little more investigation can be helpful. We have
two points on the new fatigue locus, N1 − n1, σ1 and n2, σ2. It is useful to prove that the
slope of the new line is still b. For the equation Sf = a′N b′

, where the values of a′ and
b′ are established by two points α and β . The equation for b′ is

b′ = log σα/σβ

log Nα/Nβ

(c)

Examine the denominator of Eq. (c):

log
Nα

Nβ

= log
N1 − n1

n2
= log

N1 − n1

(1 − n1/N1)N2
= log

N1

N2

= log
(σ1/a)1/b

(σ2/a)1/b
= log

(
σ1

σ2

)1/b

= 1

b
log

(
σ1

σ2

)
Substituting this into Eq. (c) with σα/σβ = σ1/σ2 gives

b′ = log(σ1/σ2)

(1/b) log(σ1/σ2)
= b

72

60

40
38.6

103 104 105 106

6543

4.9

4.8

4.7

4.6

4.5

L
og

 S

S o
 k

ps
i

N

 Log N

�1

0.9Sut

n1 = 3(103)

n2 = 0.648(106)

Sf, 0

Sf,2

Se,0

Se,1

Sf, 1

N1 = 8.52(103)

N1 – n1 = 5.52(103)

Figure 7–34

Use of the Miner rule to
predict the endurance limit of
a material that has been
overstressed for a finite
number of cycles.
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72
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 Log N

�1

0.9Sut

n1 = 3(103)

Sf, 0

S'e,0

S'e,1

Sf, 1

N1 = 8.52(103)

N1 – n1 = 5.52(103)

34.4

Figure 7–35

Use of the Manson method to
predict the endurance limit of
a material that has been
overstressed for a finite
number of cycles.

which means the damaged material line has the same slope as the virgin material line;
therefore, the lines are parallel. This information can be helpful in writing a computer
program for the Palmgren-Miner hypothesis.

Though the Miner rule is quite generally used, it fails in two ways to agree with ex-
periment. First, note that this theory states that the static strength Sut is damaged, that is,
decreased, because of the application of σ1; see Fig. 7–34 at N = 103 cycles. Experi-
ments fail to verify this prediction.

The Miner rule, as given by Eq. (7–53), does not account for the order in which the
stresses are applied, and hence ignores any stresses less than S′

e,0. But it can be seen in
Fig. 7–34 that a stress σ3 in the range S′

e,1 < σ3 < S′
e,0 would cause damage if applied

after the endurance limit had been damaged by the application of σ1.
Manson’s29 approach overcomes both of the deficiencies noted for the Palmgren-

Miner method; historically it is a much more recent approach, and it is just as easy to
use. Except for a slight change, we shall use and recommend the Manson method in this
book. Manson plotted the S–log N diagram instead of a log S–log N plot as is recom-
mended here. Manson also resorted to experiment to find the point of convergence of the
S–log N lines corresponding to the static strength, instead of arbitrarily selecting the in-
tersection of N = 103 cycles with S = 0.9Sut as is done here. Of course, it is always
better to use experiment, but our purpose in this book has been to use the simple test
data to learn as much as possible about fatigue failure.

The method of Manson, as presented here, consists in having all log S–log N lines,
that is, lines for both the damaged and the virgin material, converge to the same point,
0.9Sut at 103 cycles. In addition, the log S–log N lines must be constructed in the same
historical order in which the stresses occur.

The data from the preceding example are used for illustrative purposes. The results
are shown in Fig. 7–35. Note that the strength Sf,1 corresponding to N1 − n1 =
5.52(103) cycles is found in the same manner as before. Through this point and through
0.9Sut at 103 cycles, draw the heavy dashed line to meet N = 106 cycles and define the

29S. S. Manson, A. J. Nachtigall, C. R. Ensign, and J. C. Fresche, “Further Investigation of a Relation for
Cumulative Fatigue Damage in Bending,” Trans. ASME, J. Eng. Ind., ser. B, vol. 87, No. 1, pp. 25–35,
February 1965.
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endurance limit S′
e,1 of the damaged material. In this case the new endurance limit is

34.4 kpsi, somewhat less than that found by the Miner method.
It is now easy to see from Fig. 7–35 that a reversed stress σ = 36 kpsi, say, would

not harm the endurance limit of the virgin material, no matter how many cycles it might
be applied. However, if σ = 36 kpsi should be applied after the material was damaged
by σ1 = 60 kpsi, then additional damage would be done.

Both these rules involve a number of computations, which are repeated every time
damage is estimated. For complicated stress-time traces, this might be every cycle.
Clearly a computer program is useful to perform the tasks, including scanning the trace
and identifying the cycles.

Collins said it well: “In spite of all the problems cited, the Palmgren linear damage
rule is frequently used because of its simplicity and the experimental fact that other
more complex damage theories do not always yield a significant improvement in failure
prediction reliability.”30

7–16 Surface Fatigue Strength
The surface fatigue mechanism is not definitively understood. The contact-affected zone,
in the absence of surface shearing tractions, entertains compressive principal stresses.
Rotary fatigue has its cracks grown at or near the surface in the presence of tensile
stresses that are associated with crack propagation, to catastrophic failure. There are
shear stresses in the zone, which are largest just below the surface. Cracks seem to grow
from this stratum until small pieces of material are expelled, leaving pits on the surface.
Because engineers had to design durable machinery before the surface fatigue phenom-
enon was understood in detail, they had taken the posture of conducting tests, observing
pits on the surface, and declaring failure at an arbitrary projected area of hole, and they
related this to the Hertzian contact pressure. This compressive stress did not produce the
failure directly, but whatever the failure mechanism, whatever the stress type that was
instrumental in the failure, the contact stress was an index to its magnitude.

Buckingham31 conducted a number of tests relating the fatigue at 108 cycles to en-
durance strength (Hertzian contact pressure). While there is evidence of an endurance
limit at about 3(107) cycles for cast materials, hardened steel rollers showed no en-
durance limit up to 4(108) cycles. Subsequent testing on hard steel shows no endurance
limit. Hardened steel exhibits such high fatigue strengths that its use in resisting surface
fatigue is widespread.

Our studies thus far have dealt with the failure of a machine element by yielding,
by fracture, and by fatigue. The endurance limit obtained by the rotating-beam test is
frequently called the flexural endurance limit, because it is a test of a rotating beam. In
this section we shall study a property of mating materials called the surface endurance
shear. The design engineer must frequently solve problems in which two machine ele-
ments mate with one another by rolling, sliding, or a combination of rolling and sliding 
contact. Obvious examples of such combinations are the mating teeth of a pair of gears,
a cam and follower, a wheel and rail, and a chain and sprocket. A knowledge of the sur-
face strength of materials is necessary if the designer is to create machines having a long
and satisfactory life.

When two surfaces roll or roll and slide against one another with sufficient force, a
pitting failure will occur after a certain number of cycles of operation. Authorities are
not in complete agreement on the exact mechanism of the pitting; although the subject

30J. A. Collins, Failure of Materials in Mechanical Design, John Wiley & Sons, New York, 1981, p. 243.
31Earle Buckingham, Analytical Mechanics of Gears, McGraw-Hill, New York, 1949.
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is quite complicated, they do agree that the Hertz stresses, the number of cycles, the sur-
face finish, the hardness, the degree of lubrication, and the temperature all influence the
strength. In Sec. 4–20 it was learned that, when two surfaces are pressed together, a
maximum shear stress is developed slightly below the contacting surface. It is postu-
lated by some authorities that a surface fatigue failure is initiated by this maximum
shear stress and then is propagated rapidly to the surface. The lubricant then enters the
crack that is formed and, under pressure, eventually wedges the chip loose.

