CHAPTER 13: COMPUTER PROGRAMMING

CHAPTER 13
COMPUTER PROGRAMMING
How Can You Create Your Own Software?
IN THIS CHAPTER

This chapter explains the processes and techniques that software programmers use to solve problems. Students learn about basic programming, the history of programming, and some of the newer programming languages.
The first section walks through how programmers approach a problem and decide how to solve it using software. Students learn how to develop problem/opportunity statements, express an algorithm in pseudocode or a program flowchart, and determine software requirements.
The second section gets into the nuts and bolts of programming. Students learn programming terminology and study control structures using provided programming flowcharts.
The third section shows students how programmers test, implement, and maintain software. Students learn about common software errors and how programmers use software development environments to debug and manage development, as well as implement and maintain software.

The fourth section takes students on a brief historical tour of programming language evolution. Students learn the differences among machine, assembly, third-, and fourth-generation languages. Students also learn distinctive programming language characteristics.
The final section introduces students to object-oriented languages and programming language frameworks. Here they learn about two of the most-used environments—Java Platform Technologies and Microsoft .NET.

STUDENT LEARNING OUTCOMES

1. Understand how programmers investigate, analyze, and design software solutions to solve problems.

2. Identify the basic coding control structures used in programming.

3. Identify various common coding errors.

4. Understand how programmers test, implement, and maintain software.

5. Discuss programming language generations and characteristics.

6. Understand object-oriented programming concepts.

7. Discuss programming frameworks, such as Sun Microsystems's Java Platform Technologies and Microsoft's .NET

SIMNET CONCEPTS SUPPORT
· Programming Languages (p. 405)
· Object-Oriented and Visual Programming (p. 411)

WEB SUPPORT (at www.mhhe.com/i-series)
· Prototyping

· Programming Languages
· Sample Software Code

· Sample Control Structures
· Programming Backdoors

· Microsoft .NET

LECTURE OUTLINE

DID YOU KNOW?

13.1 A PROGRAMMER'S VIEW OF INVESTIGATION, ANALYSIS, AND DESIGN (p. 390)
A. Systems Investigation
B. Systems Analysis

· Pseudocode

· Program Flowcharts

· Testing the Algorithm

C. Systems Design

· Basic Software Needs

· Input-Process-Output Tables

· Prototyping

13.2 WRITING COMPUTER SOFTWARE (p. 396)
A. Coding
B. Control Structures

· Sequence Control Structure

· Selection Control Structure

· Repetition Control Structure

13.3 TESTING, IMPLEMENTING, AND MAINTAINING SOFTWARE (p. 401)
A. Testing Software
· Syntax Errors

· Run-Time Errors

· Logic Errors

· End User Testing

B. Software Development Environment

· Debugging Help

· Managing Development

C. Implementing Software
D. Maintaining Software

13.4 PROGRAMMING LANGUAGES (p. 405)
A. Programming Language Generations
· Machine Language

· Assembly Language

· Third Generation Languages

· Fourth Generation Languages

B. Programming Language Characteristics

· Compiled

· Interpreted

· Scripted

· Event-Driven

13.5 PROGRAMMING FRAMEWORKS (p. 409)
A. Object-Oriented Programming

· Objects

· Classes and Instances

B. Java Platform Technologies

C. Microsoft .NET

13.6 SUMMARY AND KEY TERMS (p. 413)
END-OF-CHAPTER SUPPORT (pp. 415-421)

· Level 1

· Multiple Choice

· True/False

· Level 2

· Developing Pseudocode to Solve a Business Process

· Creating the Correct Control Structure

· Debugging a Software Program

· Level 3

· E-Commerce

· Ethics, Security, & Privacy

· On the Web

· Group Activities

KEY TERMS

	KEY TERM
	IM PAGE
	TEXT PAGE

	Algorithm
	13.11
	392

	Assembler
	13.28
	406

	Assembly language
	13.28
	406

	Backdoor
	13.18
	401

	Bug
	13.20
	401

	Business logic
	13.9
	390

	Case control statement (switch statement)
	13.17
	399

	CASE, or computer aided software engineering, tools
	13.22
	403

	Coding
	13.15
	396

	Comment
	13.15
	397

	Compiler
	13.30
	407

	Condition
	13.17
	397

	Control structure
	13.17
	397

	Counter
	13.17
	399

	CVS (Concurrent Versions System)
	13.22
	404

	Debugging
	13.20
	401

	Documentation
	13.23
	404

	Do-until statement
	13.17
	399

	Do-while statement
	13.17
	399

	Event-driven language
	13.30
	408

	For-next statement
	13.17
	399

	Fourth generation language (4GL)
	13.28
	406

	High-level language
	13.28
	406

	If-then-else statement
	13.17
	398

	Inheritance
	13.33
	411

	Input
	13.12
	394

	Integrated development environment (IDE)
	13.22
	402

	Interpreter
	13.30
	407

	IPO (input-process-output) table
	13.12
	395

	Iteration control
	13.17
	399

	Java
	13.34
	411

	Logic error
	13.11
	394

	Loop
	13.17
	399

	Low-level language
	13.28
	405

	Machine-dependent language
	13.28
	405

	Machine-independent language
	13.28
	406

	Machine language
	13.28
	405

	Macro
	13.30
	407

	Natural language
	13.28
	406

	Nonprocedural language
	13.28
	406

	Object class
	13.33
	410

	Object code
	13.30
	407

	Object instance
	13.33
	410

	Object method
	13.33
	410

	Object-oriented programming (OOP)
	13.33
	409

	Object property
	13.33
	410

	Output
	13.12
	394

	Portability
	13.28
	405

	Procedural language
	13.28
	406

	Processing
	13.12
	394

	Program flowchart
	13.11
	363, 393

	Program manual
	13.23
	404

	Programming framework
	13.32
	409

	Programming language
	13.15
	396

	Programming object
	13.33
	409

	Pseudocode
	13.11
	392

	Rapid application development (RAD)
	13.22
	403

	Repetition control structure
	13.17
	399

	Reserved word
	13.15
	397

	Run-time error
	13.20
	401

	Scripting language
	13.30
	407

	Selection control structure
	13.17
	397

	Sequence control structure
	13.17
	397

	Sequential execution
	13.17
	397

	Software development environment
	13.22
	402

	Software patch
	13.24
	404

	Software upgrade
	13.24
	404

	Source code
	13.30
	407

	Syntax error
	13.20
	401

	Technical writer
	13.23
	404

	Third generation language (3GL)
	13.28
	406

	User manual
	13.23
	404

	Variable
	13.20
	401

	Visual Basic for Applications (VBA)
	13.30
	408

	Visual Studio .NET
	13.34
	412

LECTURE NOTES AND TEACHING TIPS

CROSSWORD PUZZLE

[image: image1.png]

DID YOU KNOW?

For as long as computers have been around, programmers have challenged themselves to make software that effectively tells computers what to do. In this chapter you'll learn about the processes programmers use to write software and you'll try your hand at programming.

· How would you like to tackle a semester’s worth of programming in one afternoon? That’s the challenge at the world finals of the Association for Computing Machinery’s International Collegiate Programming Contest, sponsored by IBM, which gives teams five hours to solve eight problems. (1)

· Star Trek fans also love to code. They’re working on creating a programming language for Klingon computer systems. It’s called var’aq. (2)

· Programmed to be the world champion at chess, the computer Deep Junior can process three million chess moves per second. It was enough to end the six-game chess match with number one human chess player, Garry Kasparov, in a draw. (3)

Deep Junior is a software program running on eight processors which calculates 3 million moves per second and evaluates positions better than Deep Blue did. A single processor version of Junior was commercially released two years ago you can buy for about $50 to run on a PC.
Stress to your students that technology is not only moving at a rapid pace but also the means (coding software) to program and use the technology is keeping pace as well. Although programming has become an established profession only since the mid-1900s, it looks to be one of the hot jobs of the 21st century because new technologies require people who know how to effectively make them work. Without software, hardware is simply large chunks of plastic and silicon.
(1) http://icpc.baylor.edu/icpc/ (Retrieved Feb. 4, 2003)

(2) http://www.geocities.com/connorbd/varaq/ (Retrieved Feb. 4, 2003)

(3) Canada.com (Feb. 16, 2003)
13.1 A PROGRAMMER'S VIEW OF INVESTIGATION, ANALYSIS, AND DESIGN (p. 390)
	INSTRUCTOR EXCELLENCE – PRESENTATION TIP

1. For most students this is their first exposure to programming. Stress that a programmer's main task is solving problems in a logical manner.

