CHAPTER 6

FILL-IN-THE-BLANK ITEMS

Introduction

To describe a frequency distribution, we need to know a measure of the (1) o	of the
data in addition to measures of central tendency. Four measures discussed in this chapter are the ra	nge, the
average deviation, the (2), and the (3)	•

The Range

The (4) ______ is the difference between the highest score in the distribution and the lowest score. The range is easy to determine but not very useful for further statistical procedures.

The Average Deviation

The average deviation, symbolized by (5) ______, is useful as a prelude to the most commonly used measures of dispersion, the (6) ______ and the standard deviation. In order to keep from obtaining zero each time the deviations around the sample mean are summed, we take the (7) ______ of the deviations before summing.

The Variance and the Standard Deviation

The (8) ______ is the average of the squared deviations, and the square root of the average is called the (9) ______. The statistic based directly on the formula for the

 population variance is a (10) _________ estimate of the population variance. To compensate for

 SD²'s tendency to (11) ________ the population variance, we have to modify the formula

 slightly, which we did by dividing the numerator by (12) _______ rather than by N. Standard

 deviation is the (13) ________ of the variance.

 In addition to defining formulas, (14) _______ or raw-score formulas are introduced.

Raw-score formulas require fewer (15) ______ than the defining formulas and are easier to

use when computed with a pocket calculator.

s can be visualized as a width measure on the (16) ______ of a frequency polygon. A

useful way to estimate the standard deviation is to divide the (17) _____ by

(18) _____. The numerator of variance is sometimes called the (19) ______

_____, ____, which is the sum of the squared deviations about the (20)

_____. It is symbolized by (21) ______.

Standard Scores (z Scores)

Values on the standard deviation scale are called either (22) ______ scores or

(23) ______ scores. A (24) ______ is the deviation of a raw score from the

mean in standard deviation units. The (25) ______ of the z score tells us the direction of the

score relative to the mean. A (26) _____ z score indicates a raw score below the mean. To

convert a *z* score back to a raw score, multiply it by the standard deviation and add the

(27) _____.

Troubleshooting Your Computations

In computing any of the measures discussed in the chapter, it is desirable to have a

(28) ______ for a correct answer. For example, if the distribution is large and symmetrical, s

should be approximately (29) ______ of the range. You must always get

(30) ______ numbers for the standard deviation and the variance. When computing *s*, don't

forget to take the (31) ______.