To determine the surface fatigue strength of mating materials, Buckingham de-
signed a simple machine for testing a pair of contacting rolling surfaces in connection
with his investigation of the wear of gear teeth. Buckingham and, later, Talbourdet gath-
ered large numbers of data from many tests so that considerable design information is
now available. To make the results useful for designers, Buckingham defined a load-
stress factor, also called a wear factor, which is derived from the Hertz equations. Equa-
tions (4–77) and (4–78) for contacting cylinders are found to be

b =
√

2F

πl

(
1 − ν2

1

)
/E1 + (

1 − ν2
2

)
/E2

(1/d1) + (1/d2)
(7–59)

pmax = 2F

πbl
(7–60)

where b = half width of rectangular contact area

F = contact force

l = length of cylinders

ν = Poisson’s ratio

E = modulus of elasticity

d = cylinder diameter

It is more convenient to use the cylinder radius, so let 2r = d . If we then designate
the length of the cylinders as w (for width of gear, bearing, cam, etc.) instead of l and
remove the square root sign, Eq. (7–59) becomes

b2 = 4F

πw

(
1 − ν2

1

)
/E1 + (

1 − ν2
2

)
/E2

1/r1 + 1/r2
(7–61)

We can define a surface endurance strength SC using

pmax = 2F

πbw
(7–62)

as

SC = 2F

πbw
(7–63)

which may also be called contact strength, the contact fatigue strength, or the Hertzian
endurance strength. The strength is the contacting pressure which, after a specified
number of cycles, will cause failure of the surface. Such failures are often called wear
because they occur over a very long time. They should not be confused with abrasive
wear, however. By substituting the value of b in Eq. (7–61) and substituting the result 
into Eq. (7–63), we obtain

F

w

(
1

r1
+ 1

r2

)
= π S2

C

[
1 − ν2

1

E1
+ 1 − ν2

2

E2

]
= K1 (7–64)
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The left expression consists of parameters a designer may seek to control independently.
The central expression consists of material properties that come with the material and
condition specification. The third expression is the parameter K1, Buckingham’s load-
stress factor, determined by a test fixture with values F, w, r1, r2 and the number of
cycles associated with the first tangible evidence of fatigue. In gear studies a similar
K factor is used:

Kg = K1

4
sin φ (7–65)

where φ is the tooth pressure angle, and the term [(1 − ν2
1)/E1 + (1 − ν2

2)/E2] is de-
fined as 1/(πC2

P), so that

SC = CP

√
F

w

(
1

r1
+ 1

r2

)
(7–66)

Buckingham and others reported K1 for 108 cycles and nothing else. This gives only one
point on the SC N curve. For cast metals this may be sufficient, but for wrought steels,
heat-treated, some idea of the slope is useful in meeting design goals of other than
108 cycles.

Experiments show that K1 versus N, Kg versus N, and SC versus N data are recti-
fied by loglog transformation. This suggests that

K1 = α1 Nβ1 Kg = aN b SC = αNβ

The three exponents are given by

β1 = log(K1/K2)

log(N1/N2)
b = log(Kg1/Kg2)

log(N1/N2)
β = log(SC1/SC2)

log(N1/N2)
(7–67)

Data on induction-hardened steel on steel give (SC)107 = 271 kpsi and (SC)108 =
239 kpsi, so β , from Eq. (7–67), is

β = log(271/239)

log(107/108)
= −0.055

It may be of interest that the American Gear Manufacturers Association (AGMA) uses
−0.056 between 104 < N < 1010 if the designer has no data to the contrary beyond 107

cycles.
A longstanding correlation in steels between SC and HB at 108 cycles is

(SC)108 =
{

0.4HB − 10 kpsi
2.76HB − 70 MPa

(7–68)

AGMA uses
0.99(SC)107 = 0.327HB + 26 kpsi (7–69)

Equation (7–66) can be used in design to find an allowable surface stress by using
a design factor. Since this equation is nonlinear in its stress-load transformation, the
designer must decide if loss of function denotes inability to carry the load. If so, then to
find the allowable stress, one divides the load F by the design factor nd :

σC = CP

√
F

wnd

(
1

r1
+ 1

r2

)
= CP√

nd

√
F

w

(
1

r1
+ 1

r2

)
= SC√

nd

and nd = (SC/σC)2. If the loss of function is focused on stress, then nd = SC/σC . It is
recommended that an engineer

• Decide whether loss of function is failure to carry load or stress.

• Define the design factor and factor of safety accordingly.
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• Announce what he or she is using and why.

• Be prepared to defend his or her position.

In this way everyone who is party to the communication knows what a design factor
(or factor of safety) of 2 means and adjusts, if necessary, the judgmental perspective.

7–17 Stochastic Analysis
As already demonstrated in this chapter, there are a great many factors to consider in a
fatigue analysis, much more so than in a static analysis. So far, each factor has been
treated in a deterministic manner, and if not obvious, these factors are subject to vari-
ability and control the overall reliability of the results. When reliability is important,
then fatigue testing must certainly be undertaken. There is no other way. Consequently,
the methods of stochastic analysis presented here and in other sections of this book con-
stitute guidelines that enable the designer to obtain a good understanding of the various
issues involved and help in the development of a safe and reliable design.

In this section, key stochastic modifications to the deterministic features and equa-
tions described in earlier sections are provided in the same order of presentation. 

Endurance Limit
To begin, a method for estimating endurance limits, the tensile strength correlation
method, is presented. The ratio � = S′

e/S̄ut is called the fatigue ratio.32 For ferrous
metals, most of which exhibit an endurance limit, the endurance limit is used as a
numerator. For materials that do not show an endurance limit, an endurance strength at
a specified number of cycles to failure is used and noted. Gough33 reported the stochas-
tic nature of the fatigue ratio � for several classes of metals, and this is shown in
Fig. 7–36. The first item to note is that the coefficient of variation is of the order 0.10 to
0.15, and the distribution varies for classes of metals. The second item to note is that
Gough’s data include materials of no interest to engineers. In the absence of testing,
engineers use the correlation that � represents to estimate the endurance limit S′

e from
the mean ultimate strength S̄ut .

Gough’s data are for ensembles of metals, some chosen for metallurgical interest,
and include materials that are not commonly selected for machine parts. Mischke34

analyzed data for 133 common steels and treatments in varying diameters in rotating
bending,35 and the result was

� = 0.445d−0.107LN(1, 0.138)

where d is the specimen diameter in inches and LN(1, 0.138) is a unit lognormal vari-
ate with a mean of 1 and a standard deviation (and coefficient of variation) of 0.138. For
the standard R. R. Moore specimen,

�0.30 = 0.445(0.30)−0.107LN(1, 0.138) = 0.506LN(1, 0.138)

32From this point, since we will be dealing with statistical distributions in terms of means, standard
deviations, etc. A key quantity, the ultimate strength, will here be presented by its mean value, S̄ut . This
means that certain terms that were defined earlier in terms of the minimum value of Sut will change slightly.
33In J. A. Pope, Metal Fatigue, Chapman and Hall, London, 1959.
34Charles R. Mischke, “Prediction of Stochastic Endurance Strength,” Trans. ASME, Journal of Vibration,
Acoustics, Stress, and Reliability in Design, vol. 109, no. 1, January 1987, pp. 113–122.
35Data from H. J. Grover, S. A. Gordon, and L. R. Jackson, Fatigue of Metals and Structures, Bureau of
Naval Weapons, Document NAVWEPS 00-2500435, 1960.
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Also, 25 plain carbon and low-alloy steels with Sut > 212 kpsi are described by

S′
e = 107LN(1, 0.139) kpsi

In summary, for the rotating-beam specimen,

S′
e =




0.506S̄ut LN(1, 0.138) kpsi or MPa S̄ut ≤ 212 kpsi (1460 MPa)

107LN(1, 0.139) kpsi S̄ut > 212 kpsi

740LN(1, 0.139) MPa S̄ut > 1460 MPa

(7–70)

where S̄ut is the mean ultimate tensile strength.
Equations (7–70) represent the state of information before an engineer has chosen

a material. In choosing, the designer has made a random choice from the ensemble of
possibilities, and the statistics can give the odds of disappointment. If the testing is lim-
ited to finding an estimate of the ultimate tensile strength mean S̄ut with the chosen ma-
terial, Eqs. (7–70) are directly helpful. If there is to be rotary-beam fatigue testing, then
statistical information on the endurance limit is gathered and there is no need for the
correlation above.