2. Get students interested in programming by inviting a programmer from the local community or your school to speak with the class.
3. Ask the programmer to talk about how he or she goes about solving problems.

4. Note that programmers are not the stereotypical loner sitting at a computer. Rather they are part of a team that solves business problems.
5. Encourage students who have programmed before to discuss their experiences with the class.

In Chapter 12 we presented students with a broad overview of the systems development life cycle (SDLC). An important part of this process is writing the software, which occurs in the construction phase.

Programmers follow certain steps when they develop software. In this section students will learn the steps programmers take before they even begin to write the software.

SYSTEMS INVESTIGATION
Programmers must first understand the problem or task before they can write an effective software program that addresses the issue. In the investigation phase programmers ask questions and research the issue to create a complete problem/opportunity statement.

Students should know creating an effective problem/opportunity statement can be a time-consuming task depending on the problem or task to be solved. Our example (Figure 11.1, p. 391) might take a few hours, an afternoon, or a few weeks depending on how quickly the client answers our questions.

Key Terms:
· Business logic - Set of rules used to govern a business process. (p. 390)

SYSTEMS ANALYSIS
During systems analysis you focus on the logical requirements of the new software program. You are not concerned with the hardware or other physical specifications. Instead, you define what information comes into the software program, how the software processes the information, and what information the software will generate.

Programmers use specific techniques to help them analyze the system and decide how the software will work with information to solve the problem or complete the task. Make sure your students understand that programmers are only concerned with what the program should do at this point—not how the program will do it.

Pseudocode
Programmers outline what a program can do using pseudocode (Figure 13.2, p. 392). Pseudocode uses English statements to create an outline of the necessary steps for a piece of software to operate. You will hear programmers refer to these logical steps as an algorithm. An algorithm is a set of specific steps that solves a problem or carries out a task. Think of an algorithm as a recipe. A recipe basically outlines the steps necessary to create a dessert or scrumptious meal.

You might stress to students that although there are no written rules for developing good pseudocode, most programmers follow the basic rules we outline on page 392.

Program Flowcharts
Programmers use more than pseudocode to plot the software’s algorithm. Many programmers use program flowcharts (Figure 11.3, p. 393). A program flowchart is a graphical depiction of the detailed steps a piece of software will perform.

Testing the Algorithm

Once programmers have completed their algorithm and expressed it in pseudocode or a program flowchart, they have to test it for logic errors. A logic error is a mistake in the way an algorithm solves a problem. In our example, paying someone for overtime if they only worked twenty hours in one week would be a logic error.

You want to check your logic for errors at the analysis phase because it can be difficult to find them once you begin writing your program. Programmers check their algorithm by inputting test data and checking the logic by hand or with a calculator.
Key Terms:
· Pseudocode - Uses English statements to create an outline of the necessary steps for a piece of software to operate. (p. 392)

· Algorithm - Set of specific steps that solves a problem or carries out a task. (p. 392)

· Program flowchart - Graphical depiction of the detailed steps that software will perform. (pp. 363, 393)

· Logic error - Mistake in the way an algorithm solves a problem. (p. 394)

SYSTEMS DESIGN
When programmers move into the design phase they convert their logical descriptions (pseudocode or flowcharts) into technical software specifications. Now you should be aware of the type of physical system your program will run on. For example, you’ll need to start thinking about filenames and variable names.

Basic Software Needs

In the analysis phase you made sure you knew what information would come into the software, how the software would process the information, and what information the software would produce.

Now, it’s time to define the three basic functions all software must perform—input, processing, and output:

· Input is information that comes from an external source and enters into a piece of software. Input can come from typing on your keyboard, clicking with your mouse, etc. Any way you send information into the software counts as input.

· Processing manages information according to a piece of software’s logic. In other words, processing is what the software does to the input it receives. In our payroll software example, processing involves calculating an employee’s pay.

· Output is the information a piece of software produces after it has processed input. Output can appear on a computer screen, in a printout, or in records in a database.

Input-Process-Output Tables

In the analysis phase, programmers used pseudocode or program flowcharts to express the software program’s algorithm. In the design phase, programmers use input-process-output tables to decide what variables and filenames they will use in the software program. An input-process-output (IPO) table shows what information a piece of software takes in, how it processes information, and what information it produces.

Our IPO table (Figure 13.4, p. 385) reflects how the payroll software program will input, process, and output one variable. There are many other variables to consider as well.

	INSTRUCTOR EXCELLENCE – BREAK OUT
1. Have student groups create additional IPO tables (Figure 13.4, p. 385) for the remaining variables in the Payroll program.

Prototyping

Before starting the next phase of writing the software, programmers present prototypes to the potential users. In Chapter 12, students learned that prototyping is the process of building a model that demonstrates the features of the proposed product, service, or system. Programmers show users what the software will do first to avoid having to make major changes later.

Key Terms:
· Input - Information that comes from an external source and enters the software. (p. 394)

· Processing - Manages information according to the software’s logic. (p. 394)

· Output - Information software produces after it has processed input. (p. 394)

· IPO (input-process-output) table - Shows what information a piece of software takes in, how it processes the information, and what information it produces. (p. 395)

	INSTRUCTOR EXCELLENCE – INTEGRATION
1. Make sure that students understand the components of the investigation, analysis, and design process before moving into coding.
2. Work through the process illustrated in this first section with the Penguin Payroll software. You can use Microsoft Word or PowerPoint to duplicate the discussion and figures.
3. Discuss the problem/opportunity statement in Figure 13.1 (p. 391) and show how it's reflected in the pseudocode (Figure 13.2, p. 392) and the programming flowchart (Figure 13.3, p. 393).

4. Make sure to compare the pseudocode with the flowchart and note the similarity in logic.

5. Finally, discuss the IPO table (Figure 13.4, p. 395) and how it relates to the process as a whole.

6. Exercise #1 (p. 416) in the Level Two review of concepts reinforces this discussion.

MAKING THE GRADE

1. Business logic is a set of rules used to govern a business process. (p. 390)
2. You use pseudocode to create an outline of the necessary steps for a piece of software to operate. (p. 392)
3. A(n) algorithm is a set of specific steps used to solve a problem or carry out a task. (p. 392)
4. A(n) logic error is a mistake in the way an algorithm solves a problem. (p. 394)
5. Output is the information software produces after it has processed input. (p. 394)
13.2 WRITING COMPUTER SOFTWARE (p. 396)
	INSTRUCTOR EXCELLENCE – PRESENTATION TIP

1. This section introduces students to the basic programming terminology and concepts.

2. We recommend discussing sample code and demonstrating the control structures as you discuss each figure.
3. Download the Project Data Files under the Chapter 13 link on the Web site at www.mhhe.com/i-series.

4. Show the code for a selection control structure (Figure 13.7, p. 398) and use the included code to illustrate how the if-then-else statement (Figure 13.8, p. 398) works.
5. Continue to demonstrate how the case control statement (Figure 13.9, p. 399) and the repetition control structure (Figure 13.10, p. 400) function using the code and following along with the programming flowcharts in the figures.

Programmers have developed a problem/opportunity statement, created an algorithm, expressed the logic in pseudocode or a program flowchart, and tested the program for possible logic errors. It’s now time to begin writing the software.

CODING

Programmers need to make the transition from pseudocode or a program flowchart to a software program in the construction phase. To make this transition they use a programming language. A programming language contains specific rules and words that express the logical steps of an algorithm.

Most programmers call writing computer programs coding. Coding is when you translate your algorithm into a programming language.

In our code (Figure 13.5, p. 396) you’ll notice that some of the words appear in blue text. These are reserved words in VB. A reserved word is a command that a programming language has set aside for its own use. You can also see that some of the code is green. This green text explains what parts of the software code are doing in the program. Programmers call these explanations comments. A comment is an explanation that tells other programmers what’s happening in software code. The computer ignores the comment when it runs the code.

Key Terms:
· Programming language - Contains specific rules and words that express the logical steps of an algorithm. (p. 396)

· Coding - When you translate your algorithm into a programming language. (p. 396)

· Reserved word - Command that a programming language has set aside for its own use. (p. 397)

· Comment - Explanation that tells other programmers what’s happening in software code. (p. 397)

CONTROL STRUCTURES
Unless you tell a computer otherwise, it will read your code much like you read a book—top to bottom and left to right. Programmers refer to this as sequential execution. Sequential execution is when a computer performs each line of software code in the order it appears.

