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About Max+pluslI

Altera sMax+plus |l is apowerful simulation package used in the digital design industry. It allowsan
enginee to design, prototype, test, and cebug a circuit prior to implementation. Thisis very important,
sinceit all ows circuits to be implemented faster and cheaper. Thistutorial provides an overview of
Max+plus |l andincludes sveral design examples which have been worked through in detail .

I nstallation

Installing Max+plusl|

To ingtal the version of Max+plus Il that comes with Digital Principles and Design, smply placethe CD
in your CD-ROM drive and select Start — Run. A dialog boxwill appear. Select the file mp2_101se.exe
onthe CD. Asthe gplicationruns, it will step you through the installation procedure. Additional
information regarding the install ation procedure ae outlined at

http://www.alteral.com/educati or/univ/univ-student_install.html.

Obtaining a license

A licensefileisrequired to use Max+plus|l. To oltainthe license, go to the foll owing website:
http://www.altera.com/support/licensing/lic-university.html. Select MAX+PLUS Il Student Edition
software and click Continue. Enter your hard disk volume serial number and click Continue. Instructions
on haw to oltain this number are given onthe web page. Fill in the fields onthe form given onweb page
and click Continue. This completesthe procedure. The licensefile will be sent to youvia email. The
fileis caled license.dat

| mplementing a Circuit from a Function or a Truth Table

When implementing a drcuit, one must first determine the charaderistic equations of the circuit so that it
can bedirectly trandated into a gate level description d the circuit. Minimizationis recommended.
Several minimization methods, such as Karnaugh maps, Quine McCluskey method, and Petrick’ s method
are outlined in Digital Principles and Design, by Donald D. Givone. The detail s of determining these
equations are not outlined in this tutorial, sincethese topics are cvered in depth in the textbok.

Using Altera

To illustrate how to use Max+Plus |1, a 2-bit priority encoder with an enable input (E) andavalid hit
output (V) will be designed. The truth table for the encoder is sawnintable 1.

D3 |D2 |D1 |DO |E |Al |AOQ |V
1 X X X 1)1 1 1
0 1 X X 11 0 1
0 0 1 X 110 1 1
0 0 0 1 110 0 1
X X X X 0 |0 0 0

Table 1 —Priority encoder truth table.

The equations characterizing ead o the threeoutputs are shown in figure 1.



A.=ED;+ ED,
Ao = ED3 + EDZ’D 1
V= ED3 + ED2+ ED]_ + EDO

Figure 1 —Equations for outputs A1, AO,and V.

Creating a Project

We start by creaing aproject. Thisisaacomplished by selecting File - Project — Name, entering the
working directory, and name of the projed. A suitable name for our project isencoder. After thisis
dore, the design can be started.

Schematic Capture

Circuits can be entered into Max+plus Il using schematic capture. To implement the priority encoder,
select Max+plus|l - Graphic Editor. The blank graphic editor window that appears is where the design
isentered. Comporents areincorporated into the design by selecting them from alist of devices. The
encoder we are designing is composed of primitive cmporents. To select from these comporents, right
click in the graphic editor window. A menuwill appea. Select Enter Symbadl. Another dialog box will
appear. Select thelibrary which contains default primiti ve componrents (c:\maxplus2\max2lib\prim), by
doube clicking onthe primlibrary. The deviceslisted urder Symbad Fil es contain the comporents that
can be selected. The gatesin thelist are named by the type of gate, foll owed by the fan-in of the gate.
We will start with the output A1. Select the two input AND gate by double clicking onand2. Repeat the
processfor another two input AND gate, and atwo input OR gate (or2). Gates can be moved by dragging
the gate. Arrange the gatesas sownin figure 2.

Figure 2 —Gates required for the priority encoder.