Table 7–12 compares approximate mean values of the fatigue ratio φ̄0.30 for several
classes of ferrous materials.

Endurance Limit Modifying Factors
A Marin equation can be written as

Se = kakbkckdkf S′
e (7–71)

where the size factor kb is deterministic and remains unchanged from that given in
Sec. 7–9. Also, since we are performing a stochastic analysis, the “reliability factor” ke

is unnecessary here.
The surface factor ka cited earlier in deterministic form as Eq. (7–19) is now given

in stochastic form by

ka = aS̄b
ut LN(1, C) (S̄ut in kpsi or MPa) (7–72)

where Table 7–13 gives values of a, b, and C for various surface conditions.
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EXAMPLE 7–17 A steel has a mean ultimate strength of 520 MPa and a machined surface. Estimate ka .

Solution From Table 7–13,

ka = 4.45(520)−0.265LN(1, 0.058)

k̄a = 4.45(520)−0.265(1) = 0.848

σ̂ka = Ck̄a = (0.058)4.45(520)−0.265 = 0.049

Answer so ka = LN(0.848, 0.049).

The load factor kc for axial and torsional loading is given by

(kc)axial = 1.23S̄−0.0778
ut LN(1, 0.125) (7–73)

(kc)torsion = 0.328S̄0.125
ut LN(1, 0.125) (7–74)

There are fewer data to study for axial fatigue. Equation (7–73) was deduced from the
data of Landgraf and of Grover, Gordon, and Jackson (as cited earlier).

Torsional data are sparser, and Eq. (7–74) is deduced from data in Grover et al.
Notice the mild sensitivity to strength in the axial and torsional load factor, so kc in
these cases is not constant. Average values are shown in the last column of Table 7–14,
and as footnotes to Tables 7–15 and 7–16. Table 7–17 shows the influence of material
classes on the load factor kc. Distortion energy theory predicts (kc)torsion = 0.577 for
materials to which the distortion-energy theory applies. For bending, kc = LN(1, 0).

Table 7–12

Comparison of
Approximate Values of
Mean Fatigue Ratio for
Some Classes of Metals

Material Class φ0.30

Wrought steels 0.50 
Cast steels 0.40
Powdered steels 0.38
Gray cast iron 0.35
Malleable cast iron 0.40
Normalized nodular cast iron 0.33

Table 7–13

Parameters in Marin
Surface Condition
Factor

ka = aSb
ut LN(1, C)

Surface a Coefficient of
Finish kpsi MPa b Variation, C

Ground∗ 1.34 1.58 −0.086 0.120
Machined or Cold-rolled 2.67 4.45 −0.265 0.058
Hot-rolled 14.5 58.1 −0.719 0.110
As-forged 39.8 271 −0.995 0.145

*Due to the wide scatter in ground surface data, an alternate function is ka = 0.878LN(1, 0.120). Note: Sut in kpsi or MPa.
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Table 7–16

Average Marin Loading
Factor for Torsional Load

Sut,
kpsi k*c

50 0.535
100 0.583
150 0.614
200 0.636

*Average entry 0.59.

Table 7–17

Average Marin Torsional
Loading Factor kc for
Several Materials

Material Range n kc σ̂kc

Wrought steels 0.52–0.69 31 0.60 0.03
Wrought Al 0.43–0.74 13 0.55 0.09
Wrought Cu and alloy 0.41–0.67 7 0.56 0.10
Wrought Mg and alloy 0.49–0.60 2 0.54 0.08
Titanium 0.37–0.57 3 0.48 0.12
Cast iron 0.79–1.01 9 0.90 0.07
Cast Al, Mg, and alloy 0.71–0.91 5 0.85 0.09

Source: The table is an extension of P. G. Forrest, Fatigue of Metals, Pergamon Press, London,
1962, Table 17, p. 110, with standard deviations estimated from range and sample size using
Table A–1 in J. B. Kennedy and A. M. Neville, Basic Statistical Methods for Engineers and
Scientists, 3rd ed., Harper & Row, New York, 1986, pp. 54–55.

Table 7–14

Parameters in Marin
Loading Factor

kc = αSut
−β LN(1, C)

Mode of α Average
Loading kpsi MPa β C kc

Bending 1 1 0 0 1
Axial 1.23 1.43 −0.078 0.125 0.85
Torsion 0.328 0.258 0.125 0.125 0.59

Table 7–15

Average Marin Loading
Factor for Axial Load

Sut,
kpsi k*c

50 0.907
100 0.860
150 0.832
200 0.814

*Average entry 0.85.
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EXAMPLE 7–18 Estimate the Marin loading factor kc for a 1–in-diameter bar that is used as follows.
(a) In bending. It is made of steel with Sut = 100LN(1, 0.035) kpsi, and the designer
intends to use the correlation S′

e = �0.30 S̄ut to predict S′
e.

(b) In bending, but endurance testing gave S′
e = 55LN(1, 0.081) kpsi.

(c) In push-pull (axial) fatigue, Sut = LN(86.2, 3.92) kpsi, and the designer intended to
use the correlation S′

e = �0.30 S̄ut .
(d) In torsional fatigue. The material is cast iron, and S′

e is known by test.

Solution (a) Since the bar is in bending,

Answer kc = (1, 0)

(b) Since the test is in bending and use is in bending,

Answer kc = (1, 0)

(c) From Eq. (7–73),

Answer (kc)ax = 1.23(86.2)−0.0778LN(1, 0.125)

k̄c = 1.23(86.2)−0.0778(1) = 0.870

σ̂kc = Ck̄c = 0.125(0.870) = 0.109

(d) From Table 7–17, k̄c = 0.90, σ̂kc = 0.07, and

Answer Ckc = 0.07

0.90
= 0.08

The temperature factor kd is

kd = k̄dLN(1, 0.11) (7–75)

where k̄d = kd , given by Eq. (7–26).
Finally, ke is, as before, the miscellaneous factor that can come about from a great

many considerations, as discussed in Sec. 7–9, where now statistical distributions, pos-
sibly from testing, are considered.

Stress Concentration and Notch Sensitivity
Notch sensitivity q was defined by Eq. (2–30). The stochastic equivalent is

q = K f − 1

Kt − 1
(7–76)

where Kt is the theoretical (or geometric) stress-concentration factor, a deterministic
quantity. A study of lines 3 and 4 of Table 2–6 will reveal that adding a scalar to (or sub-
tracting one from) a variate x will affect only the mean. Also, multiplying (or dividing)
by a scalar affects both the mean and standard deviation. With this in mind, we can
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relate the statistical parameters of the fatigue stress-concentration factor K f to those of
notch sensitivity q. It follows that

q = LN
(

K̄ f − 1

Kt − 1
,

C K̄ f

Kt − 1

)

where C = CK f and

q̄ = K̄ f − 1

Kt − 1

σ̂q = C K̄ f

Kt − 1
(7–77)

Cq = C K̄ f

K̄ f − 1

The fatigue stress-concentration factor K f has been investigated more in England than in
the United States. Values of CK f for transverse holes, shoulders, and grooves are listed in
Table 7–18. Once K f is described, q can also be quantified using the set Eqs. (7–77).

The modified Neuber equation (after Heywood) gives the fatigue stress concentra-
tion factor as

K f = K̄ f LN
(
1, CK f

)
(7–78)

where K̄ f = K f , given by Eq. (7–35).

EXAMPLE 7–19 Estimate K f and q for the steel shaft given in Ex. 7–6.

