CHAPTER 3

FILL-IN-THE-BLANK ITEMS

Introduction

The first step in organizing some data might be to arrange the scores by order of value, listing them from the (1) \qquad to the (2) \qquad The numbers constituting the data are called
(3) \qquad and are symbolized by the letter (4) \qquad .

Defining the Frequency Distribution

An arrangement in which the scores are listed in descending order and the number of times each score occurs is listed beside it is called a (5) \qquad . The number of times each score occurs is called its (6) \qquad and is symbolized by the letter (7) \qquad . In order to further condense the data, scores occurring with a zero frequency are often (8) \qquad in constructing the frequency distribution.

Continuous variables and discrete variables: Real limits and apparent limits
A (9) \qquad variable is one whose measurement can take an infinite number of values; a variable that can take only specific values is called a (10) \qquad variable. Data from a continuous variable presented as whole numbers have gaps between the numbers, resulting in (11) \qquad limits. Closing the gaps by subtracting (12) \qquad a unit from the lower limit and adding (13) \qquad a unit to the upper limit results in
(14) \qquad limits.

Percentage or Relative Frequency and Cumulative Frequency Distributions

One way to compare frequency distributions from samples of unequal size is to convert the frequencies to (15) \qquad frequencies. To do this, you divide each frequency by (16) \qquad
and multiply the result by $100 . N$ stands for the (17) \qquad of the frequencies or the total sample (18) \qquad .

To construct a cumulative frequency distribution, start with the distribution's lowest interval and (19) \qquad frequencies as you ascend. For any interval, the cumulative frequency tells you the number of scores in the interval plus the sum of the frequencies in all (20) \qquad intervals. Cumulative frequency is symbolized by (21) \qquad .

