CHAPTER 4

FILL-IN-THE-BLANK ITEMS

Introduction

An old adage states that a picture is worth a (1) \qquad words, and recognition of the truth of this leads to the discussion of (2) \qquad as a descriptive technique. The graphs discussed in the chapter are the frequency polygon, the (3) \qquad frequency or percentage curve, the
(4) \qquad , the bar graph, the stem-and-leaf plot, and the (5) \qquad graph.

Rules for Graphing

To help prevent misrepresentation of data, a graphing convention is often used that states that the
(6) \qquad axis should be approximately (7) \qquad as long as the X axis. This convention is called the (8) \qquad rule. It is also important to begin the values on the Y axis with (9) \qquad and to be sure that the Y axis units reflect reasonable
(10) \qquad in the data.

The Frequency Polygon

In a frequency polygon, the (11) \qquad are plotted on the baseline or X axis, and the (12) \qquad are plotted on the ordinate or Y axis. Labeling of the axes is very important: the
word (13) " \qquad " appears below the X axis, and the word (14) " \qquad $"$
appears to the left of the Y axis. The graph should also have a (15) \qquad describing the origin of the data.

A comparison of distributions using the percentage or relative frequency polygon
If you want to compare distributions with unequal $N s$ on the same axes, you must first convert frequencies
to (16) \qquad . Once you have done this, you can plot a percentage or
(17) \qquad frequency polygon.

Shapes of frequency polygons

The (18) \qquad or bell-shaped curve is an important symmetrical curve. Unimodal curves with a high peak at one end and a long tail at the other end are called (19) \qquad curves. If the tail is to the right, the curve is (20) \qquad ; if the tail is to the left, the curve is (21) \qquad .

The cumulative frequency (or cumulative percentage) polygon

In the cumulative frequency or percentage polygon, the cumulative frequencies or percentages are plotted over the (22) \qquad . The relative position of an individual may be determined from the cumulative polygon by drawing a (23) \qquad line from that person's score on the X axis to the curve and then drawing a (24) \qquad line from that point on the curve to the Y axis. The point at which the (25) \qquad line meets the Y axis gives an approximate number (or percentage) of individuals scoring at or below the score being considered.

The Histogram

The histogram is like the frequency polygon except that a rectangular (26) \qquad is drawn over each score value on the X axis, with its height determined by the score's (27) \qquad -.

Each bar is centered above a score value and extends (28) \qquad between adjacent scores.

The Bar Graph

The bar graph is a type of histogram used to graph (29) \qquad scale data. The bars don't have to touch, and the spacing between them is (30) \qquad ـ.

The Stem-and-Leaf Plot

To construct a stem-and-leaf plot, each score is divided into two parts: a (31) \qquad and a (32) \qquad The first digit(s) is the (33) \qquad and the last digit(s) is the (34) \qquad For example, a score of 133 would have a stem of (35) \qquad and a leaf of (36) \qquad Each stem is listed from lowest to highest, a
(37) \qquad line is drawn to the right of the column of stems, and then the
(38) \qquad are put beside the stems. If the plot is rotated so that the stems become (39) \qquad on the baseline of a graph, the result is a (40) \qquad , with digits over the scores rather than bars.

The Line Graph

In a line graph, an (41) \qquad variable is recorded on the X axis, and some measure of the dependent variable appears on the Y axis. Because the independent variable is assumed to be (42) \qquad , a line is used to connect the plotted points.

