
 ii

  
PREFACE 

 
This book is intended for an object-oriented course in data structures and 
algorithms.  The implementation language is Java, and it is assumed that 
students have taken an introductory course with that language.  That course 
should have covered the fundamental statements and data types, as well as 
arrays.  Appendix 0 has a review of that material. 
 
 
The Java Collections Framework 
 
One of the distinctive features of this text is its emphasis on the Java 
Collections Framework, part of the java.util package. Basically, the framework 
is a hierarchy with interfaces at each level except the lowest, and collection 
classes that implement those interfaces at the lowest level.  The collection 
classes implement most of the data structures studied in a second computer-
science course, such as a resizable array class, a linked-list class, a balanced 
binary-search-tree class, and a hash-map class. 

 
There are several advantages to using the Java Collections Framework.  

First, students will be working with code that has been extensively tested; they 
need not depend on modules created by the instructor or textbook author.    
Second, the framework is available for later courses in the curriculum, and 
beyond!  Third, although the primary emphasis is on using the Java 
Collections Framework, the framework classes are not treated simply as 
“black boxes.”  For each such class, the heading and fields are provided, and 
one method definition is dissected.  This exposition takes away some of the 
mystery that would otherwise surround the class, and allows students to see the 
efficiency and succinctness of professionals’ code. 

 
The version of the Java Collections Framework we will be working with 

includes type parameters.  Type parameters, sometimes called “generics” or 
“templates,” were added to the Java language starting with Java 2 Standard 
Edition (J2SE), version 1.5.  Two other features that complement type 
parameters are boxing, whereby a primitive value is automatically converted 
to an object, and unboxing, whereby an object from wrapper class (such as 
Integer) is automatically converted to the corresponding value in a primitive 
type (such as int). 



 iii

 
 
Other Implementations Considered 
 
As important as the Java Collections Framework implementations are, they 
cannot be the exclusive focus of such a fundamental course in data structures 
and algorithms. Approaches that differ from those in the framework deserve 
consideration.  For example, the HashMap class utilizes chaining, so there is 
a separate section on open addressing, and a discussion of the trade-offs of 
one design over the other.  Also, there is coverage of data structures (such as 
a Network class) and algorithms (such as Heap Sort) that are not yet included 
in the Java Collections Framework. 
 
 Sometimes, the complexity of the framework classes is mitigated by 
first introducing simpler versions of those classes.  For example, the 
SinglyLinkedList class – not in the Java Collections Framework – helps to 
pave the way for the more powerful LinkedList class, which is in the 
framework.  And the BinarySearchTree class prepares students to understand 
the framework’s TreeMap class, based on red-black trees.    
 
 This text satisfies another important goal of a data structures and 
algorithms course: Students have the opportunity to develop their own data 
structures. There are programming projects in which data structures are 
either created “from the ground up” or extended from examples in the 
chapters. And there are many other projects to develop or extend 
applications that use the Java Collections Framework. 
 
 
Pedagogical Features 
 
This text offers several features that may improve the teaching environment 
for instructors and the learning environment for students.  Each chapter 
starts with a list of objectives, and most chapters conclude with several 
major programming assignments.  Each chapter also has a variety of 
exercises, and the answers to all of the exercises are available to the 
instructor.   
 
 Each data structure is carefully described, with the specifications for 
each method given in javadoc notation.  Also, there are examples of how to 



 iv

call the method, and the results of that call.  To reinforce the important 
aspects of the material and to hone students’ coding skills in preparation for 
programming projects, there is a suite of 23 lab experiments.  The 
organization of these labs is described later in this preface.   
 
 
Support Material 
 
The web site for all of the support material is  
 
www.mhhe.com/collins 
 
That web site has links to the following information for students: 
 
Ø An overview of the labs and how to access them 

 
Ø The source code for all classes developed in the text 
 
Ø Applets for projects that have a strong visual component 
 
Additionally, instructors can obtain the following from the web site: 
 
Ø Instructors’ options with regard to the labs 
 
Ø PowerPoint slides for each chapter (approximately 1500 slides) 
 
Ø Answers to every exercise and lab experiment 
 
 
Synopses of the Chapters 
 
Chapter 1 focuses on the fundamentals of object-oriented programming.  
The String  class serves as a vehicle for some background material on 
constructors and references.  Then encapsulation, inheritance and 
polymorphism are introduced.  For a concrete illustration of these topics, an 
interface is created and implemented, and the implementation is extended.  
The relationship between abstract data types and interfaces is explored, as is 
the corresponding connection between classes and data structures. The 



 v 

Universal Modeling Language provides a design tool to depict the 
interrelationships among interfaces, classes and subclasses. 
 