However, you don’t always want a computer to perform each line of code in the order it appears. Depending on your program logic, you might want to change the order. To do this you’ll need to use a control structure. A control structure specifies the order in which a computer will execute each line of software code.

Sequence Control Structure

Out of the three control structures, the sequence control structure (Figure 13.6, p. 397) is the most basic. The sequence control structure makes sure that a computer executes software code from top to bottom, left to right. Programmers rely on this control structure to make sure the computer executes their code in this order unless they tell the computer otherwise.

Selection Control Structure

You make decisions every day. Should you get up or hit the “snooze” button on your alarm clock? Should you eat that last piece of pie? You answer these questions before you make your decision. Are you late for class? (Yes: get up; No: hit the snooze.)

Programmers also use selection control structures to help make logical decisions. A selection control structure uses an existing condition to decide how a computer will execute software code. A condition is an existing situation. In our software code example (Figure 13.7, p. 398), the program will pay employees overtime only if Hours_Worked is over 40. If we look at the same logical test in a program flowchart, we can see how the decision is made (Figure 13.8, p. 398). This specific selection control structure is the if-then-else statement. The if-then-else statement tests a condition in software code that results in a true or false.

What if you want to test a condition that has more than a yes or no answer? For that you’ll need a different kind of selection control structure—a case control statement. A case control statement (also know as a switch statement) tests a condition that can result in more than a true or false answer. For example, you might need to determine shipping costs based on an item’s weight. You can see the case control statement’s logic in the program flowchart we provided. (Figure 13.9, p. 399)
Repetition Control Structure

What if you want to have a software program perform an action or calculation a certain number of times or until a condition is met? For this you need to use the repetition control structure. A repetition control structure instructs a piece of software to repeat a series of instructions until it fulfills a condition or while a condition exists. You’ll also hear programmers call this structure an iteration control or loop.

There are three different types of repetition control structures—do-while, do-until, and for-next (Figure 13.10, p. 400):

· The do-while statement repeats a portion of software code as long as a certain condition exists.

· The do-until statement repeats a portion of a software code as long as a certain condition doesn’t exist (it's false).

· The for-next statement repeats a portion of software code a precise number of times. It uses a counter to check the condition.

· A counter is a numerical value that tracks the number of iterations in a software code.

	INSTRUCTOR EXCELLENCE – INTEGRATION
1. Make sure students understand how control structures function in code by having them practice in VBA.
2. Have them download the Project Data Files under the Chapter 13 link on the Web site at www.mhhe.com/i-series.
3. Open Microsoft Excel and have students press Alt+F11. This brings up the VBA IDE.

4. Students can view the code for a selection control structure (Figure 13.7, p. 398) and see how the if-then-else statement (Figure 13.8, p. 398) works. Have them change the values, run the code again, and note the values.

5. Continue on with the code for the case control statement (Figure 13.9, p. 399) and the repetition control structure (Figure 13.10, p. 400).

Key Terms:
· Sequential execution - When a computer performs each line of software code in the order it appears. (p. 397)

· Control structure - Specifies the order in which a computer will execute each line of software code. (p. 397)

· Sequence control structure - Makes sure that a computer executes software code from top to bottom, left to right. (p. 397)

· Condition - Existing situation. (p. 397)

· Selection control structure - Tests a condition to decide how a computer will execute software code. (p. 397)

· If-then-else statement - Tests a condition in software code that results in a true or a false. (p. 398)

· Case control statement (or switch statement) - Tests a condition that can result in more than a true or false answer. (p. 399)

· Repetition control structure - Instructs a piece of software to repeat a series of instructions until it fulfills a condition or while a condition exists. (p. 399)

· Iteration control - Another word for repetition control structure. (p. 399)

· Loop - Another word for a repetition control structure. (p. 399)

· Do-while statement - Repeats a portion of software code as long as a certain condition exists. (p. 399)

· Do-until statement - Repeats a portion of software code as long as a certain condition doesn’t exist (it’s false). (p. 399)

· For-next statement - Repeats a portion of software code a precise number of times. (p. 399)

· Counter - Numerical value that tracks the number of iterations in a software code. (p. 399)

	INSTRUCTOR EXCELLENCE – I-SERIES INSIGHTS

1. A backdoor is an undocumented method a programmer uses to gain access to a program or a computer. (p. 401)

Programmers create backdoors to fix problems once software has been implemented. They can debug code without taking down critical systems.
2. Hackers routinely find backdoors and exploit their discovery. Sometimes they destroy data and systems. Hackers might also steal information from corporate databases or access credit card information.

3. Students need to decide whether the benefits of programming backdoors outweigh the risks.

Key Terms:
· Backdoor - Undocumented method a programmer uses to gain access to a program or a computer. (p. 401)
MAKING THE GRADE

1. A(n) programming language contains specific rules and words that express the logical steps of an algorithm. (p. 396)
2. Reserved words are commands that a programming language has set aside for its own use. (p. 397)
3. You use comments to tell other programmers what’s happening in software code. (p. 397)
4. When a computer executes software code from top to bottom, left to right, it's following the sequence control structure. (p. 397)
5. A(n) if-then-else statement tests a condition in software code that results in a true or a false. (p. 398)
13.3 TESTING, IMPLEMENTING, AND MAINTAINING SOFTWARE (p. 401)
	INSTRUCTOR EXCELLENCE – PRESENTATION TIP

1. The most compelling way to get students interested in testing software is to debug a program for them in class.
2. Figure 13.11 (p. 402) is very similar to the Exercise #3 file, " Debugging a Software Program" (p. 417). Download the Project Data Files under the Chapter 13 link on the Web site at www.mhhe.com/i-series for this file.
3. Discuss the code and note items such as the comments, red syntax errors, and possible logic errors.
4. Make sure students realize that comments are part of the implementation process and can be used later in the program manual.

5. Run the program to show students what happens when software code contains bugs.
6. Encourage the class to help you debug the program.

After you’ve coded your software program, you're ready to test it. When you’re sure it has no errors and meets users’ needs, you’ll implement the software. Once implemented, you’ll need to maintain the software so it continues to meet business and organizational needs. We’ll explore the many tasks in these last three phases of the systems development life cycle.

TESTING SOFTWARE

You’ve tested your algorithm before coding your software program to find any logic errors. However, there are still other errors you need to test for, or debug, before implementing your software. Debugging is the process of finding errors in software code. Why is the process called debugging? Because the word bug is a common name for a software error.

Syntax Errors

In English class, you learned the rules to follow to speak, read, and write a language correctly. In other words, you learned the language’s grammar. A syntax error is a mistake in a software code’s grammar. You might misspell a reserved word, or place punctuation where it shouldn’t belong. If you do, you’ve made a syntax error.

Run-Time Errors

Programmers also call executing software code “running the code.” So when you run software you can get a run-time error. A run-time error is a mistake that occurs when you run software code. Some of the more common errors are windows not appearing. Another common error is not matching variables in a calculation. A variable is a word or symbol programmers use to store values in a software program.

Logic Errors

Even if you think you’ve found all of your logic errors in the analysis phase, it’s always a good idea to check again. Sometimes a logic error occurs with a single mistyped key—a simple < typed when a > is needed—causes a logic error (Figure 13.11, p. 402). You’ll notice logic errors are not marked as well as other types (like syntax errors) in most programming environments.

End User Testing

One of the crucial steps between testing and implementation is end user testing. When programmers have bug-free software (or almost bug-free software), future users test the software to see how well it functions in its intended environment. Our Payroll software might be installed in areas where users will try it and provide feedback to the programmers.

End user testing may go on for some time as users suggest features and changes and programmers apply the changes. After users are satisfied with the software, they will “sign off” that the software works correctly. This is called acceptance testing.

Key Terms:
· Debugging - Process of finding errors in software code. (p. 401)

· Bug - Common name for software error. (p. 401)

· Syntax error - Mistake in a software code’s grammar. (p. 401)

· Run-time error - Mistake that occurs when you run the software code. (p. 401)

· Variable - Word or symbol programmers use to store values in a software program. (p. 401)

SOFTWARE DEVELOPMENT ENVIRONMENT
Many of the code examples in the textbook come from a software development environment. A software development environment is an application that provides programming tools to debug and manage software programs. An integrated development environment (IDE) is another name for a software development environment.
Debugging Help

Software development environments offer color coding to help programmers identify certain types of commands and text. In Figure 13.11 (p. 402) you can see red text that notes syntax errors. You also see green text for program comments. VB uses blue text for reserved words. Run-time and logic errors are a bit harder to find. You’ll need to run the program and test it with sample information.