Solution From Ex. 7–6 and Eq. (7–35), K f = 1.51. From Table 7–18, CK f = 0.11. Thus, from
Eq. (7–78),

Answer K f = 1.51LN(1, 0.11)

From Eq. (7–77), with Kt = 1.65 from Ex. 7–6,

q̄ = 1.51 − 1

1.65 − 1
= 0.785

Cq = CK f K̄ f

K̄ f − 1
= 0.11(1.51)

1.51 − 1
= 0.326

σ̂q = Cqq̄ = 0.326(0.785) = 0.256

So,

Answer q = LN(0.785, 0.256)

Table 7–18

Coefficients of Variation
CKf for Steels

Notch Type Coefficient of Variation CKf

Transverse hole 0.10
Shoulder 0.11
Groove 0.15

Notes: Heywood’s coefficients of variation. Notch sensitivity charts can be avoided using a modified
Neuber equation. See Sec. 7–10.
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EXAMPLE 7–20 The bar shown in Fig. 7–37 is machined from a cold-rolled flat having an ultimate
strength of Sut = LN(87.6, 5.74) kpsi. The axial load shown is completely reversed.
The load amplitude is Fa = LN(1000, 120) lbf.
(a) Estimate the reliability.
(b) Reestimate the reliability when a rotating bending endurance test shows that S′

e =
LN(40, 2) kpsi.

Solution (a) From Eq. (7–70), S′
e = 0.506S̄ut LN(1, 0.138) = 0.506(87.6)LN(1, 0.138)

= 44.3LN(1, 0.138) kpsi

From Eq. (7–72) and Table 7–13,

ka = 2.67S̄−0.265
ut LN(1, 0.058) = 2.67(87.6)−0.265LN(1, 0.058)

= 0.816LN(1, 0.058)

kb = 1 (axial loading)

From Eq. (7–73),

kc = 1.23S̄−0.0778
ut LN(1, 0.125) = 1.23(87.6)−0.0778LN(1, 0.125)

= 0.869LN(1, 0.125)

kd = k f = (1, 0)

The endurance strength, from Eq. (7–71), is

Se = kakbkckdk f S′
e

Se = 0.816LN(1, 0.058)(1)0.868LN(1, 0.125)(1)(1)44.3LN(1, 0.138)

The parameters of Se are

S̄e = 0.816(0.868)44.3 = 31.4 kpsi

CSe = (0.0582 + 0.1252 + 0.1382)1/2 = 0.195

so Se = 31.4LN(1, 0.195) kpsi.
In computing the stress, the section at the hole governs. Using the terminology of

Table A–15–1 we find d/w = 0.50, therefore Kt = 2.18. From Tables 7–8 and 7–18,√
a = 5/Sut = 5/87.6 = 0.057 and Ck f = 0.10. From Eqs. (7–35) and (7–78) with

r = 0.375 in,

K f = Kt

1 + 2(Kt − 1)

Kt

√
a√
r

LN
(
1, CK f

) = 2.18

1 + 2(2.18 − 1)

2.18

0.057√
0.375

LN(1, 0.10)

= 1.98LN(1, 0.10)

3
4

in D.

3
16

in R.

in

1
4

2 in 1
2

1 in

1
4

1000 lbf 1000 lbf

Figure 7–37
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The stress at the hole is

σ = K f
F
A

= 1.98LN(1, 0.10)
1000LN(1, 0.12)

0.25(0.75)

σ̄ = 1.98
1000

0.25(0.75)
10−3 = 10.56 kpsi

Cσ = (0.102 + 0.122)1/2 = 0.156

so stress can be expressed as σ = 10.56LN(1, 0.156) kpsi.
The endurance limit is considerably greater than the load-induced stress, indicating

that finite life is not a problem. For interfering lognormal-lognormal distributions,
Eq. (6–57) gives

z = −
ln

(
S̄e

σ̄

√
1 + C2

σ

1 + C2
Se

)
√

ln
[(

1 + C2
Se

) (
1 + C2

σ

)] = −
ln


 31.4

10.56

√
1 + 0.1562

1 + 0.1952




√
ln[(1 + 0.1952)(1 + 0.1562)]

= −4.36

From Table A–10 the probability of failure pf = �(−4.36) = .000 006 66, and the
reliability is

Answer R = 1 − 0.000 006 66 = 0.999 993 34

(b) The rotary endurance tests are described by S′
e = 40LN(1, 0.05) kpsi whose mean is

less than the predicted mean in part a. The mean endurance strength S̄e is

S̄e = 0.816(0.868)40 = 28.3 kpsi

CSe = (0.0582 + 0.1252 + 0.052)1/2 = 0.147

so the endurance strength can be expressed as Se = 28.3LN(1, 0.147) kpsi. From
Eq. (6–57),

z = −
ln


 28.3

10.56

√
1 + 0.1562

1 + 0.1472




√
ln[(1 + 0.1472)(1 + 0.1562)]

= −4.63

Using TableA–10, we see the probability of failure pf = �(−4.63) = 0.000 001 87, and

R = 1 − 0.000 001 87 = 0.999 998 13

an increase! The reduction in the probability of failure is (0.000 001 87 − 0.000 006 66)/

0.000 006 66 = −0.72, a reduction of 72 percent. We are analyzing an existing design, so
in part (a) the factor of safety was n̄ = S̄/σ̄ = 31.3/10.56 = 2.96. In part (b) n̄ = 28.3/

10.56 = 2.68, a decrease. This example gives you the opportunity to see the role of the de-
sign factor. Given knowledge of S̄, CS, σ̄ , Cσ , and reliability (through z), the mean factor
of safety (as a design factor) separates S̄ and σ̄ so that the reliability goal is achieved.
Knowing n̄ alone says nothing about the probability of failure. Looking at n̄ = 2.96 and
n̄ = 2.68says nothing about the respective probabilities of failure. The tests did not reduce
S̄e significantly, but reduced the variation CS such that the reliability was increased.

When a mean design factor (or mean factor of safety) defined as S̄e/σ̄ is said to be
silent on matters of frequency of failures, it means that a scalar factor of safety by itself 
does not offer any information about probability of failure. Nevertheless, some engi-
neers let the factor of safety speak up, and they can be wrong in their conclusions.
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As revealing as Ex. 7–20 is concerning the meaning (and lack of meaning) of a
design factor or factor of safety, let us remember that the rotary testing associated with
part (b) changed nothing about the part, but only our knowledge about the part. The
mean endurance limit was 40 kpsi all the time, and our adequacy assessment had to
move with what was known.

Fluctuating Stresses
Deterministic failure loci that lie among the data are candidates for regression models.
Included among these are the Gerber, ASME-elliptic, and, for brittle materials, Smith-
Dolan models, which use mean values in their presentation. The Gerber parabola is

S̄a

S̄e
+

(
S̄m

S̄ut

)2

= 1 (7–79)

Just as the deterministic failure loci are located by endurance strength and ultimate ten-
sile (or yield) strength, so too are stochastic failure loci located by Se and by Sut or Sy .
Figure 7–32 shows how the mean locus of Eq. (7–79) fits a parabola to form the Gerber
mean locus. We also need to establish a contour located one standard deviation from the 
mean. Since stochastic loci are most likely to be used with a radial load line, we will
develop the equation using the load line slope r = S̄a/S̄m . Substituting S̄m = S̄a/r in
Eq. (7–79) and solving for S̄a gives

S̄a = r2 S̄2
ut

2S̄e


−1 +

√
1 +

(
2S̄e

r S̄ut

)2

 (7–80)

Because of the positive correlation between Se and Sut , we increment S̄e by CSe S̄e , S̄ut

by CSut S̄ut , and S̄a by CSa S̄a , substitute into Eq. (7–80), and solve for CSa to obtain

CSa = (1 + CSut)
2

1 + CSe


−1 +

√
1 +

[
2S̄e(1 + CSe)

r S̄ut(1 + CSut)

]2



−1 +
√

1 +
(

2S̄e

r S̄ut

)2



− 1 (7–81)

Equation (7–81) can be viewed as an interpolation formula for CSa , which falls between
CSe and CSut depending on load line slope r. Note that Sa = S̄aLN(1, CSa).