 Chapter 2 introduces some additional features of the Java language.  
For example, there are sections on exception handling, file input and output, 
and the Java Virtual Machine.  There is also a section on the Object class’s 
equals method, why that method should be overridden, and how to 
accomplish the overriding.  
 
 Chapter 3, Analysis of Algorithms, starts by defining functions to 
estimate a method’s execution-time requirements, both in the average and 
worst cases.  Big-O notation provides a convenient tool for estimating these 
estimates.  Because Big-O notation yields environment-independent 
estimates, these results are then compared with actual run-times, which are 
determined with the help of the Random class and currentTimeMillis method.    
 
 Chapter 4 outlines the Java Collections Framework.  We start with 
some preliminary material on collection classes in general, type parameters 
and the iterator design-pattern.  The remainder of the chapter presents the 
major interfaces (Collection, List, Set, Map) and their implementations.  
Special attention is given to comparing those implementations, for example, 
ArrayList versus LinkedList and TreeMap versus HashMap. 
  
 Chapter 5, on recursion, represents a temporary shift in emphasis from 
data structures to algorithms.  There is a gradual progression from simple 
examples (factorial and decimal-to-binary) to more powerful examples 
(binary search and backtracking).  The mechanism for illustrating the 
execution of recursive methods is the execution frame.  Backtracking is 
introduced, not only as a design pattern, but as another illustration of 
creating polymorphic references through interfaces.  And the same 
BackTrack class is used for maze-searching, eight queens and knight’s tour!  
 
 In Chapter 6, we study the Java Collections Framework’s ArrayList class.  
An ArrayList object is a smart array: automatically resizable, and with methods 
to handle insertions and deletions at any index. The design starts with the 
method specifications for some of the most widely-used methods in the 
ArrayList class.  There follows a brief outline of the implementation of the 
class.  The application of the ArrayList class, high-precision arithmetic, is 
essential for public-key cryptography.   This application is extended in a lab 



 vi

and in a programming project.  There is another programming project to 
develop a Deque class.   
 

Chapter 6 also introduces a “theme” project: to develop an integrated 
web browser and search engine.  This project, based on a paper by Newhall 
and Meeden [2002], assumes some familiarity with graphical user interfaces.  
The project continues through five of the remaining chapters, and clearly 
illustrates the practical value of understanding data structures. 
 
 Chapter 7 presents linked lists.   A discussion of singly-linked lists 
leades to the development of a primitive SinglyLinkedList class.  This serves 
mainly to prepare students for the framework’s LinkedList class.  LinkedList 
objects are characterized by linear-time methods for inserting, removing or 
retrieving at an arbitrary position.  This property makes a compelling case for 
list iterators: objects that traverse a LinkedList object and have constant-time 
methods for inserting, removing or retrieving at the “current” position.  The 
framework’s design is doubly-linked and circular, but other approaches are 
also considered. The application is a small line-editor, for which list iterators 
are well suited.  This application is extended in a programming project. 
 
 Queues and stacks are the subjects of Chapter 8.  The Java Collections 
Framework has a Queue interface, but that interface allows the removal of any 
element from a queue!  Because this violates the definition of a queue, we 
instead create a simple PureQueue interface that corresponds to the abstract 
data type queue.  Implementations based on a LinkedList and on an array are 
developed and analyzed.  The  specific application, calculating the average 
waiting time at a car wash, falls into the general category of computer 
simulation.   
 

A PureStack interface, with several simple implementations, allows us 
to bypass the framework’s Stack class.  The fatal flaw in the Stack class is that 
elements can be inserted or removed anywhere in a Stack object.  There are 
two applications of stacks: the implementation of recursion by a compiler, and 
the conversion from infix to postfix.  This latter application is expanded in a 
lab, and forms the basis for a project on evaluating a condition. 
 
 Chapter 9 focuses on binary trees in general, as a prelude to the material 
in Chapters 10 through 13.  The essential features of binary trees are presented, 
including both botanical (root, branch, leaf) and familial (parent, child, sibling) 



 vii

terms.  Binary trees are important for understanding later material on AVL 
trees, decision trees, red-black trees, heaps and Huffman trees.  
 
 In Chapter 10, we look at binary search trees, including a 
BinarySearchTree class, and explain the value of balanced binary search trees.  
Rotations are introduced as the mechanism by which re-balancing is 
accomplished, and AVL trees are offered as examples of balanced binary 
search trees.  An AVLTree class, as a subclass of BinarySearchTree, is outlined; 
the crucial methods, fixAfterInsertion and fixAfterDeletion, are given as 
programming projects. 
 
