## Problems

1. a. $20.77 \quad 9.23$
$24.23 \quad 10.77$
Only one value had to be computed; the remaining three could be found by subtraction.
b. $23.77 \quad 14.85 \quad 12.38$
$24.23 \quad 15.15 \quad 12.62$
It was necessary to compute two expected values; four were found by subtraction.
c. $\left.\begin{array}{ll}16.85 & 33.29 \\ 22.86\end{array}\right]$
$\begin{array}{lll}9.23 & 18.24 & 12.53\end{array}$
$15.92 \quad 31.47 \quad 21.61$
It was necessary to compute four values; five were found by subtraction.
2. a. $\chi^{2}(1, N=65)=13.32, p<.01$.
b. $\chi^{2}(2, N=103)=1.60, p>.05$.
c. $\chi^{2}(4, N=182)=17.77, p<.01$.
3. $\chi^{2}(1, N=132)=11.68, p<.01$. Left-handers were less likely to be aphasic than right-handers.
4. $\chi^{2}(1, N=204)=3.53, p>.05$. Parental alcoholism was not significantly related to alcoholism of the participants in the study.
5. $\chi^{2}(1, N=50)=25.92, p<.01$. The monkey had generalized its learned response from objects to pictures of objects.
6. $\chi^{2}(2, N=160)=1.91, p>.05$. Introversion-extroversion did not affect brand preference.
7. $\chi^{2}(4, N=170)=103.11, p<.01$. The grade assignment significantly departed from a normal distribution.
8. $\chi^{2}(1, N=60)=3.51, p>.05$. High- and low-self-esteem students did not differ on the test of attitudes toward risk taking.
9. $\chi^{2}(1, N=28)=11.57, p<.01$. In physiological psychology, the professor scored significantly better than the departmental average.
10. $\chi^{2}(1, N=28)=2.29, p>.05$. In statistics, the professor did not score better than the departmental average.
