
E1. Allozymes can be detected by gel electrophoresis. However, this technique underestimates the total amount of 
genetic variation because some sequence differences will not alter the mobility of an enzyme within a gel. By 
comparison, DNA sequencing will reveal all the sequence differences between different individuals. 

E2. 1. One hypothesis is that the population having only two allozymes was founded from a small group that left the 
other population. When the small founding group left, it had less genetic diversity than the original population. 

 2. The population with more genetic diversity may be in a more diverse environment so it may select for a greater 
variety of phenotypes. 

 3. It may just be a matter of chance that one population had accumulated more neutral alleles than the other. 

E3. A. At the DNA level, a clear-cut way to determine genetic variation is to clone and sequence genes. If the same 
gene is cloned from two different individuals and the sequences are different, this shows that there is genetic 
variation. In addition, several other methods can be used to detect genetic variation. For example, a comparison 
of Southern blots using samples from different individuals might reveal that a gene exists in different sizes or 
that it contains different restriction sites. 

 B. At the RNA level, a Northern blot may reveal genetic variation. If the RNA encoded by two different alleles 
has a different size, this can be detected in a Northern blot. 

 C. At the protein level, gel electrophoresis may reveal genetic variation. This method was described in your 
textbook. Different allozymes may migrate at different rates during gel electrophoresis. Another approach is to 
study the function of an enzyme using a biochemical assay of its activity. Allozymes may have different levels 
of enzymatic activity, and this may be detected using an enzyme assay. 

E4. Glutamic acid is a negatively charged amino acid and valine is neutral. The HbA polypeptide has a glutamic acid 
at the sixth position while HbS has a valine. Therefore, the HbA polypeptide will move a little more quickly 
toward the positive end of the gel. 

Lane 1—HbSHbS 
Lane 2—HbAHbA 
Lane 3—HbAHbS 

  
E5. Note: You need to look at solved problem S5 and realize that the Hardy-Weinberg equation can be extended to a 

gene existing in four alleles. In this case: 

(p + q + r + s)2 = 1 

p2 + q2 + r2 + s2 + 2pq + 2qr +2qs +2rp + 2rs + 2sp = 1 

Let p = C, q = cch, r = ch, and s = c. 

 A. The frequency of albino rabbits is s2. 

s2 = (0.05) = 0.0025 = 0.25% 

 B. Himalayan is dominant to albino but recessive to full and chinchilla. Therefore, Himalayan rabbits would be 
represented by r2 and by 2rs. 

r2 + 2rs = (0.44)2 + 2(0.44)(0.05) = 0.24 = 24% 

  Among 1,000 rabbits, about 240 would have a Himalayan coat color. 

 C. Chinchilla is dominant to Himalayan and albino but recessive to full coat color. Therefore, heterozygotes with 
chinchilla coat color would be represented by 2qr and by 2qs. 

2qr + 2qs = 2(0.17)(0.44) + 2(0.17)(0.05) = 0.17, or 17% 

  Among 1,000 rabbits, about 170 would be heterozygotes with chinchilla fur. 



E6. A. Let W represent the white fat allele and w represent the yellow fat allele. Assuming a Hardy-Weinberg 
equilibrium, we can let p2 represent the genotype frequency of WW animals, and then Ww would be 2pq and ww 
would be q2. The only genotype frequency we know is that of the ww animals. 
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ww q= =  

q2 = 0.014 

q = 0.12, which is the allele frequency of w 

p = 1 – q 

p = 0.88, which is the allele frequency of W 

 B. The heterozygous carriers are represented by 2pq. If we use the values of p and q, which were calculated in part 
A: 

2pq = 2(0.88)(012) = 0.21 

   Approximately 21% of the animals would be heterozygotes with white fat. 

   If we multiply 0.21 times the total number of animals in the herd: 

0.21 × 5,468 = 1,148 animals 

E7. A. Eskimo M = 0.913 N = 0.087 

   Navajo M = 0.917 N = 0.083 

   Finns M = 0.673 N = 0.327 

   Russians M = 0.619 N = 0.381 

   Aborigines M = 0.176 N = 0.824 

 B. To determine if these populations are in equilibrium, we can use the Hardy-Weinberg formula and calculate the 
expected number of individuals with each genotype. 

