CHAPTER 4

FILL-IN-THE-BLANK ITEMS

Introduction

An old adage states that a picture is worth a (1)	words, and recognition of the truth of
this leads to the discussion of (2)	as a descriptive technique. The graphs discussed in
the chapter are the frequency polygon, the (3)	frequency or percentage curve, the
(4), the bar graph, the stem-ar	nd-leaf plot, and the (5) graph.

Rules for Graphing

To help prevent misrepresentation of data, a graphing convention is often used that states that the

(6) ______ axis should be approximately (7) ______ as long as the *X* axis. This

convention is called the (8) ______ rule. It is also important to begin the values on the Y axis

with (9) ______ and to be sure that the *Y* axis units reflect reasonable

(10) _____ in the data.

The Frequency Polygon

In a frequency polygon, the (11) ______ are plotted on the baseline or *X* axis, and the

(12) ______ are plotted on the ordinate or Y axis. Labeling of the axes is very important: the

word (13) "_____" appears below the *X* axis, and the word (14) "_____"

appears to the left of the *Y* axis. The graph should also have a (15) ______ describing the origin of the data.

A comparison of distributions using the percentage or relative frequency polygon

If you want to compare distributions with unequal Ns on the same axes, you must first convert frequencies

to (16) ______. Once you have done this, you can plot a percentage or

(17) ______ frequency polygon.

Shapes of frequency polygons

The (18) ______ or bell-shaped curve is an important symmetrical curve. Unimodal curves with a high peak at one end and a long tail at the other end are called (19) ______ curves. If the tail is to the right, the curve is (20) ______ ____; if the tail is to the left, the curve is (21) _______.

The cumulative frequency (or cumulative percentage) polygon

In the cumulative frequency or percentage polygon, the cumulative frequencies or percentages are plotted		
over the (22)	The relative position of an individual may be determined from the	
cumulative polygon by drawing a (2	23) line from that person's score on the <i>X</i> axis to	
the curve and then drawing a (24) _	line from that point on the curve to the <i>Y</i> axis. The	
point at which the (25)	line meets the <i>Y</i> axis gives an approximate number (or	
percentage) of individuals scoring at or below the score being considered.		

The Histogram

The histogram is like the frequency polygon except that a rectangular (26) _______ is drawn over each score value on the *X* axis, with its height determined by the score's (27) ______. Each bar is centered above a score value and extends (28) _______ between adjacent scores.

The Bar Graph

The bar graph is a type of histogram used to graph (29)	scale data. The bars don't
have to touch, and the spacing between them is (30)	

The Stem-and-Leaf Plot

To construct a stem-and-leaf plot, each score is divided into two parts: a (31) ______ and a (32) ______. The first digit(s) is the (33) ______ and the last digit(s) is the (34) ______. For example, a score of 133 would have a stem of (35) ______ and a leaf of (36) _______. Each stem is listed from lowest to highest, a (37) _______ line is drawn to the right of the column of stems, and then the (38) _______ are put beside the stems. If the plot is rotated so that the stems become (39) _______ on the baseline of a graph, the result is a (40) _______, with digits over the scores rather than bars.

The Line Graph

In a line graph, an (41) ________ variable is recorded on the *X* axis, and some measure of the dependent variable appears on the *Y* axis. Because the independent variable is assumed to be

(42) _____, a line is used to connect the plotted points.