Managing Development

Many software development environments also help programmers manage the overall software development. Some have GUI tools and applications that allow you to view what your program will look like as you develop it. Microsoft’s Visual Basic Development environment will also allow you to link your program to other programs (like databases) for increased functionality.

Many programmers use these powerful environments to build multiple prototypes. We discussed how prototypes allow users to try programs and provide feedback to programmers. The programmers can then add features and improve the program, and then release another prototype. This process continues until users are satisfied with the program. Programmers refer to this as rapid application development. Rapid application development (RAD) uses prototypes to test software components until they meet specifications.

Some organizations want to encompass as much of the system development process into one software tool as possible. This allows for greater efficiency and decreases the time from analysis to implementation. Organizations implement sophisticated CASE tools for programmers to use. CASE, or computer aided software engineering, tools are software applications that help prepare reports, draw program flowcharts, and generate software code for prototypes. Microsoft Visio is one such tool (Figure 13.12, p. 403).
As programmers work on a software program they change the code to meet requirements and fix bugs. To manage the changes between code versions, some programmers use a CVS. A CVS (Concurrent Versions System) is an open source software tool that tracks all changes to a project's code. CVS is especially useful for a programming team working on software code because it records each team member's major code changes.
Key Terms:
· Software development environment - Application that provides programming tools to debug and manage software programs. (p. 402)

· Integrated development environment (IDE) - Another name for a software development environment. (p. 402)

· Rapid application development (RAD) - Uses prototypes to test software components until they meet specifications. (p. 403)

· CASE, or computer aided software engineering, tools - Software applications that help prepare reports, draw program flowcharts, and generate software code for prototypes. (p. 403)

· CVS (Concurrent Versions System) - Open source software tool that tracks all changes to a project’s code. (p. 404)

IMPLEMENTING SOFTWARE
Whether or not programmers install the software program onto the necessary computer systems, they play a vital role in the implementation phase by recording and passing their knowledge of the software code and program to others. Programmers share their knowledge through various types of documentation. Documentation is a collection of instructions and explanations relevant to a piece of software.

You’ve seen the green text in many of our examples. These comments explain the role portions of the software code play in the program. Comments can be a single line or a large block of commentary.

Using the comments, a programmer creates documentation for other programmers who might work on the software code. The program manual is a technical manual for programmers. It contains a problem/opportunity statement, algorithms, flowcharts, and copies of older versions of the code.

Other programmers who work on the software code during any phase of the SDLC rely on the program manual.

Programmers don’t write the user manual, but they must work with a technical writer to produce one. A technical writer explains concepts and procedures to nontechnical software users. The technical writer works with the programmer to create a user manual. A user manual tells users how to use a software program. A good user manual can help people effectively use the software program. Most user manuals are located on the Web or on a CD instead of books.
Key Terms:
· Documentation - Collection of instructions and explanations relevant to a piece of software. (p. 404)

· Program manual - Technical manual for programmers. (p. 404)

· Technical writer - Explains concepts and procedures to nontechnical software users. (p. 404)
User manual - Tells users how to use a software program. (p. 404)
	INSTRUCTOR EXCELLENCE – TO THE WEB

1. Show some sample user manuals to students and have them pass them around the room.

2. Note that most documentation, program and user manuals are now found online or on CDs instead of books.

3. Have students search the Web and find examples of Web-based manuals. Make sure they pick particular software programs to narrow their searches.
4. A good place for students to start is http://www.microsoft.com/office/techinfo/productdoc/default.asp Here they can find documentation for almost all Microsoft Office products.

MAINTAINING SOFTWARE
In Chapter 12 you learned about systems support and maintenance. Programmers play a vital role in keeping software programs functioning and meeting business needs during the support phase. The support phase can last for many years.

Whether or not you wrote the original software program, you may need to code software patches and updates. (This is where good program manuals come in handy.)

As employees use the software program they might encounter a conflict between the software program and another newly installed program or operating system. If programmers determine a minor fix to the problem is all that’s needed, they write a software patch to install. A software patch is a small fix to a problem using a piece of software code.

If programmers determine that the software application can no longer meet users’ needs, they must upgrade the software. A software upgrade is a substantial revision of existing software to improve its usefulness.

In most cases, programmers must return to the analysis phase and start the cycle over. If you are using Microsoft Office XP (2002), an example of a software upgrade is Microsoft Office 2003. Users can upgrade from Microsoft Office 97, 2000, 2002, to 2003 for a reduced fee instead of buying the complete program.

Key Terms:
· Software patch - Small fix to a problem using a piece of software code. (p. 404)
· Software upgrade - Substantial revision of existing software to improve its usefulness. (p. 404)

MAKING THE GRADE

1. Debugging is the process of finding errors in software code. (p. 401)
2. Syntax errors are mistakes in a software code’s grammar. (p. 401)
3. CVS (Concurrent Versions System) is an open source software tool that tracks all changes to a project's software code. (p. 404)
4. The program manual is a technical manual for programmers. (p. 404)
5. A(n) software patch is a small fix to a problem using a piece of software code. (p. 404)
13.4 PROGRAMMING LANGUAGES (p. 405)
	INSTRUCTOR EXCELLENCE – PRESENTATION TIP

1. Students need to know some history about programming languages in order to understand why programmers create new languages to address a task at hand.
2. Bring in code snippets that represent each programming language generation so students can see the differences in each generation.
3. Assembly language is represented in Figure 13.13 (p. 406) and a 3GL in VBA (Figure 13.14, p. 408).

4. Code for Machine language can be found at http://www.atariarchives.org/mlb/. Microsoft has some useful Natural Language information and demos at http://research.microsoft.com/nlp/.
5. Students will remember the language differences once they see how dissimilar they are.

We chose Visual Basic and VBA for our Payroll program because it met our needs. However, programmers have many languages to choose from. Programmers make their selection based on the specific system requirements and what the software must do.

In this section, you’ll explore programming language generations and characteristics.

	INSTRUCTOR EXCELLENCE – SIMNET

1. The SimNet Concepts Support CD contains a tutorial called “Programming Languages."
2. It covers many aspects of programming languages.

3. We only cover the basics of programming languages in this chapter. The SimNet CD offers in-depth explanations of concepts and interactive presentations.

PROGRAMMING LANGUAGE GENERATIONS
Programming languages all follow specific grammar and rules. Just as English, Chinese, and Russian languages all have specific rules and grammar to follow to be effective, so do programming languages.

Many business people use English to conduct business. This isn’t because it’s their favorite language. Rather, it’s because they know most people understand it. Programmers have hundreds of programming languages to choose from, but they choose languages that can be understood by most computer systems. Portability is when a programming language has the ability to work on a variety of computer hardware and operating systems.

Machine Language

Have you ever tried to listen to a conversation between two people speaking a language you don’t understand? You probably can’t understand much of what’s going on. Computers have the same problem. They can only understand their own language. A computer’s language is a machine-dependent language. A machine-dependent language is a programming language that works only on a specific computer system and its components.

All machine-dependent languages are low-level languages. A low-level language requires programmers to code at a basic level a computer can understand. The lowest level language is machine language. Machine language is a machine-dependent, low-level language that uses binary code to interact with a specific computer system.

Students learned about binary code and how the collections of 1’s and 0’s work with a computer in Chapter 6. Now might be a good time to briefly review that section to show why programmers don’t program in binary.

Programmers don’t write in binary code. Instead they translate their software code into binary using a variety of methods.

Assembly Language

To avoid programming in binary, programmers developed another low-level programming language—assembly language. Assembly language is a machine-dependent, low-level language that uses words instead of binary numbers to program a specific computer system. Programmers can use words like start or abbreviations like mov (move) to tell the computer what to do. (Figure 13.13, p 406)

Programmers must still translate the assembly program code into a language a computer can understand. To do this they use an assembler. An assembler is a utility program that converts assembly language into machine language that the computer then can use to run software.