The next step isto connect the gates together. Wires are implemented by left clicking at the
starting point of the wire, and dragging the wire to the endpant. Note that Max+plus 11 will
automaticdly create a90 degreebendin the wire as needed. To illustrate this, placethe aursor over the
output of one of the AND gates. The airsor will change to the wire todl (+). Left click onthe output, and
create awire that bends and ends inli ne with the input of the OR gate, as hown in Figure 3. Creae
ancther wire to complete the amnnrectionto the OR gate, as sown in figure 4.



Figure 4 — AND and OR gates connected together.

Repeat the wiring procedure to connect the output of the second AND gate to the input of the OR
gate. Theresultisshownin figureb5.

Figure 5— AND and OR gates wired together

Now that the gates have been placed and wired, we need to create input and output terminals.
Using the same procedure we used for the gates, select three input terminals and one output terminal from
the ligt of primitive components. The component names are input and output. Place the terminals as

shown in figure 6.



QIPUL 5 PIN_NAME

Figure 6 — Placement and wiring of input/output terminals.

The next step isto wire the input and output terminals to the gates. We'll start with the enable
input (E). The second input terminal will be used. Wire the terminal to the upper AND gate. Then wire
the second AND gate to the wire you created in the previous step. Notice the connection dot that is
created. This connection dot can be removed or created by placing the cursor over the intersection of two
wires, right clicking, and selecting Toggle Connection Dot.

The next step isto label the input terminal with the appropriate pin name. Label the input
terminal just wired by double clicking on PIN_NAME, and then replacing the selected text with E. Notice
that the output terminal in figure 6 was placed such that the port (connection to the component) was
placed at the output of the OR gate. Hence, the connection was created automatically, without the need
for explicitly creating awire.

Continue to apply the techniques introduced in this section to construct the rest of the circuit, as
shown infigure 7. Then save your design, by selecting File — Save As, and entering a name for your
design. A good name would be encoder.

After the design is complete, compile the design, by selecting File - Project — Save & Compile.
Any errorsin the design will be displayed. Correct the errors and recompile. Once you have a design that
compiles, you are now ready to simulate the circuit.
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Figure 7- Priority encoder.
Verification

Max+plus |1 provides a powerful, user-friendly interface for verification of adesign. We will now verify
the functionality of the priority encoder. Select Max+plus|l — Waveform Editor. Once the waveform
editor has appeared, right click, and select Enter Nodes from SNF. Click on List, and click on the right
arrow (O) to select all the input and output nodes. The nodes will be copied from the available nodes and
groups list to the selected nodes and groups list. At this point, the input pattern to be used in the
simulation will be constructed. Once this step has been completed, the circuit will be ssimulated to
analyze the outputs and verify the correct functionality.

To construct the input pattern, first set the grid size by selecting Options — Grid Size and setting
the grid sizeto 20 ns. Sdlect the inputs D3 through DO by holding down the shift key and clicking on D3,
D2, D1, and DO. With the cursor over the highlighted area, right click and select Enter Group. The group
name will default to D[3..0]. Thiswill allow these inputs to be utilized as a 4-bit bus. Select the Radix as
Hex, and then click on OK.

To better view the waveforms, select View — Time Range, set the range from 0 nsto 640 ns, and
click OK. Thisisthe range required for our exhaustive simulation.

If the group D[3..0] isnot still selected, left click on the group. Over the highlighted ares, left
click on the count button (C) located along the |eft hand side of the window. Thiswill allow usto
exhaustively test the circuit without having to set each of theinputs D3, D2, D1, and DO individually.

The starting value should be O, the increment by field should be 1, the multiplied by value should be 1,
and the count type should be set to binary. Verify that all of these values are set appropriately and click
on OK. If thegroupisstill not selected, select it. Right click on the highlighted area, and select ungroup.
Thiswill display D3, D2, D1, and DO independently.



The next input that needs to be set is the enable input (E). Select the Enable waveform between 0
nsand 320 ns. Click onthelogic 1 button (1) on the left hand side of the window to set the selected
waveformto alogic 1. Theinput waveform has now been created. The waveforms are shown in figure 8.
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Figure 8 — Priority encoder waveforms prior to simulation.