 Sorting is the topic of Chapter 11. Estimates of the lower bounds for 
comparison-based sorts are determined.  A few simple sorts are defined, and 
then we move on to two sort methods provided by the framework. Quick Sort 
sorts an array of a primitive type, and Merge Sort works for an array of objects 
and for implementations of the List interface.   A lab experiment compares all 
of these sort algorithms on randomly-generated integers.   
 

The central topic of Chapter 12 is how to use the TreeMap class.  A map 
is a collection in which each element has a unique key part and also a value 
part.  In the TreeMap implementation of the Map interface, the elements are 
stored in a red-black tree, ordered by the elements’ keys.  There are labs to 
guide students through the details of re-structuring after an insertion or 
removal. The application consists of searching a thesaurus for synonyms.  The 
TreeSet class has a TreeMap field in which each element has the same, dummy 
value-part.  The application of the TreeSet class is a simple spell-checker.   
 
 Chapter 13 introduces the PurePriorityQueue interface, which is not yet 
part of the Java Collections Framework.  A heap-based implementation allows 
insertions in constant average time, and removal of the smallest-valued 
element in logarithmic worst time.   The application is in the area of data 
compression: Given a text file, generate a minimal, prefix-free encoding.  The 
project assignment is to convert the encoding back to the original text file.   
  
 Chapter 14 investigates hashing.  The Java Collections Framework has a 
HashMap class for elements that consist of unique-key/value pairs.  Basically, 
the average time for insertion, removal and searching is constant!  This 
average speed is exploited in an application to create a simple symbol table.  
The implementation, using chained hashing is compared to open-address 
hashing.   



 viii

  
 The most general data structures – graphs, trees and networks – are 
presented in Chapter 15.  There are outlines of the essential algorithms: 
breadth-first traversal, depth-first traversal, finding a minimal spanning tree,  
and finding the shortest  or longest path between two vertices.  The only class 
developed is the (directed) Network class, with an adjacency-list 
implementation.  Other classes, such as UndirectedGraph and 
UndirectedNetwork, can be straightforwardly defined as subclasses of Network.  
The Traveling Salesperson problem is investigated in a lab, and there is a 
programming project to complete an adjacency-matrix version of the Network 
class.  Another backtracking application is presented, with the same BackTrack 
class that was introduced in Chapter 5. 
 
 With each chapter, there is an associated web page that includes all 
programs developed in the chapter, and applets, where appropriate, to animate 
the concepts presented. 
 
 
Appendixes 
 
Appendix 0 has a review of Java topics assumed in the rest of the text: 
primitive types, the StringTokenizer class, console-oriented input, and arrays.  
There are also several programming exercises to reinforce the material 
presented. 
 
Appendix 1 contains the background that will allow students to comprehend 
the mathematical aspects of the chapters.  Summation notation and the 
rudimentary properties of logarithms are essential, and the material on 
mathematical induction will lead to a deeper appreciation of the analysis of 
binary trees. 
 

Appendix 2 has two additional features of the Java Collections 
Framework.  Each of the collection classes in the framework is serializable, 
that is, an instance of the class can be conveniently stored to an output stream, 
and the instance can later be re-constituted from an input stream (de-
serialization).   Framework iterators are fail-fast: During an iteration through a 
collection, there should be no insertions into or removals from the collection 
except by the iterator.  Otherwise, the integrity of that iterator may be 



 ix

compromised, so an exception will be thrown as soon as the iterator’s 
unreliability has been established.  
 
 
Organization of the Labs 
 
There are 23 Web labs associated with this text.  For both students and 
instructors, the initial Uniform Resource Locator (URL) is 
 
www.mhhe.com/collins 
 
The labs do not contain essential material, but provide reinforcement of the 
text material.  For example, after the ArrayList and LinkedList classes have been 
investigated, there is a lab to perform some timing experiments on those two 
classes.  
 

The labs are self-contained, so the instructor has considerable flexibility 
in assigning the labs: 
 

a. they can be assigned as closed labs; 
b. they can be assigned as open labs; 
c. they can be assigned as ungraded homework. 

 
In addition to the obvious benefit of promoting active learning, these 

labs also encourage use of the scientific method.   Basically, each lab is set up 
as an experiment.  Students observe some phenomenon, such as creating a 
greedy cycle to solve the Traveling Salesperson Problem.  They then formulate 
and submit a hypothesis – with their own code – about the phenomenon.  After 
testing and, perhaps, revising their hypothesis, they submit the conclusions 
they drew from the experiment. 

 
 


