CHAPTER 15

FILL-IN-THE-BLANK ITEMS

Introduction

A (1) _______ test is one in which population parameters such as μ and σ are not involved; they are also called (2) _______ because no particular distribution is assumed. The tests discussed in this chapter are useful when (3) _______ of the parametric tests are likely to be violated and when the level of measurement is less than (4) ______ scale.

The Mann–Whitney U Test

The M–W test is a useful alternative to the (5) ______ samples. The assumptions for the M–W are that the samples are (6) _______, that there is an underlying continuous scale of measurement, and that the measurement scale used is at least (7) _______ scale. The hypothesis tested is that the populations contributing to the samples are (8) _______ in shape. In the M–W test, the scores from the two samples are (9) _______, and a statistic, the smaller of U or (10) _______, is computed. If the ranks are not evenly mixed, the samples probably come from different (11) ______. For samples with 20 or fewer subjects, the computed U (or U') is compared with critical values in Table (12) ______. If the computed

statistic is (13) ______ than the critical value, H_0 is rejected. For samples larger than 20, U (or U^{γ}) is converted to a (14) ______, and H_0 is rejected if z is (15) ______ or larger (two-tailed test at 5% level).

The Wilcoxon Matched-Pairs Signed-Ranks Test

The Wilcoxon test is a nonparametric alternative to the *t* test for (16) _______ samples. The assumptions are that the subjects must be (17) _______ and independently selected, that the measurement scale must be at least (18) _______, and that we must be able to rank-order the difference scores. The null hypothesis is that the population distributions are (19) _______. Computation begins with finding the (20) _______ between each pair of scores, discarding all (21) _______ differences. The difference scores are (22) _______ ordered on the basis of absolute magnitude, and the (23) _______ of the differences is retained. The sum of the differences with the (24) _______ frequently occurring sign is found and called *T*. *T* is compared with critical values in Table I, and if *T* is equal to or (25) _______ than the critical value, H_0 is rejected. With large samples, N = 25 or greater, the distribution of *T* is approximately (26) _______.

The Kruskal–Wallis One-Way ANOVA

The K–W test is an extension of the (28) ________ test and is used for comparing more than two groups when the assumptions underlying the (29) _______ cannot be met. At least (30) ________ scale measurement is required. To perform the test, the combined groups are (31) _______, and the sum of the (32) _______ for each group is found. For three or more samples with at least five subjects each, the computed *H* is distributed approximately as (33) _______, with df = (34) _______, where *K* is the number of groups.

Further Testing After a Significant H

After a significant result is found with the K–W test, the (35) ______ test can be used to make further group comparisons.

Troubleshooting Your Computations

Both the M–W and the K–W tests require (36) ______ the combined scores from lowest to

highest. The rank of the highest score should be (37) ______ unless the top scores are tied.

The value obtained for either U or H should be a (38) _____ number. In using the M–W test,

the smaller of U and (39) ______ is used in the significance test.

With the Wilcoxon test, be sure to discard all (40) ______ differences. The difference

scores are ranked in terms of (41) ______ value. Both the computed T and the computed U

must be equal to or (42) ______ than the critical table values for H_0 to be rejected.