To run the simulation, select File — Project — Save, Compile, & Simulate. A diaog box will
appear, alowing the simulation file to be saved. Click on OK. The circuit isthen simulated. Afterwards,
adialog box will appear indicating the simulation has completed. Click on OK. Inthe Simulator: Timing
Simulation window, click on Open SCF. The resulting simulation is shown in figure 9.

0.0ns
Mame: Yalue: 1DD.IDnS ZDD.IDnS SDD.IDnS 4DD.IDnS SDD.IDnS EDD.IDnS
"y

-k T 1 |

5= D3 i | | |

5= D2 i N TE 2 3| REER
5= D1 o [ = [ S O S

5= D0 i EnEnEnEnEnEnEnEnEn
-V o | |

- Al i |

- AD 0 [ 1 | |

Figure 9 — Priority encoder waveforms after simulation.

Functional Simulation

The simulation performed in the previous section isatiming simulation. Delays associated with each of
the gates are part of the library. To perform afunctional simulation where the delays are not used,
proceed asfollows. Close the Waveform Editor and Simulator windows. Click on the Compiler window
soitisactive. If the Compiler window is not open, select File — Project -  Save and Compiler. Select
Processing — Functional SNF Extractor. The next step isto run the simulation by selecting File —
Project — Save, Compile, & Simulate. Open the SCF to display the results of the functional simulation.
The waveform for the encoder is shown in figure 10.
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Figure 10 — Functional simulation of priority encoder

Timing

Max+plus Il provides atiming analysis tool which analyzes the delaysin acircuit. To runthisanalyss,
go back to the Compiler window and make sure that the Functional SNF Extractor is not checked. If itis,
click onit to desdect it. Simulate the circuit and open the Waveform Editor. To view the timing
analysis, select Utilities — Analyze Timing. The delay matrix window which appears anayzes the
timing delays between each input and each output. The matrix for the priority encoder is shown in figure

11.
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Figure 11 — Timing analysis of priority encoder.



Modular Design

Max+plus I supports modular design. To illustrate this, let us consider the priority encoder. Go back to
the graphic editor showing the schematic of the priority encoder. To create a symbol of the priority
encoder that can be utilized in amodular design, select File — Create Default Symbol. The symbol
which is created can be selected for use in other designs in the same way that gates, input terminals, and
output terminals were sdlected for use in the encoder. The default symbol is shown in figure 12. Notice
that the location of the pinsare similar to that of the schematic. Modifications can be made to the symbol
(such as the rearrangement of pins) by selecting File - Edit Symbol. Pinsand labels can be selected and
dragged to new locations or otherwise modified as desired. Figure 13 shows a modified symbol. Notice
that the pins were rearranged so that D3 through DO are adjacent.

encoder

Figure 12 — Default symbol for the priority encoder.

encoder
E X—E
D32 X D3 Aat—x A1
D2 A D2 ae— Ao
D1 % D1 UK Y
Do Do

Figure 13 — Edited symbol for the priority encoder.

Examples/Problems
Arithmetic Logic Unit (ALU)

In this example, a4-bit arithmetic logic unit (ALU) will be designed. The ALU operates on two 4-bit
inputs (X, Y) as defined by a 2-bit opcode (OP). The opcode sdlects between addition, subtraction,
arithmetic shift right, and logical shift left. The opcodes and their associated functions are summarized in
table 2. Theresult is placed on the 4-bit output, F. Thereis aso an overflow bit, which indicates if the
result of the addition or subtraction has overflowed the 4-bit output. This overflow bit isreset tologic O
for both shift operations. The ALU isshownin figure 14.



Function Opcode Description
Add 00 X+Y
Subtract 01 X-Y
Logical Shift Left 10 Logical left shift X n places, where n is represented by

Y1Yo

Arithmetic Shift
Right

11 Arithmetic right shift X n places, where n isrepresented by

YiYo

Table 2 — Summary of ALU functions.
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Figure 14 — ALU Symbol.