Third Generation Languages

With so many types of computer systems in the world, programmers realized they needed a programming language that would work on more than one type of computer system. They needed a machine-independent language. A machine-independent language is a programming language that works on different computer systems regardless of their components.

Programmers also wanted to use words other than mov for move. They wanted to use English words and mathematical symbols to express their algorithm in a programming language. A high-level language allows programmers to use words and symbols closer to human language to code software.

The two qualities—machine-independence and high-level—identifies another generation of programming languages. A third generation language (3GL) is a machine-independent, high-level procedural language that uses human words and symbols to program diverse computer systems. Many of the programming languages that programmers use today are 3GLs.

Most 3GLs are procedural languages. A procedural language requires that a programmer write code to tell software what to accomplish and how to accomplish it. If you wanted to create software to get a sum of numbers you’d have to tell the software what you wanted (a sum of numbers) and then how to accomplish it (add the numbers together).

Fourth Generation Languages

When you use a 3GL you write your code in words resembling human language. However, you still must code what to do and how to do it for the software program to work.

Some programming languages allow programmers to tell a computer what they want and then the programming language figures out how to get the information. A nonprocedural language requires that a programmer write a code to tell the software only what it should accomplish.

It’s the ability of a programming language to figure out the “how” that makes it a fourth generation language. A fourth-generation language (4GL) is a machine-independent, high-level nonprocedural language that uses human words and symbols to program diverse computer systems.

One of the newest types of programming languages are natural languages. A natural language is a human language that can program a computer. Natural languages are just a step away from how we might interact with computers in the future.

Key Terms:
· Portability - A programming language has the ability to work on a variety of computer hardware and operating systems. (p. 405)

· Machine-dependent language - Programming language that works only on a specific computer system and its components. (p. 405)

· Low-level language - Requires programmers to code at a basic level that a computer can understand. (p. 405)

· Machine language - Machine-dependent, low-level language that uses binary code to interact with a specific computer system. (p. 405)

· Assembly language - Machine-dependent, low-level language that uses words instead of binary numbers to program a specific computer system. (p. 406)

· Assembler - Utility program that converts assembly language into machine language that a computer can then use to run software. (p. 406)

· Machine-independent language - Programming language that works on different computer systems regardless of their components. (p. 406)

· High-level language - Allows programmers to use words and symbols closer to human language to code software. (p. 406)

· Third generation language (3GL) - Machine-independent, high-level procedural language that uses human words and symbols to program diverse computer systems. (p. 406)

· Procedural language - Requires that a programmer write code to tell software what to accomplish and how to accomplish it. (p. 406)
· Nonprocedural language - Requires that a programmer write code to tell the software only what it should accomplish. (p. 406)

· Fourth generation language (4GL) - Machine-independent, high-level nonprocedural language that uses human words and symbols to program diverse computer systems. (p. 406)

· Natural language - Human language that can program a computer. (p. 406)

PROGRAMMING LANGUAGE CHARACTERISTICS
Programmers use other distinctions among programming languages to help them choose the correct one. If you wanted to write a program for Windows XP you might choose Visual Basic or C++. If you wanted to write a program that could access databases, you might choose SQL or another 4GL.

Compiled

Remind students that computers can read only machine language. This might be confusing at first since we’ve just finished discussing how close to human languages 3GLs and 4GLs can be.

Programmers need to run assembly language through an assembler to translate it into machine language. Most high-level languages also need translated. A compiler simultaneously translates high-level programming languages into machine language. In other words, your 3GL or 4GL is completely translated into machine language all at once.

Make sure to distinguish the source code from the object code for your students. The source code contains all the commands and comments a programmer used to code the software. The object code is the machine language the computer uses to run your program.

	INSTRUCTOR EXCELLENCE – PRESENTATION TIP

1. Consider showing a computer program’s source code and object code to students. They should have no problem seeing the difference between the two.

Interpreted
Programmers don’t compile all programming languages so a computer can understand them. Computers interpret some languages, such as JavaScript and VBScript, from the source code into the object code. An interpreter translates one line of source code into object code at a time. In other words, the computer translates a line of source code into object code, then executes it, then goes to the next line of code and repeats the process.

Students should know interpreted programming languages are processed a bit slower than compiled languages. However, because of the speed of today’s computer systems and the applications interpreted languages are used for, the loss of speed is barely noticeable.

Scripted

Because computer systems can efficiently run interpreted programming languages, more software applications include scripting languages. A scripting language is an interpreted programming language that works within another application to perform tasks. Programmers also call these macros. A macro is a scripting language program that executes a task or set of tasks within a software application.

Most students will have used macros in Microsoft Office. Macros in Microsoft Office are written in Visual Basic for Applications. Visual Basic for Applications (VBA) is an interpreted scripting language that works within Microsoft Office applications. For example, we use VBA in Microsoft Excel to create a payroll spreadsheet macro (Figure 13.14, p. 408). This Excel spreadsheet functions almost identically as the Payroll program written in Visual Basic.

	INSTRUCTOR EXCELLENCE – BREAK OUT

1. If you haven’t yet assigned students Exercise 3 in the Level 2 Review section, consider doing so. This allows students to work with a VBA program using the macro editor in Microsoft Excel.
2. Break the students into programming teams so they can help one another debug the program.

Event-Driven

Because most of our operating systems and programs use graphical user interfaces, many of the most common OOP languages are event-driven. An event-driven language responds to actions users perform on the program. For example, it’s an event when you click on a button, use a pull-down menu, or scroll down a window.

Key Terms:
· Compiler - Simultaneously translates high-level programming languages into machine language. (p. 407)

· Source code - Contains all the commands and comments a programmer used to code the software. (p. 407)

· Object code - Machine language the computer uses to run your program. (p. 407)

· Interpreter - Translates one line of source code into object code at a time. (p. 407)

· Scripting language - Interpreted programming language that works within another application to perform tasks. (p. 407)

· Macro - Scripting language program that executes a task or set of tasks within a software application. (p. 407)

· Visual Basic for Applications (VBA) - Interpreted scripting language that works within Microsoft Office applications. (p. 408)

· Event-driven language - Responds to actions users perform on the program. (p. 408)

	INSTRUCTOR EXCELLENCE – PRACTICALLY SPEAKING

1. After reading this chapter, students know how difficult it is to produce a bug-free software program. And this is when they are working in one language.

2. Ask them to consider how difficult it must be not only to create a program that works well but also can translate almost any human language into another. Use the examples we've provided. You can easily find more on the Web.
3. There are software programs that incorporate 4GL aspects to translate human languages quite effectively, such as www.systransoft.com. Microsoft Word also has simple translators built in at Tools | Language | Translate.

4. We don’t recommend relying solely on translation software yet, but it’s not too far in the future when we might have something similar to Star Trek’s universal translator.

	INSTRUCTOR EXCELLENCE – BREAK OUT

1. Have student groups come up with a few types of English sentences and phrases:

· A fairly simple subject-verb construction. (Spot ran.)

· A commercial phrase or slogan.

· Slang terms.

Send the student groups to the SysTran Website (www.systransoft.com) and have them translate their sentence and phrases into at least three other languages. Student groups can share their findings with the class.

MAKING THE GRADE

1. Portability is when a programming language can work on a variety of computer hardware and operating systems. (p. 405)
2. Assembly language is a machine-dependent, low-level language that uses words instead of binary numbers to program a specific computer system. (p. 406)
3. A(n) compiler simultaneously translates high-level programming languages into machine language. (p. 407)
4. A(n) macro is a scripting language program that executes a task or set of tasks within a software application. (p. 407)
5. A(n) event-driven language responds to actions users perform on the program. (p. 408)
13.5 PROGRAMMING FRAMEWORKS (p. 409)
	INSTRUCTOR EXCELLENCE – PRESENTATION TIP

1. Students struggle with the concept of object-oriented programming when it's first presented to them. Make sure to discuss the terms using examples that are most familiar to them.
2. Consider using and extending the car example provided in Figure 13.15 (p. 411). Students can relate to a car instance of a car class. They know what a general car looks like (class) and can differentiate between many different instances (Mustang, Jeep, Pinto, etc.).

3. Understanding OOP will help them as they learn about programming frameworks. Both Java Platform Technologies and Microsoft .NET rely heavily on OOP languages.

Many programmers are implementing programming frameworks to develop today's software solutions. A programming framework is a collection of software tools you use to create a complete business solution. The two most important programming frameworks are Sun's Java Platform Technologies and Microsoft's .NET. Since both of these are based on object-oriented programming, students better understand their power after a brief discussion of object-oriented concepts.