The ASME-elliptic criterion is expressed in terms of its means as

(
S̄a

S̄e

)2

+
(

S̄m

S̄y

)2

= 1 (7–82)

Similarly, substituting S̄m = S̄a/r into Eq. (7–82) and solving for S̄a gives

S̄a = r S̄y S̄e√
r2 S̄2

y + S̄2
e

(7–83)
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Similarly, we increment S̄e by CSe S̄e , S̄y by CSy S̄y , and S̄a by CSa S̄a , substitute into
Eq. (7–83), and solve for CSa :

CSa = (1 + CSy)(1 + CSe)

√√√√ r2 S̄2
y + S̄2

e

r2 S̄2
y(1 + CSy)2 + S̄2

e (1 + CSe)2
− 1 (7–84)

Many brittle materials follow a Smith-Dolan failure criterion, written deterministi-
cally as

nσa

Se
= 1 − nσm/Sut

1 + nσm/Sut
(7–85)

Expressed in terms of its means,

S̄a

S̄e
= 1 − S̄m/S̄ut

1 + S̄m/S̄ut
(7–86)

For a radial load line slope of r, we substitute S̄a/r for S̄m and solve for S̄a , obtaining

S̄a = r S̄ut + S̄e

2


−1 +

√
1 + 4r S̄ut S̄e

(r S̄ut + S̄e)2


 (7–87)

and the expression for CSa is

CSa = r S̄ut(1 + CSut) + S̄e(1 + CSe)

2S̄a

·
{

−1 +
√

1 + 4r S̄ut S̄e(1 + CSe)(1 + CSut)

[r S̄ut(1 + CSut) + S̄e(1 + CSe)]2

}
− 1

(7–88)

EXAMPLE 7–21 A rotating shaft experiences a steady torque T = 1360LN(1, 0.05) lbf · in, and at a
shoulder with a 1.1-in small diameter, a fatigue stress-concentration factor K f =
1.50LN(1, 0.11), K f s = 1.28LN(1, 0.11), and at that location a bending moment of
M = 1260LN(1, 0.05) lbf · in. The material of which the shaft is machined is hot-rolled
1035 with Sut = 86.2LN(1, 0.045) kpsi and Sy = 56.0LN(1, 0.077) kpsi. Estimate the
reliability using a stochastic Gerber failure zone.

Solution Establish the endurance strength. From Eqs. (7–70) to (7–72) and Eq. (7–19),

S′
e = 0.506(86.2)LN(1, 0.138) = 43.6LN(1, 0.138) kpsi

ka = 2.67(86.2)−0.265LN(1, 0.058) = 0.820LN(1, 0.058)

kb = (1.1/0.30)−0.107 = 0.870

kc = kd = k f = LN(1, 0)

Se = 0.820LN(1, 0.058)0.870(43.6)LN(1, 0.138)

S̄e = 0.820(0.870)43.6 = 31.1 kpsi

CSe = (0.0582 + 0.1382)1/2 = 0.150

and so Se = 31.1LN(1, 0.150) kpsi.
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Stress (in kpsi):

σa = 32K f Ma

πd3
= 32(1.50)LN(1, 0.11)1.26LN(1, 0.05)

π(1.1)3

σ̄a = 32(1.50)1.26

π(1.1)3
= 14.5 kpsi

Cσa = (0.112 + 0.052)1/2 = 0.121

�m = 16K f sTm

πd3
= 16(1.28)LN(1, 0.11)1.36LN(1, 0.05)

π(1.1)3

τ̄m = 16(1.28)1.36

π(1.1)3
= 6.66 kpsi

Cτm = (0.112 + 0.052)1/2 = 0.121

σ̄ ′
a = (

σ̄ 2
a + 3τ̄ 2

a

)1/2 = [14.52 + 3(0)2]1/2 = 14.5 kpsi

σ̄ ′
m = (

σ̄ 2
m + 3τ̄ 2

m

)1/2 = [0 + 3(6.66)2]1/2 = 11.54 kpsi

r = σ̄ ′
a

σ̄ ′
m

= 14.5

11.54
= 1.26

Strength: From Eqs. (7–80) and (7–81),

S̄a = 1.26286.22

2(31.1)


−1 +

√
1 +

[
2(31.1)

1.26(86.2)

]2

 = 28.9 kpsi

CSa = (1 + 0.045)2

1 + 0.150

−1 +
√

1 +
[

2(31.1)(1 + 0.15)

1.26(86.2)(1 + 0.045)

]2

−1 +
√

1 +
[

2(31.1)

1.26(86.2)

]2
− 1 = 0.134

Reliability: Since Sa = 28.9LN(1, 0.134) kpsi and σ ′
a = 14.5LN(1, 0.121) kpsi,

Eq. (6–58) gives

z = −
ln

(
S̄a

σ̄

√
1 + C2

σ

1 + C2
Sa

)
√

ln
[(

1 + C2
Sa

) (
1 + C2

σ

)] = −
ln


28.9

14.5

√
1 + 0.1212

1 + 0.1342




√
ln[(1 + 0.1342)(1 + 0.1212)]

= −3.83

From Table A–10 the probability of failure is pf = 0.000 065, and the reliability is,
against fatigue,

Answer R = 1 − pf = 1 − 0.000 065 = 0.999 935

The chance of first-cycle yielding is estimated by interfering Sy with σ ′
max. The

quantity σ ′
max is formed from σ ′

a + σ ′
m . The mean of σ ′

max is σ̄ ′
a + σ̄ ′

m = 14.5 +
11.54 = 26.04 kpsi. The coefficient of variation of the sum is 0.121, since both
COVs are 0.121, thus Cσ max = 0.121. We interfere Sy = 56LN(1, 0.077) kpsi with
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σ ′
max = 26.04LN (1, 0.121) kpsi. The corresponding z variable is

z = −
ln


 56

26.04

√
1 + 0.1212

1 + 0.0772




√
ln[(1 + 0.0772)(1 + 0.1212)]

= −5.39

which represents, from Table A–10, a probability of failure of approximately 0.07358
[which represents 3.58(10−8)] of first-cycle yield in the fillet.

The probability of observing a fatigue failure exceeds the probability of a yield fail-
ure, something a deterministic analysis does not foresee and in fact could lead one to ex-
pect a yield failure should a failure occur. Look at the σ ′

aSa interference and the σ ′
maxSy

interference and examine the z expressions. These control the relative probabilities. A
deterministic analysis is oblivious to this and can mislead. Check your statistics text for
events that are not mutually exclusive, but are independent, to quantify the probability
of failure:

pf = p(yield) + p(fatigue) − p(yield and fatigue)

= p(yield) + p(fatigue) − p(yield)p(fatigue)

= 0.358(10−7) + 0.65(10−4) − 0.358(10−7)0.65(10−4) = 0.650(10−4)

R = 1 − 0.650(10−4) = 0.999 935

against either or both modes of failure.

Examine Fig. 7–38, which depicts the results of Ex. 7–16. The problem distribution
of Se was compounded of historical experience with S′

e and the uncertainty manifesta-
tions due to features requiring Marin considerations. The Gerber “failure zone” displays
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Figure 7–38

Designer’s fatigue diagram
for Ex. 7–21.
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this. The interference with load-induced stress predicts the risk of failure. If additional
information is known (R. R. Moore testing, with or without Marin features), the sto-
chastic Gerber can accommodate to the information. Usually, the accommodation to ad-
ditional test information is movement and contraction of the failure zone. In its own way
the stochastic failure model accomplishes more precisely what the deterministic models
and conservative postures intend. Additionally, stochastic models can estimate the prob-
ability of failure, something a deterministic approach cannot address.