A top-down design approach will be used to implement this design. Functiona unitswill be
needed for addition/subtraction, logical |eft shift, and arithmetic right shift. In addition, a series of
multiplexors will select the output from the appropriate functional unit, and route the datato F and
Overflow, based on the opcode. A block diagram of the ALU is shown in figure 15.
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Figure 15 — Block diagram of the ALU.
Well start with the design of the 4-to-1 multiplexor. A 4-to-1 multiplexor can be designed from

three 2-to-1 multiplexors, as shown in figure 16. Hence, we can focus our efforts on designing and
testing the 2-to-1 multiplexor, and then use that as a building block for the 4-to-1 multiplexor.
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Figure 16 — 4-to-1 multiplexor.

A gate level diagram of the 2-to-1 multiplexor is shownin figure 17. Thefirst step in the design
of the ALU isto implement this circuit and thoroughly test it so that it can be instantiated where ever
needed throughout the design. An exhaustive simulation verifying the circuit’s functionaity is shownin

figure 18.
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Figure 17 — 2-to-1 multiplexor.
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Figure 18 — Simulation of 2-to-1 multiplexor.

Now that the 2-to-1 multiplexor has been designed and tested, it can be instantiated in the design
of the 4-to-1 multiplexor. The design is shown in figure 16 and an exhaustive simulation verifying its

functionality shown in figure 19.
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Figure 19 — Simulation of 4-to-1 multiplexor.

The next step isto design the functional units. We'll start with the 4-bit adder/ subtractor which
consists of four cascaded full adders, a circuit for performing the two’s complement when subtraction is
performed, and an overflow detection circuit. Thefirst step isthe design of the full adder, which is shown
in figure 20.
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Figure 20- Full adder.

The next step isto thoroughly test the full adder. Due the limited number of inputs and outputs,

exhaustive testing will be utilized to ensure correct functionality. The simulation is shown in figure 21.
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Figure 21 — Full adder simulation.

Now that the full adder has been verified, create the default symbol for the full adder and
incorporate four full adders into a4-bit adder/subtractor with overflow detection. The circuit is shown in
figure 22 and the simulation in figure 23. Notice that at 200 ns, the applied inputs produce a negative
result, so the output (OxB) corresponds to the correct value (-5).
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Figure 22 — 4-bit adder/subtractor circuit.
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Figure 23 — Simulation of the 4-bit adder/subtractor circuit.



A barrel shifter can be utilized to efficiently implement logical shift left and arithmetic shift right.

The barrel shifter consists of a series of multiplexors which route each bit at the input to the correct
output, effectively performing the shift operation. The barrel shifter used to perform the logical left shift
operation is shown in figure 24, and the corresponding simulation is shown in figure 25. The analogous
barrel shifter for the arithmetic right shift is shown along with the smulation in figures 26 and 27

respectively.
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Figure 24 — Logical left shift circuit.
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Figure 25 — Simulation of logical left shift circuit.
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Figure 26 — Arithmetic right shift circuit.
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Figure 27 — Simulation of arithmetic right shift circuit.

Now that all the functional components have been designed, the overall design will now be
implemented. An output multiplexor will select from the outputs from the functional units to route the

proper function’s output to the output of the ALU. The output multiplexor actually consists of five 4-to-1

multiplexors: onefor FO, F1, F2, F3, and overflow. The output multiplexor isshown in detail in figure
28.
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Figure 28 — Output multiplexor.

The darker wires used in connecting the functional unit outputs to the output multiplexor are
busses, which help clean up the design, making it easier to read. To implement a bus, right click over the
wire, select Line Style, and select the second style from the top (the thick ling). When a single connection
is made to the bus, right click over the single wire, select Enter Node/Bus Name, and enter a name for that
connection. The output multiplexor utilizes four busses: f0, f1, f2, and f3. One busis used to connect
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the four outputs from the ALU to the outputs from the various functional units an index is used to specify
the individual wiresin the bus. For example, the four wires which comprise the bus fO are referenced by
fo[Q], fo[1], fO[2], and fO[3].