Key Terms:
· Programming framework - Collection of software tools you use to create a complete business solution. (p. 409)
OBJECT-ORIENTED PROGRAMMING
Object-oriented programming (OOP) allows you to interact with objects when you code software. In procedural languages like COBOL, you’d have to write the entire program code to tell a car how to accelerate. In OOP all you need to know is that when you give the car more gas, the car will go faster. Plus, in OOP you know that you can use the accelerator with any car you drive. Being able to use the same technique with any “car object” you encounter hints at the power of object-oriented programming.

Objects

A programming object is an item that contains properties and methods to manipulate that information. For example, a car object would have the properties of model type, engine, color, tires, steering, year made, condition, fuel level, etc. An object property is an identifying characteristic of an object. An object method allows you to manipulate the properties. For example, a fill up method allows you to make sure the car has enough fuel.
Classes and Instances
An object class is an object that contains all of the properties and methods a programming object can possess. Whenever you want to create another car object, you simply need to create an instance of the car class. An object instance is an exact copy of an object class.

In OOP, programmers call this process of class copying inheritance. Inheritance is the passing on of properties and methods from a class to an object. Programmers use inheritance to quickly and efficiently create similar objects with the same types of properties and methods.
Make sure to review Figure 13.15 (p. 411) to help students understand these basic OOP terms.
Key Terms:
· Object-oriented programming (OOP) - Allows you to interact with objects when you code software. (p. 409)

· Programming object - Item that contains properties and methods to manipulate that information. (p. 409)

· Object property - Identifying characteristic of an object. (p. 410)
· Object method - Allows you to manipulate the properties. (p. 410)

· Object class - Object that contains all of the properties and methods a programming object can possess. (p. 410)

· Object instance - Exact copy of an object class. (p. 410)

· Inheritance - Passing on of properties and methods from a class to an object. (p. 411)

	INSTRUCTOR EXCELLENCE – SIMNET

1. The SimNet Concepts Support CD contains a tutorial called “Object-Oriented and Visual Programming."
2. It covers OOP in more detail and provides interactive examples.

3. We have discussed only the basics of OOP in this section. We recommend students look at this tutorial to reinforce the concepts presented in the text and expose themselves to additional OOP examples.

JAVA PLATFORM TECHNOLOGIES
Java is an object-oriented 3GL programming language developed by Sun Microsystems. Sun developed Java to work on all computer operating systems that can use the Java Virtual Machine. Today, you can use Java on many computers and Internet appliances, as well as on the Web as Java applets.
Sun has developed a set of Java Platform Technologies. These are specialized for application (J2SE), enterprise (J2EE), and mobile (J2ME) development environments.

Key Terms:
· Java - Object-oriented 3GL programming language developed by Sun Microsystems. (p. 411)

MICROSOFT .NET
Many programmers use Microsoft's software development environment to write their code. We used the Visual Basic development environment to code our Penguin Enterprises payroll application. Microsoft .NET is the next generation of development environments. Microsoft .NET uses a combination of development tools, servers, XML Web services, and smart client software.
Visual Studio .NET is the major tool for programmers in Microsoft's new framework. Visual Studio .NET is a software development environment that allows programmers to write code in Visual Basic, C++, or C# for the .NET framework.

Key Terms:
· Visual Studio .NET - Software development environment that allows programmers to write code in Visual Basic, C++, or C# for the .NET framework. (p. 412)
	INSTRUCTOR EXCELLENCE – TO THE WEB

1. Students can learn more about programming frameworks by visiting Sun's and Microsoft's Web sites at java.sun.com and www.microsoft.com/net
2. Encourage students to visit these sites if they're interested in these programming frameworks.

3. Consider assigning Exercise #1 in On the Web (p. 420) to the class.

MAKING THE GRADE

1. A(n) programming framework is a collection of software tools used to create a complete business solution. (p. 409)
2. A(n) programming object is an item that contains properties and methods to manipulate that information. (p. 409)
3. A(n) object instance is an exact copy of an object class. (p. 410)

4. Visual Studio .NET is a software development environment that allows programmers to write code in Visual Basic, C++, or C# for the .NET framework. (p. 412)
LEVEL ONE: REVIEW OF TERMINOLOGY

Multiple Choice

1. A graphical depiction of an algorithm is called

a. pseudocode.

b. a logical structure.

c. a program flowchart.

d. a GUI layout.

e. a programming framework.

ANSWER: c – a program flowchart is a graphical depiction of the detailed steps that software will perform. (pp. 363, 393)

2. A(n) _______ shows what information a piece of software takes in, how it processes information, and what information it produces.

a. program flowchart

b. algorithm

c. control structure

d. software development environment

e. IPO table

ANSWER: e – an IPO Table Shows what information a piece of software takes in, how it processes the information, and what information it produces. (p. 395)
3. _______ is when you translate your algorithm into a programming language.

a. Pseudocode

b. Coding

c. Compiling

d. Interpreting

e. Debugging

ANSWER: b – when you code you translate your algorithm into a programming language. (p. 396)

4. _______ specify the order in which a computer will execute each line of software code.

a. Conditions

b. Switch statements

c. IPO tables

d. Control structures

e. Reserved words

ANSWER: d – control structures determine the order in which a computer will execute each line of software code. (p. 397)

5. _______ are mistakes that occur when you run the software code.

a. Run-time errors

b. Logic errors

c. Syntax errors

d. Bugs

e. Iterations

ANSWER: a – run-time errors occur when you run the software code. (p. 401)
6. _______ uses prototypes to test software components until they meet specifications.

a. Prototypical infusion

b. A CASE tool

c. Software development environment

d. Rapid application development (RAD)

e. CVS

ANSWER: d – RAD uses prototypes to test software components until they meet specifications. (p. 403)
7. A(n) _______ is a substantial revision of existing software to improve its usefulness.

a. software patch

b. software upgrade

c. CVS

d. debugging version

e. implementation

ANSWER: b – a software upgrade is a substantial revision of existing software to improve its usefulness. (p. 404)
8. _______ require a programmer to write code to tell the software what it should accomplish and not how it should accomplish it.

a. 3GLs

b. Procedural languages

c. Machine languages

d. Assembly languages

e. Nonprocedural languages

ANSWER: e – nonprocedural languages only require a programmer to write code to tell the software what it should accomplish. (p. 406)

9. A(n) _______ translates one line of source code into object code at a time.

a. interpreter

b. compiler

c. assembler

d. scripter

e. 3GL

ANSWER: a – an interpreter translates one line of source code into object code at a time. (p. 407)

10. A(n) _______ is an object that contains all of the properties and methods a programming object can possess.

a. object property

b. object method

c. programming framework

d. OOP

e. object class

ANSWER: e – an object class contains all of the properties and methods a programming object can possess. (p. 410)
True/False

11. ____ Sequential execution is when a computer performs each line of code according to a set condition.

ANSWER: False – sequential execution is when a computer performs each line of software code in the order it appears. (p. 397)

12. ____ A counter is a numerical value that tracks the number of iterations in a software code.

ANSWER: True – counters keep track of the number of loops performed in a repetition control structure. (p. 399)
13. ____ Logic errors are mistakes in a software code's grammar.

ANSWER: False – logic errors are mistakes in the way an algorithm solves a problem. (p. 394)
14. ____ A 3GL is a machine-independent, high-level procedural language.

ANSWER: True – a third generation language (3GL) is a machine-independent, high-level procedural language that uses human words and symbols to program diverse computer systems. (p. 406)
15. ____ An object property allows you to manipulate an object.

ANSWER: False – an object property is an identifying characteristic of an object. (p. 410)
LEVEL TWO: REVIEW OF CONCEPTS
1. Developing Pseudocode to Solve a Business Process

Develop an algorithm for the CyberTik ticket ordering system. After the algorithm is developed, translate the logic into pseudocode. Make sure to address all of the items in the problem/opportunity statement. Refer back to page 392 for pseudocode guidelines.
For most students this is the first time they must think like a programmer.

The logical steps are put forth in the problem/opportunity statement for this exercise. However, we would encourage you to help them think through the logical steps to create an algorithm. Then, give them time to translate the algorithm into pseudocode.
You may want to remind them that pseudocode does follow some basic guidelines:
· Use simple English.
· Put one command on a line.
· Underline major sections or actions.
· Place any important words in bold.
· Start from the top and work toward the bottom.
· Separate processes with spaces to form modules.