The Design Factor in Fatigue
The designer, in envisioning how to execute the geometry of a part subject to the imposed
constraints, can begin making a priori decisions without realizing the impact on the de-
sign task. Now is the time to note how these things are related to the reliability goal.

The mean value of the design factor is given by Eq. (6–59),

n̄ = exp

[
−z

√
ln

(
1 + C2

n

) + ln
√

1 + C2
n

]
.= exp[Cn(−z + Cn/2)] (6–59)

in which, from Table 2–6 for the quotient n = S/σ ,

Cn =
√

C2
S + C2

σ

1 + C2
σ

where CS is the COV of the significant strength and Cσ is the COV of the significant
stress at the critical location. Note that n̄ is a function of the reliability goal (through z)
and the COVs of the strength and stress. There are no means present, just measures of
variability. The nature of CS in a fatigue situation may be CSe for fully reversed loading,
or CSa otherwise. Also, experience shows CSe > CSa > CSut , so CSe can be used as a
conservative estimate of CSa . If the loading is bending or axial, the form of σ ′

a might be

σ ′
a = K f

Mac

I
or σ ′

a = K f
F
A

respectively. This makes the COV of σ ′
a , namely Cσ ′

a
, expressible as

Cσ ′
a
= (

C2
K f + C2

F

)1/2

again a function of variabilities. The COV of Se, namely CSe , is

CSe = (
C2

ka + C2
kc + C2

kd + C2
k f + C2

Se′
)1/2

again, a function of variabilities. An example will be useful.

EXAMPLE 7–22 A strap to be made from a cold-drawn steel strip workpiece is to carry a fully reversed
axial load F = LN(1000, 120) lbf as shown in Fig. 7–39. Consideration of adjacent parts
established the geometry as shown in the figure, except for the thickness t. Make a
decision as to the magnitude of the design factor if the reliability goal is to be 0.999 95,
then make a decision as to the workpiece thickness t.
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Solution Let us take each a priori decision and note the consequence:

These eight a priori decisions have quantified the mean design factor as n̄ = 2.65.
Proceeding deterministically hereafter we write

σ ′
a = S̄e

n̄
= K̄ f

F̄

(w − d)t

from which

t = K̄ f n̄ F̄

(w − d)S̄e

To evaluate the preceding equation we need S̄e and K̄ f . The Marin factors are

ka = 2.67S̄−0.265
ut LN(1, 0.058) = 2.67(87.6)−0.265LN(1, 0.058)

k̄a = 0.816

kb = 1 (see kc)

kc = 1.23S̄−0.078
ut LN(1, 0.125) = 0.868LN(1, 0.125)

k̄c = 0.868

k̄d = k̄ f = 1

and the endurance strength is

S̄e = 0.816(0.868)(1)(1)(1)0.506(87.6) = 31.4 kpsi

The hole governs. From Table A–15–1 we find d/w = 0.50, therefore Kt = 2.18. From
Table 7–7 

√
a = 5/S̄ut = 5/87.6 = 0.057, r = 0.375 in. From Eq. (7–34) the fatigue

stress concentration factor is

K̄ f = 2.18

1 + 2√
0.375

2.18 − 1

2.18
0.057

= 1.98

A Priori Decision Consequence

Use 1018 CD steel S̄ut = 87.6 kpsi, CSut = 0.0655
Function: 
Carry axial load CF = 0.12, Ckc = 0.125
R ≥ 0.999 95 z = −3.891
Machined surfaces Cka = 0.058
Hole critical CK f = 0.10, Cσ ′

a
= (0.102 + 0.122)1/2 = 0.156

Ambient temperature Ckd = 0
Correlation method CS′

e
= 0.138

Hole drilled CSe = (0.0582 + 0.1252 + 0.1382)1/2 = 0.195

Cn =
√√√√C2

Se + C2
σ ′

a

1 + C2
σ ′

a

=
√

0.1952 + 0.1562

1 + 0.1562
= 0.2467

n̄ = exp
[

− (−3.891)
√

ln(1 + 0.24672) + ln
√

1 + 0.24672
]

= 2.65

3
8 in D. drill

Fa = 1000 lbf

Fa = 1000 lbf

3
4 in

Figure 7–39

A strap with a thickness t is
subjected to a fully reversed
axial load of 1000 lbf.
Example 7–22 considers the
thickness necessary to attain a
reliability of 0.999 95 against
a fatigue failure.
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The thickness t can now be determined from Se/n̄ = K̄ f F̄/A,

t ≥ K̄ f n̄ F̄

(w − d)Se
= 1.98(2.65)1000

(0.75 − 0.375)31 400
= 0.446 in

Use 1
2 -in-thick strap for the workpiece. The 1

2 -in thickness attains and, in the rounding
to available nominal size, exceeds the reliability goal.

The example demonstrates that, for a given reliability goal, the fatigue design factor
that facilitates its attainment is decided by the variabilities of the situation. Furthermore,
the necessary design factor is not a constant independent of the way the concept unfolds.
Rather, it is a function of a number of seemingly unrelated a priori decisions that are made
in giving definition to the concept. The involvement of stochastic methodology can be
limited to defining the necessary design factor. In particular, in the example, the design
factor is not a function of the design variable t; rather, t follows from the design factor.

PROBLEMS
Problems 7–1 to 7–31 are to be solved by deterministic methods. Problems 7–32 to 7–38 are to be
solved by stochastic methods. Problems 7–39 to 7–46 are computer problems.

Deterministic Problems
7–1 A 3

16 -in drill rod was heat-treated and ground. The measured hardness was found to be 490
Brinell. Estimate the endurance strength if the rod is used in rotating bending.

7–2 Estimate S′
e for the following materials:

(a) AISI 1020 CD steel.
(b) AISI 1080 HR steel.
(c) 2024 T3 aluminum.
(d) AISI 4340 steel heat-treated to a tensile strength of 250 kpsi.

7–3 Estimate the fatigue strength of a rotating-beam specimen made of AISI 1020 hot-rolled steel cor-
responding to a life of 12.5 kilocycles of stress reversal. Also, estimate the life of the specimen
corresponding to a stress amplitude of 36 kpsi. The known properties are Sut = 66.2 kpsi, σ0 =
115 kpsi, m = 0.22, and ε f = 0.90.

7–4 Derive Eq. (7–16). For the specimen of Prob. 7–3, estimate the strength corresponding to
500 cycles.

7–5 For the interval 103 ≤ N ≤ 106 cycles, develop an expression for the fatigue strength (S′
f )ax for

the polished specimens of 4130 used to obtain Fig. 7–10. The ultimate strength is Sut = 125 kpsi
and the endurance limit is (S′

e)ax = 49 kpsi.

7–6 Estimate the endurance strength of a 32-mm-diameter rod of AISI 1035 steel having a machined
finish and heat-treated to a tensile strength of 710 MPa.

7–7 Two steels are being considered for manufacture of as-forged connecting rods. One is AISI 4340
Cr-Mo-Ni steel capable of being heat-treated to a tensile strength of 260 kpsi. The other is a plain car-
bon steel AISI 1040 with an attainable Sut of 113 kpsi. If each rod is to have a size giving an equiva-
lent diameter de of 0.75 in, is there any advantage to using the alloy steel for this fatigue application?

7–8 A solid round bar, 25 mm in diameter, has a groove 2.5-mm deep with a 2.5-mm radius machined
into it. The bar is made of AISI 1018 CD steel and is subjected to a purely reversing torque of
200 N · m. For the S-N curve of this material, let f = 0.9.

A N A LY S I S

A N A LY S I S

A N A LY S I S

A N A LY S I S

A N A LY S I S

A N A LY S I S

A N A LY S I S
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(a) Estimate the number of cycles to failure.
(b) If the bar is also placed in an environment with a temperature of 450◦C, estimate the number

of cycles to failure.