Once the output multipliexor has been wired to the functional units, the primary inputs should be
routed to the appropriate functional units. The overall design is shown in figure 29. Simulation results
are shown in figure 30.
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Figure 29 — Overall ALU.
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Figure 30 — Smulation of ALU.

Timing analysis reveal s that the worst case delay along the critical pathis 13.2 ns, asshownin
figure 31. Thiscan be improved by replacing the ripple carry adder/subtractor with a carry-lookahead
adder/subtractor, as shown in figures 32 and 33. One of the powerful features of Max+plus |l isthe ease
with which a module can be modified in acomplicated design. In this example, the carry-lookahead
adder/subtractor can be incorporated into the design by creating a symbol for the adder/subtractor, and
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updating the symbol in the overall ALU design by selecting Symbol — Update Symbol — All Symbols
in the File. Oncethisis done, the carry lookahead adder/subtractor is part of the design. The new timing
analysis shown in figure 34 reveals a 27 % improvement in the speed of the ALU.
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Figure 31— Timing analysis of ALU.
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Figure 32 — Carry lookahead adder.
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Figure 33 — 4-bit adder/subtractor circuit implemented with a carry-lookahead adder.
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Figure 34 — Timing analysis of ALU with a carry lookahead adder.

Finite State Machine Example

In this example, a 2-bit up/down counter will be designed and implemented using Max+plus1l. A Moore
model will be used in the design. Thefinite state diagram is shown in figure 35.
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Figure 35 — 2-bit up/down counter.

A block diagram of the counter is shown in figure 36. Note that the output decoder is note
depicted. Thisis because the outputs (Z;, Zo) are the same as the current state (Qi, Qo). The equations
describing the next state decoder are shown in figure 37.

RST

X —» L’ % > Z
Next S0
Memor
State | P y > 7
Decoder Ql S|
D
1

Figure 36 — Block diagram of 2-bit up/down counter.

Do = Qo'
D; =X'Q1Qo + XQ1Qu' + X'Q 1Qo + XQ1'Qo

Figure 37 — Next state decoder equations.

Now that the design has been specified at a high level, attention can be given to low level details.
Well start with the memory block. The four states shown in the state diagram require two flip-flops. D-
flip-flops with asynchronous reset (RST) will be used. The flip-flop design and simulation are shown in

figures 38 and 39 respectively.
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Figure 38 — D-flip-flop with asynchronous reset.
I:'D.Dns
Marne: _Walue: i SD.IDI’]S 1DD.IDnS 150.|Dns ZDD.IDnS ZSD.IDns SDD.IDnS
B=D 1 | |
= RST

= Clk

1 |
0 |

- Q X | ERERT] [
Xk |24 |

=g Qbar

Figure 39 — Simulation of D-flip-flop.

Now that the flip-flops have been designed and tested, the next state decoder must be
implemented. The decoder is shown in figure 40, with the associated simulation in figure 41.
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Figure 40 — Next state decoder implementation.
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Figure 41 — Simulation of next state decoder.

The next state decoder and flip-flops can now be instantiated in the counter by creating symbols
for each of them, inserting the symbols into the design of the counter, and then making the proper
connections, as shown in figure 42. Functional verification of the counter is shown in figure 43.
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Figure 42 — 2-bit up/down counter.
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Figure 43 — Functional simulation of counter.
Design Using Off-the-shelf Components

There are various librariesin Max+plus |1 which allow off the shelf components to be used to implement
adesign. Inthisexample, TTL 7400 series chips will be used to design a 3-to-8 decoder from a dual 2-to-
4 decoder (74139). Select the 74139 from the mf library. Using the same library, add an inverter (7404).
Add three input terminals from the primitives library (prim) and eight output terminals. Wire the circuit
asshownin figure 44. A simulation of the 3-to-8 decoder is shown in figure 45.
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Figure 44 — 3-t0-8 decoder implemented with adual 2-to-4 decoder
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Figure 45 — Simulation of the 3-to-8 decoder
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