Student's pseudocode syntax will vary somewhat, but the logical steps should be the same.
We have included a sample pseudocode answer in the instructor's materials.
2. Creating the Correct Control Structure

Create an appropriate control structure for each example pseudocode in this exercise. Control structures specify the order in which a computer will execute each line of code in a software program.

Perhaps you need to test a condition to see how a computer should execute code (selection) or maybe you need to run a series of instructions a certain number of times (repetition).

Have students download the Project Data Files under the Chapter 13 link on the Web site at www.mhhe.com/i-series.
Students will find basic programming flowchart symbols and explanations in the exercise file. Make sure to remind them that they have access to these symbols in Microsoft Word by using the drawing toolbar. Go to View | Toolbars | Drawing
Take some time to view the programming flowchart symbols file in class and compare the symbols to what they've seen in the text (Figures 13.6, 13.8, 13.9, and 13.10). Students need to understand how programmer use these symbols to create a program flowchart. They can use the drawing toolbar in Microsoft Word to create their answers, or you can have them sketch them on a piece of paper.
Students enjoy creating programming flowcharts. Remind them that programmers can use flowcharts, pseudocode, or both depending on the problem/opportunity statement and project requirements.

We have included sample control structure answers in the instructor's materials.
3. Debugging a Software Program

Debugging software code is a major part of programming. No programmer writes software code exactly how it should be the first time, so it's important to practice how to effectively find and fix logic, syntax, and run-time errors.
Students will debug the Penguin Payroll VBA macro discussed on pages 408-409 in the text. The code itself is show here as well as in Figure 13.14.

Have students download the Project Data Files under the Chapter 13 link on the Web site at www.mhhe.com/i-series. This file contains the VBA macro in an Excel spreadsheet. Make sure to have students Enable Macros and press Alt+F11 to see the macro code.
Students are apprehensive about working with software code. Show them in class how easy it is to work in the VBA Editor. Remind them that this integrated development environment will help them find errors. You can point out that syntax errors are in red. These are usually the easiest for them to see.
As students fix errors remind them to continually save their file and try running the macro. If they click the "Begin Program" button they can start the program to see what errors might be left.
Make sure they also check the program for run-time and logic errors as well. Our comments in the code should help them find these errors.
We have also included both the student and instructor files (with answers) in the instructor's materials.
LEVEL THREE: HANDS-ON PROJECTS
E-COMMERCE
1. Exploring Technical Certifications

Becoming certified in a programming language or operating system gives students an edge in the job market. Employers want to know that applicants have a certain level of knowledge that has been tested by experts in a particular field.
Students will find a wealth of information in the Web sites provided. They can also explore other certification sites as well.

a. What types of certifications did you find? Responses will vary according to the sites searched. For example, students might find information on MSCE certifications or RHCE professional certifications.
b. How many exams do you need to pass for each certification? How much did they cost? Once again responses will vary according to the chosen certifications. Each certification requires a set number of exams that range in price.
c. Can you take classes to learn about the technology before taking the exam? Almost all certifications have classes or workshops to help prepare for the exam. These are offered by various training centers. Students should make sure that the training center is certified to teach the specific certification.

d. Go to www.monster.com and www.dice.com. Search for jobs that require your chosen certification (enter the certification as a search term). What types of jobs did you find? Once again, responses will vary. Make sure that each job posting provided specifically mentions the certificate.
2. Buying a Car

Although buying a car has typically been an "experiential" shopping experience, more people are using the Web to research car models, dealers, and financing options before stepping onto the lot or into the showroom.

Students will find more than enough information at the Web sites provided in this exercise, but should feel free to look elsewhere as well. Encourage them to choose one make and model of car for their research.

a. How do you search for a car? Students usually look for one type of car in this exercise. They can start with a particular type of car and then narrow it to a specific make and model.
b. Does the site inform you of the closest dealer who has the car you want? Responses will vary. Most sites do provide some type of "locate a dealer" functionality.
c. Can you simply buy your car on the Web and have it delivered to your driveway? This option is available at some sites for specific vehicles. However, it is still out of the ordinary.
d. What about financing options? Responses will vary. Some sites do offer financing either through their site or through a particular dealer.
e. Does the site provide unbiased rankings of automobiles? What about dealership rankings? Most sites do provide some sort of ranking system or at least provide space for user feedback and reviews.
f. Would you ever consider buying a car on the Web without first test-driving one at a local dealership? Why or why not? Responses will vary. Make sure students explain their answers.
3. Renting a Car

a. Can you rent a car in every state in the United States? Are some states more expensive than others? Responses will vary. Students should be able to rent a car in every state. However, rental rates vary according to time of year and package deals.
b. Can you rent a car overseas? Responses will vary, but some agencies do allow you to rent cars overseas.
c. Do they give you maps and/or weather information? Most sites provide links to partners, such as weather.com, who provide this information.
d. Do they have frequent user programs? Is it easy to enroll in one? Almost all car rental agencies have frequent user programs. However, many limit membership to a certain age, such as 18 or 21. Businesses almost always require a valid credit card.
ETHICS, SECURITY, & PRIVACY
1. How Secure Is Your Software?

Students hear about computer viruses, such as Melissa that infect computers, destroy data, and slow down corporate networks. Most students run anti-virus software and hopefully keep it updated on a regular basis.

What most students aren't aware of if that most major software companies release software products when there are still bugs in the software. It's impossible to find every software bug when a software program contains millions of lines of code. The program might interact poorly with a certain computer system or another computer program on the user's system.
Most bugs cause the software program to stop working or not function as it should. However, some bugs allow hackers access to computer systems. They can destroy or steal data or use a computer to launch an attack against another system.

Software developers work hard to find and fix bugs, but the fact remains that most software when it's initially released has bugs in it. Businesses must balance the need for software and software upgrades against the possibility or data loss, decreased productivity, or hacker attack.

a. Were you aware that there were so many bugs in the software you might be using? Does this make you think differently about how you use your software? Responses will vary. However, most students don't realize that software is released with some bugs in the code.
b. Did you see any bugs that pertain to your computer software? Responses will vary. Consider visiting the SANS site or the MSDN Bug Center to find bugs pertaining to Microsoft products. Most students will have used this software.

c. Why do you think that companies release software with bugs in it? Would you wait for new software until after programmers had found all the bugs? How long would you wait? Once again, responses vary. Make sure students explain their position and reasoning.
d. Most software vendors release patches on their Web site to fix bugs. Find some newer bugs on one of the lists above and then see if the software vendor has issued a bug-fix patch. Students can go to almost any software company site and look in the support section. Most software developers place software patches on their Web site.
2. To Install or Not to Install: That's the Question

Ethical choices such as the situation posed for this exercise happen daily for IT professionals. Make students aware that even if they aren’t in the IT profession, they can face these choices. Sometimes an illegal act might seem quite harmless, such as allowing a friend to install your copy of Microsoft Office on her computer.

Consider using this ethical situation as a catalyst for a student debate. Break the students into two groups. (In a large class smaller groups divided into two sections will also work.) Have each student group take a side on the issue. One side will argue for installing the software whereas the other side argues against. Have both groups study one of the professional codes of conduct listed in the text and then use these guides as part of their discussion.

Encourage students to see this from both points of view. Often businesses justify using software inappropriately because of the costs of buying multiple copies. However, if they are caught the fines far outweigh the costs of a few extra copies of a software program.

Finally, consider having students reflect on whether they have broken any of the professional codes of conduct. Would they reconsider what they have done now that they know it’s considered unacceptable by the professional codes?
a. What should you do according to the standards you used? Responses will vary. However, students should realize that the request is unethical.
b. What is your response to your manager? Once again, responses will vary.
c. How could you use the standards to support your response to your manager? Encourage students to use their chosen professional code to support their argument to their manager. Make sure they respond in a professional manner as well.
d. Can you think of other ethical IT dilemmas you may encounter as an IT professional or even as a computer user? Ask students to think of situations when they have violated these codes. Installing a software program from a file sharing site or a friend, trading music, etc. all violate these professional codes.
ON THE WEB
1. Exploring Programming Frameworks

Students have the opportunity to explore two popular programming frameworks. On the Web sites listed for this exercise, both Sun's Java Platform Technologies and Microsoft .NET are explained in detail.
Encourage students to look beyond these two Web sites as well. Consider splitting the class into two groups with one group looking for additional Java resources and one looking for additional .NET resources. Compile a list and share it with the entire class.