7–9 A solid square rod is cantilevered at one end. The rod is 0.8 m long and supports a completely re-
versing transverse load at the other end of ±1 kN. The material is AISI 1045 hot-rolled steel. If
the rod must support this load for 104 cycles with a factor of safety of 1.5, what dimension should
the square cross section have? Neglect any stress concentrations at the support end and assume
that f = 0.9.

7–10 A rectangular bar is cut from an AISI 1018 cold-drawn steel flat. The bar is 60 mm wide by 10 mm
thick and has a 12-mm hole drilled through the center as depicted in Table A–15–1. The bar
is concentrically loaded in push-pull fatigue by axial forces Fa , uniformly distributed across
the width. Using a design factor of nd = 1.8, estimate the largest force Fa that can be applied
ignoring column action.

7–11 Bearing reactions R1 and R2 are exerted on the shaft shown in the figure, which rotates at
1150 rev/min and supports a 10-kip bending force. Use a 1095 HR steel. Specify a diameter d
using a design factor of nd = 1.6 for a life of 3 min. The surfaces are machined.

Problem 7–11

d dd/10 R.

d/5 R.

1.5 d

1 in

R1 R2

F = 10 kip

12 in 6 in 6 in

7–12 A bar of steel has the minimum properties Se = 276 MPa, Sy = 413 MPa, and Sut = 551 MPa.
The bar is subjected to a steady torsional stress of 103 MPa and an alternating bending stress of
172 MPa. Find the factor of safety guarding against a static failure, and either the factor of safety
guarding against a fatigue failure or the expected life of the part. For the fatigue analysis use:
(a) Modified Goodman criterion.
(b) Gerber criterion.
(c) ASME-elliptic criterion.

7–13 Repeat Prob. 7–12 but with a steady torsional stress of 138 MPa and an alternating bending stress
of 69 MPa.

7–14 Repeat Prob. 7–12 but with a steady torsional stress of 103 MPa, an alternating torsional stress of
69 MPa, and an alternating bending stress of 83 MPa. 

7–15 Repeat Prob. 7–12 but with an alternating torsional stress of 207 MPa.

7–16 Repeat Prob. 7–12 but with an alternating torsional stress of 103 MPa and a steady bending stress
of 103 MPa.

7–17 The cold-drawn AISI 1018 steel bar shown in the figure is subjected to a tensile load fluctuating
between 800 and 3000 lbf. Estimate the factors of safety ny and n f using (a) a Gerber fatigue
failure criterion as part of the designer’s fatigue diagram, and (b) a ASME-elliptic fatigue failure
criterion as part of the designer’s fatigue diagram.

7–18 Repeat Prob. 7–17, with the load fluctuating between −800 and 3000 lbf. Assume no buckling.

7–19 Repeat Prob. 7–17, with the load fluctuating between 800 and −3000 lbf. Assume no buckling.

A N A LY S I S

A N A LY S I S

A N A LY S I S

A N A LY S I S

D E S I G N

A N A LY S I S

A N A LY S I S

A N A LY S I S

A N A LY S I S

A N A LY S I S
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7–20 The figure shows a formed round-wire cantilever spring subjected to a varying force. The hard-
ness tests made on 25 springs gave a minimum hardness of 380 Brinell. It is apparent from the
mounting details that there is no stress concentration. A visual inspection of the springs indicates
that the surface finish corresponds closely to a hot-rolled finish. What number of applications is
likely to cause failure? Solve using:
(a) Modified Goodman criterion.
(b) Gerber criterion.

Problem 7–17

1
4

in D.

3
8

1 in

in

Problem 7–20

16 in

3
8

in D.

Fmax = 30 lbf
Fmin = 15 lbf

7–21 The figure is a drawing of a 3- by 18-mm latching spring. A preload is obtained during assembly
by shimming under the bolts to obtain an estimated initial deflection of 2 mm. The latching oper-
ation itself requires an additional deflection of exactly 4 mm. The material is ground high-carbon
steel, bent then hardened and tempered to a minimum hardness of 490 Bhn. The radius of the bend
is 3 mm. Estimate the yield strength to be 90 percent of the ultimate strength.
(a) Find the maximum and minimum latching forces.
(b) Is it likely the spring will fail in fatigue? Use the Gerber criterion.

A N A LY S I S

A N A LY S I S

Problem 7–21
Dimensions in millimeters

100

3

18

Section
A–A

A

A

F

7–22 Repeat Prob. 21, part b, using the modified Goodman criterion.

7–23 The figure shows the free-body diagram of a connecting-link portion having stress concentration
at three sections. The dimensions are r = 0.25 in, d = 0.75 in, h = 0.50 in, w1 = 3.75 in, and
w2 = 2.5 in. The forces F fluctuate between a tension of 4 kip and a compression of 16 kip. Ne-
glect column action and find the least factor of safety if the material is cold-drawn AISI 1018 steel.

A N A LY S I S

A N A LY S I S

shi20361_ch07.qxd  6/3/03  5:00 PM  Page 389



Problem 7–23
F F

h

w1 w2

rA

A
d

Section A–A

Problem 7–24

T

T

20

5

60

(Dimensions in mm)

Problem 7–26

F

F

25 mm

Shaft BShaft A

10 mm

20 mm

25 mm

3 mm
fillet

390 Mechanical Engineering Design

A N A LY S I S

7–25 Repeat Prob. 7–24 ignoring curvature effects on the bending stress.

7–26 In the figure shown, shaft A, made of AISI 1010 hot-rolled steel, is welded to a fixed support and is
subjected to loading by equal and opposite forces F via shaft B. A theoretical stress concentration
Kts of 1.6 is induced by the 3-mm fillet. The length of shaft A from the fixed support to the connec-
tion at shaft B is 1 m. The load F cycles from 0.5 to 2 kN.

A N A LY S I S

A N A LY S I S

7–24 The torsional coupling in the figure is composed of a curved beam of square cross section that is
welded to an input shaft and output plate. A torque is applied to the shaft and cycles from zero to
T. The cross section of the beam has dimensions of 5 by 5 mm, and the centroidal axis of the beam
describes a curve of the form r = 10 θ/π , where r and θ are in mm and radians, respectively
(2π ≤ θ ≤ 6π ). The curved beam has a machined surface with yield and ultimate strength values
of 420 and 770 MPa, respectively.
(a) Determine the maximum allowable value of T such that the coupling will have an infinite life

with a factor of safety, n = 3, using the modified Goodman criterion.
(b) Repeat part (a) using the Gerber criterion.
(c) Using T found in part (b), determine the factor of safety guarding against yield.
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(a) For shaft A, find the factor of safety for infinite life using the modified Goodman fatigue fail-
ure criterion.

(b) Repeat part (a) using the Gerber fatigue failure criterion.

7–27 A schematic of a clutch-testing machine is shown. The steel shaft rotates at a constant speed ω. An
axial load is applied to the shaft and is cycled from zero to P. The torque T induced by the clutch
face onto the shaft is given by

T = f P(D + d)

4
where D and d are defined in the figure and f is the coefficient of friction of the clutch face. The
shaft is machined with Sy = 800 MPa and Sut = 1000 MPa. The theoretical stress concentration
factors for the fillet are 3.0 and 1.8 for the axial and torsional loading, respectively.
(a) Assume the load variation P is synchronous with shaft rotation. With f = 0.3, find the maxi-

mum allowable load P such that the shaft will survive a minimum of 106 cycles with a factor
of safety of 3. Use the modified Goodman criterion. Determine the corresponding factor of
safety guarding against yielding.

(b) Suppose the shaft is not rotating, but the load P is cycled as shown. With f = 0.3, find the
maximum allowable load P so that the shaft will survive a minimum of 106 cycles with a fac-
tor of safety of 3. Use the modified Goodman criterion. Determine the corresponding factor of
safety guarding against yielding.

