CHAPTER 13

FILL-IN-THE-BLANK ITEMS

.

Linear Correlation

The degree of relationship between two or more variables is called (1) ______. If the relationship is best described by means of a straight line, we call this (2) ______

Classes of correlation

A direct relationship between two	variables, in which a high score is associate	ed with a
(3) score and	a low score with a (4)	_ score, is called
(5) correlation	on. One way to study the relationship betwee	een the variables is with a
(6) or graph	on which scores for one variable are plotted	d on the X axis and scores for
the other variable are plotted on the	e Y axis. An inverse relationship between the	he variables is called
(7) correlatio	on and is shown by a line sloping (8)	to the right on
a scatterplot. If the relationship bet	tween the variables is very small or nonexis	stent, the "class" of correlation
is called (9)	correlation. The strength of a relationship b	between two variables is given
by the (10)	of the correlation coef	ficient.

Correlation and causation

A high correlation between two variables doesn't automatically mean that one variable

(11) ______ the other. Correlation is necessary but not (12) ______ to determine causality.

The Pearson Product-Moment Correlation Coefficient

The Pearson <i>r</i> is defined as the (13)	of the <i>z</i> -score products for <i>X</i> - <i>Y</i> pairs of scores.
The range of <i>r</i> is from (14) to	A (15) value of <i>r</i> indicates
a direct relationship between the variables, and a ne	gative value indicates an (16)
relationship. Values of <i>r</i> close to (17)	indicate little or no relationship between the
variables.	

Correlation, variance, and covariance

We can define the (18)	as the extent to which two variables vary together. The	
variance, then, is a special case of the (19) _	of <i>X</i> and <i>X</i> —of a variable with itself.	
Standardizing the covariance gives us a simple formula for the (20)		

The effect of range on correlation

Restricting the range of either the *X* or the *Y* variable (21) ______ the correlation.

Testing r for significance

To test *r* for significance, we first assume there is (22) ______ in the

population between the variables; that is, we assume that the underlying population correlation coefficient,

(23) _____, is (24) _____. Then we look in Table (25) _____

for values of r known to occur 5% or 1% of the time in samples of a given size, converted to

(26) ______, from a population with a (27) ______ coefficient. If the absolute

value of our sample coefficient exceeds the critical table value, then we (28) ______ the null

hypothesis, indicating that there is a significant (29) ______ between the variables in the population sampled.

The linear regression equation

Correlation is defined as the degree of (30) ________ relationship between the variables. Based on this definition, we can use correlation for prediction by first computing the equation for the (31) ________ line that best describes the relationship between the variables. The general equation for the regression equation is (32) _______, where *b* is the (33) ________. The regression line is the line intercepts the (34) ________ around it as small as possible. Unless *r* is (36) _______, we must compute separate equations to predict *Y* given *X* and *X* given *Y*. The regression formula can be extended to include more than one predictor; this extension is called (37) _______.

The coefficient of determination

The (38) _____, symbolized by (39)

_____, tells the amount of variability in one variable explained by variability in the other

variable. This gives us a method to assess how (40) ______ the relationship is between X and

Y and is more important than the

(41) _____ level.

The Spearman Rank Order Correlation Coefficient

The Spearman coefficient is useful as an alternative to *r* because it is easier to (42) ______.

Also, we can use it when the level of measurement on one or both of our variables is

- (43) ______ scale rather than interval scale as required by the Pearson *r*. With
- (44) ______ scale data, the exact length of the intervals between scores cannot be specified.

To compute the Spearman r_s , we first (45) _______ the scores on each of the variables from highest to lowest and then find the difference between the (46) _______. If two or more subjects are tied for a particular rank, each subject is given the (47) _______ of the tied ranks.

Other correlation coefficients

The (48) ______ correlation is used when one variable is

dichotomous-has only (49) ______ values-and the other variable is continuous or interval

level measurement. When both variables are dichotomous, the (50)

_____ is used.

A Broader View of Inferential Techniques—The General Linear Model

The (51)	technique is the most general of all the techniques we've	
studied. As such, it is called the (52)	Basically, what we are saying is	
that the most general way of looking at data	a has to do with (53) between measures.	
Thus, regression and correlation give us dir	ect information about the statistical significance of a	
relationship and also about the (54)	of the relationship. Tests such as the <i>t</i> test and	
ANOVA investigate (55)	differences, which is the <i>other</i> way to study relationships.	

Troubleshooting Your Computations

Any *r* or r_s computed must fall within the range of values from (56) _______ to _______. A common error in computing r_s is forgetting to (57) _______ the scores on the two variables. Remember that the fractional part of the r_s formula is subtracted from (58) _______. In computing the regression equation, be particularly careful in handling the last two terms in the equation, (59) ______. The two numbers are added (60) ______.