Responses to these questions are easily found on the two Web sites. These questions will encourage students to explore these technologies in greater detail.

2. Finding a Programming Job Online

In this exercise, students will explore the various job opportunities available to people with the right training and experience. Students will find that some programming jobs are more prevalent than others. For example, programmers skilled in security application development are more in demand than COBOL programmers.

Make sure students realize business demands for types of programmers change according to needs. In 1999, companies were paying COBOL programmers large salaries to make sure business programs were Y2K compliant. Now, most COBOL programmers are maintaining programs or making sure the COBOL programs interface with newer applications developed in programming languages such as Java or Visual Basic.

a. What types of jobs did you find? A quick search with “computer programmer” on www.monster.com turned up over 800 jobs. Most of the skills needed deal with database, security, and e-commerce programming. C++ and Java are the predominant programming languages. Depending on geographical and experience limits (some companies want three to five years' experience), students should be able to find an assortment of programming jobs.

b. Are they what you expected? Answers will vary. If students don’t find what they expected, ask them what they expected to find and why they think this wasn’t true. Of course, if they were correct ask them how they knew.

c. What type of skills, education, and experience are employers looking for? Answer will vary according to the job. For entry-level programmers a college degree in computer science, computer information systems, or a similar field is usually sufficient. Many companies will train you in the programming language as long as you have demonstrated you can program. For example, if you’ve taken a few courses in C++ in college and created some applications as class projects, a company might hire you as an entry-level Java programmer. The company knows you can program in OOP, so the chances are good you can learn Java.

Senior level positions typically require three to seven years of experience and/or an advanced degree. Your experience should match the type of job for which you’re applying.

In all cases, a positive attitude, a good work ethic, and teamwork and communication skills will add much to your worth.

d. What types of certifications are employers asking for? Many employers are looking for people certified in a particular technology such as a Microsoft Certified Software Developer, Novell Netware Administrator, or Red Hat Certified Engineer. Employers want some assurance that a potential employee has a solid knowledge and skill base before hiring him or her.
e. Are employers seeking knowledge about certain languages more than others? Employers are always looking for potential programmers no matter what the language. If a student shows a skill in OOP, an employer knows he or she can learn Java or another OOP language. However, programmers who can deploy e-commerce, m-commerce, and security applications are currently in highest demand.
Create a PowerPoint presentation that lists the five most interesting jobs you found. You should also discuss the answers to the above questions in your presentation. Answers will vary.
3. Exploring Programming Resources

Most programmers specialize in only a few of the hundreds of available programming languages. You'll find there are many good programming resources, such as tutorials, sample code, and programming tips on the Web.

Make sure that students choose only two programming languages for this assignment or they will quickly become overwhelmed with the amount of information found online. Consider assigning different languages to students or have them choose from a list of languages to avoid duplication and encourage variety.

Students should share their Web resource sites' locations along with a three- to four-sentence description of what each site offers.

4. Finding Code on the Web
Students will find many programming Web sites with code and programming tips. Programmers are willing to share their code as long as you give them credit when you use it. Of course, students won’t find code for proprietary software on the Web. For example, students can easily find Java applets to download and share, but they won’t find the code for Windows XP.

a. Were you able to download the complete code for a program? If so, why do you think programmers made it available? If not, why do you think they haven’t shared it? Many sites have software code for JavaScript, Java, C++, VBA, VB, and other languages. Programmers place most code available on the Web there to share their programs for recognition or offer it under the GNU public license. The GNU public license (www.gnu.org) allows programmers to share their programs with others. In turn you can use and improve a GNU program as long as you still offer it for free to whomever wants it.

Programmers also share code “snippets” or pieces of code designed to improve aspects of existing programs.

Students won’t find code for proprietary software programs on the Web. For example, they’ll find code for the Linux operating system, but not for Windows. Microsoft doesn’t share its software code for free because it’s in business to make software. It would be like a car manufacturer giving out cars for free. How long would they stay in business?

b. Did programmers share code from certain programming languages more often than others? Which ones? Why do you think this is the case? Answers will vary on this question. However, students will find that programming languages more suitable to Web development are found on the Web. There are many Web sites devoted to JavaScript, Java Applets, ASP, and PHP. Programmers use all of these applications add features to Web pages.

This doesn’t mean there aren’t good Web sites devoted to COBOL, Perl, or VB. The Web offers a wealth of information on computer programming.

c. Can you think of reasons why you shouldn't share code with other programmers? And when you shouldn't use code from other programmers? Responses will vary. Most often, programmers don't share code because they aren't permitted to do so by their employer. Proprietary software code is hidden from everyone except programmers because software businesses make money from selling the software. If they shared the code, no one would buy the software. Students shouldn't share code if employers ask them not to share it. Students also shouldn't share code for programming assignments.
GROUP ACTIVITIES
1. Investigating and Designing Solutions
Businesses routinely ask programmers to investigate a business problem and design a solution to the problem. In the chapter students learned how to investigate a problem by asking questions to create a problem/opportunity statement. Using the problem/opportunity statement, they saw how to write pseudocode and create the logical model for a software program.

In this exercise, students must identify a problem that they can solve using software. After they identify the problem, they will create a problem/opportunity statement and develop pseudocode or a programming flowchart from the statement. Students don't need to write the software code, but they should choose a programming language to use and discuss why they chose it.

Review the problem solving process we used to create the Payroll program in the textbook before assigning this project. Students don’t actually need to create a software program. This project will teach them the critical thinking and logical skills needed to solve a problem.

Encourage students to identify problems they are having. A brief brainstorming session in class should get students thinking about the type of problems they have encountered. Some examples might be:

· Organizing audio collections.

· Tracking club memberships.

· Creating a Web site for a student organization.

· Connecting computers together to play games.

Encourage student groups to share their solutions with the class. They should prepare a PowerPoint presentation discussing the entire process. Make sure they include the problem/opportunity statement, the questions they asked to formulate it, their pseudocode or flowchart, and the programming language they would use. Remind them to explain why they chose the language they did.
2. Exploring Programming Majors

Students should look through the school's Web site to find majors that include programming courses in their degree requirements. Consider bringing an undergraduate catalog and a schedule of courses to class so that you can provide examples to students.
Make sure students don't stop searching after they have found computer science, information systems, and computer engineering majors. Encourage them to look beyond the more noticeable programming majors to majors such as graphic design, multimedia communication, and telecommunications management.

Consider assigning students certain schools or geographical areas to search for other majors online to avoid students picking the same schools and programs.

3. Interviewing a Programmer

Encourage student groups to create a list of interview questions before approaching programmers and software engineers. You might consider working as a class to create a questionnaire using the textbook as a guide. Some questions to ask might be:

· Are there differences in your SDLC phases other than the ones we have in our text?

· What SDLC phase do you find most challenging?

· Have you used RAD in a project?

· How do you effectively determine program requirements?

· Do you prefer pseudocode or flowcharts? Why?

· What’s your favorite programming language? Why?

· If we had to pick one language to learn in school, which would you recommend? Why?

· What classes or activities helped you become a better programmer or software engineer?

· Which certifications do you have?

· Which certifications do you recommend?

Make sure student groups find different programmers or systems engineers. You might consider talking with the campus IT office to see if programmers from different areas (Human Resources, System Administration, Finance, etc.) would be willing to talk to students.

4. Deciding on Proprietary versus Open Source Software

Whether to use open source or proprietary software is one of the most heated debates among programmers, businesses, and software companies. The debate includes cost, usability and philosophical groundings. Both sides of the issue make a strong case for the benefits of their approach. Like most debates, there is no easy answer and the answer may vary according to the situation.

Start student groups on this debate by doing a Web search with the terms (“Linux” and “Microsoft”) or (“Open Source” and “Microsoft”). Students will find many heated discussions and articles, as well as well-argued positions.

Help student groups get past the usual flame wars over operating systems and programs to delve deeper into why a business or organization might choose open source software (like Linux) or proprietary software (like Windows). Ease student groups into the debate using software programs familiar to them—

the types of programs found in Microsoft Office. Have them visit the following sites:

· StarOffice (www.staroffice.org)

· Microsoft Office (www.microsoft.com/office)

Make sure that students explain how they came to their decision.
PAGE
13.1