Problem 7–27
P

Friction pad D = 150 mm

d = 30 mmR = 3 mm
�

7–28 For the clutch of Prob. 7–27, the external load P is cycled between 20 kN and 80 kN. Assuming
that the shaft is rotating synchronous with the external load cycle, estimate the number of cycles
to failure. Use the modified Goodman fatigue failure criteria.

7–29 A flat leaf spring has fluctuating stress of σmax = 420 MPa and σmin = 140 MPa applied for
5 (104) cycles. If the load changes to σmax = 350 MPa and σmin = −200 MPa, how many cycles
should the spring survive? The material is AISI 1040 CD and has a fully corrected endurance
strength of Se = 200 MPa. Assume that f = 0.9.
(a) Use Miner’s method.
(b) Use Manson’s method.

7–30 A machine part will be cycled at ±48 kpsi for 4 (103) cycles. Then the loading will be changed to
±38 kpsi for 6 (104) cycles. Finally, the load will be changed to ±32 kpsi. How many cycles of
operation can be expected at this stress level? For the part, Sut = 76 kpsi, f = 0.9, and has a fully
corrected endurance strength of Se = 30 kpsi.
(a) Use Miner’s method.
(b) Use Manson’s method.

7–31 A rotating-beam specimen with an endurance limit of 50 kpsi and an ultimate strength of 100 kpsi
is cycled 20 percent of the time at 70 kpsi, 50 percent at 55 kpsi, and 30 percent at 40 kpsi. Let
f = 0.9 and estimate the number of cycles to failure.

A N A LY S I S

A N A LY S I S

A N A LY S I S

A N A LY S I S

A N A LY S I S
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Stochastic Problems
7–32 Solve Prob. 7–1 if the hardness of production pieces is found to be Hb = 495LN(1, 0.03).

7–33 The situation is similar to that of Prob. 7–10 wherein the imposed completely reversed axial load
Fa = 15LN(1, 0.20) kN is to be carried by the link with a thickness to be specified by you, the
designer. Use the 1018 cold-drawn steel of Prob. 7–10 with Sut = 440LN(1, 0.30) MPa and
Syt = 370LN(1, 0.061). The reliability goal must exceed 0.999. Using the correlation method,
specify the thickness t.

7–34 A solid round steel bar is machined to a diameter of 1.25 in. A groove 1
8 in deep with a radius of

1
8 in is cut into the bar. The material has a mean tensile strength of 110 kpsi. A completely reversed
bending moment M = 1400 lbf · in is applied. Estimate the reliability. The size factor should be
based on the gross diameter. The bar rotates.

7–35 Repeat Prob. 7–34, with a completely reversed torsional moment of T = 1400 lbf · in applied.

7–36 A 1 1
4 -in-diameter hot-rolled steel bar has a 1

8 -in diameter hole drilled transversely through it. The
bar is nonrotating and is subject to a completely reversed bending moment of M = 1600 lbf · in
in the same plane as the axis of the transverse hole. The material has a mean tensile strength of
58 kpsi. Estimate the reliability. The size factor should be based on the gross size. Use Table A–16
for Kt .

7–37 Repeat Prob. 7–36, with the bar subject to a completely reversed torsional moment of 2400 lbf · in.

7–38 The plan view of a link is the same as in Prob. 7–23; however, the forces F are completely
reversed, the reliability goal is 0.998, and the material properties are Sut = 64LN(1, 0.045) kpsi
and Sy = 54LN(1, 0.077) kpsi. Treat Fa as deterministic, and specify the thickness h.

Computer Problems
7–39 A 1

4 by 1 1
2 -in steel bar has a 3

4 -in drilled hole located in the center, much as is shown in
Table A–15–1. The bar is subjected to a completely reversed axial load with a deterministic load
of 1200 lbf. The material has a mean ultimate tensile strength of S̄ut = 80 kpsi.
(a) Estimate the reliability.
(b) Conduct a computer simulation to confirm your answer to part a.

7–40 From your experience with Prob. 7–39 and Ex. 7–20, you observed that for completely reversed
axial and bending fatigue, it is possible to

• Observe the COVs associated with a priori design considerations.

• Note the reliability goal.

• Find the mean design factor n̄d which will permit making a geometric design decision that will
attain the goal using deterministic methods in conjunction with n̄d .

Formulate an interactive computer program that will enable the user to find n̄d . While the material
properties Sut , Sy , and the load COV must be input by the user, all of the COVs associated with
�0.30 , ka , kc , kd , and K f can be internal, and answers to questions will allow Cσ and CS , as well
as Cn and n̄d , to be calculated. Later you can add improvements. Test your program with problems
you have already solved.

7–41 When using the Gerber fatigue failure criterion in a stochastic problem, Eqs. (7–80) and (7–81) are
useful. They are also computationally complicated. It is helpful to have a computer subroutine or
procedure that performs these calculations. When writing an executive program, and it is appro-
priate to find Sa and CSa , a simple call to the subroutine does this with a minimum of effort.
Also, once the subroutine is tested, it is always ready to perform. Write and test such a program.

A N A LY S I S

A N A LY S I S

A N A LY S I S
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A N A LY S I S

D E S I G N

D E S I G N

shi20361_ch07.qxd  6/3/03  5:00 PM  Page 392



Fatigue Failure Resulting from Variable Loading 393

7–42 Repeat Problem. 7–41 for the ASME-elliptic fatigue failure locus, implementing Eqs. (7–83) and
(7–84).

7–43 Repeat Prob. 7–41 for the Smith-Dolan fatigue failure locus, implementing Eqs. (7–87) and (7–88).

7–44 Write and test computer subroutines or procedures that will implement
(a) Table 7–4, returning a, b, C, and k̄a .
(b) Equation (7–19) using Table 7–5, returning kb .
(c) Table 7–14, returning α, β , C, and k̄c .
(d) Equations (7–26) and (7–75), returning k̄d and Ckd .

7–45 Write and test a computer subroutine or procedure that implements Eqs. (7–76) and (7–77),
returning q̄ , σ̂q , and Cq .

7–46 Write and test a computer subroutine or procedure that implements Eq. (7–35) and Tables 7–8 and
7–18, returning 

√
a, CK f , and K̄ f .

Summary of Parts 1 and 2
The first recommendation is to reread Chap. 1. With the experience you have gathered
so far, you will gain from doing it. With the meat you have added to the bare bones of
the introductory chapter, it will have a greater meaning. In Sec. 1–3, there are over two
dozen design considerations. We have addressed item 2 in detail, the question of the
strength/stress relationship in a loss-of-function for ductile and brittle materials,
for steady and fatigue loading, and for finite and indefinite life. We have also started
on item 7, reliability, as it applies to stress/strength relationships. In investigating the
stress/strength relations, the reader should now be prepared to

• Identify the critical location(s), either by inspection, or, if not obvious, by analyzing
the several candidates, and identifying the “worst case.”

• Identify the significant strength at that location.

• Identify the significant stress at that location.

• Address the question of whether the disparity between stress and strength is sufficient
such that function will be preserved in the face of service loading.

This preparation took a long time because an extensive set of ideas and insights had to
be identified in and among your prerequisite studies, and placed in a useful context.

The question of stiffness, distortion, and deflection, item 3, and their influence on
loss of function has also been addressed. The reader should now be prepared to identify

• The level of distortion that risks loss of function.

• The location(s) at which loss-of-function due to distortion is possible.

• The level of distortion present.

• Whether the difference is sufficient.

Some other considerations will be touched on in Part 3, and those just noted will be fur-
ther developed for the application at hand. As we proceed into Part 3 our focus becomes
more specific as we consider particular machine elements and their applications.

For now, the reader should feel comfortable with a kit of tools from which an ade-
quacy assessment is devised. Skill 1 will take on additional substance as applications
unfold. In addition to focus on individual elements, design/synthesis ideas will appear
more often, and skill 2 will take form and grow.
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