 Eskimo MM = (0.913)2 = 83.3 

  MN = 2 (0.913)(0.087) = 15.9 

  NN = (0.087)2 = 0.76 

  In general, the values agree pretty well with an equilibrium. The same is true for the other four populations. 

 C. Based on similar allele frequencies, the Eskimo and Navajo Indians seem to have interbred as well as the Finns 
and Russians. 

  
E8. The first thing we need to do is to determine the allele frequencies. Let’s let p represent i, q represent IA, and r 

represent IB. 

 p2 is the genotype frequency of ii 
 q2 is the genotype frequency of IAIA 
 r2 is the genotype frequency of IBIB 
 2pq is the genotype frequency of IAi 
 2pr is the genotype frequency of IBi 
 2qr is the genotype frequency of IAIB 
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     p2 = 0.36 

     p = 0.6 



  Next, we can calculate the allele frequency of IA. Keep in mind that there are two genotypes (IAIA and IAi) that 
result in type A blood. 
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q2 + 2(0.6)q = 0.47 

q = 0.31 

  Now it is easy to solve for r, 

p + q + r = 1 

0.6 + 0.31 + r = 1 

r = 0.09 

  Based on these allele frequencies, we can compare the observed and expected values. To determine the 
expected values, we multiply the genotype frequencies times 2,000, which was the total number of individuals 
in this population. 

p2 is the genotype frequency of ii = (0.6)2(2,000) = 720 
q2 is the genotype frequency of IAIA = (0.31)2(2,000) = 192 
r2 is the genotype frequency of IBIB = (0.09)2(2,000) = 16 
2pq is the genotype frequency of IAi = 2(0.31)(0.6)(2,000) = 744 
2pr is the genotype frequency of IBi = 2(0.09)(0.6)(2,000) = 216 
2qr is the genotype frequency of IAIB = 2(0.31)(0.09)(2,000) = 111 

 Expected Numbers Observed Numbers

Type O 720 721 

Type A 192 + 744 = 936 932 

Type B  16 + 216 = 232 235 

Type AB 111 112 

  The observed and expected values agree quite well. Therefore, it does appear that this population is in Hardy-
Weinberg equilibrium. 

E9. A. ∆pC = m(pD – pR) 

  With regard to the sickle-cell allele: 

∆pC = (550/10,550)(0.1 – 0.01) = 0.0047 

pC = pR + ∆pC = 0.01 + 0.0047 = 0.0147 

 B. We need to calculate the genotypes separately: 

  For the 550 migrating individuals, 

HbAHbA = (0.9)2 = 0.81, or 81% We expect (0.81)550 = 445.5 individuals to have this genotype 

HbAHbS = 2(0.9)(0.1) = 0.18 We expect (0.18)550 = 99 heterozygotes 

HbSHbS = (0.1)2 = 0.01 We expect (0.01)550 = 5.5 HbSHbS 

  For the original recipient population, 

HbAHbA = (0.99)2 = 0.98 We expect 9,801 individuals to have this genotype 

HbAHbS = 2(0.99)(0.01) = 0.0198 We expect 198 with this genotype 

HbSHbS = (0.01)2 = 0.0001 We expect 1 with this genotype 

  To calculate the overall population: 

(445.5 + 9801)/10,550 = 0.971 HbAHbA homozygotes 

(99 + 198)/10,550 = 0.028 heterozygotes 

(5.5 + 1)/10,550 = 0.00062 HbSHbS homozygotes 



 C. After one round of mating, the allele frequencies in the conglomerate (calculated in part A), should yield the 
expected genotype frequencies according to the Hardy-Weinberg equilibrium. 

Allele frequency of HbS = 0.0147, so HbA = 0.985 

HbAHbA = (0.985)2 = 0.97 

HbAHbS = 2(0.985)(0.0147) = 0.029 

HbSHbS = (0.0147)2 = 0.0002 

E10. Let’s assume that the relative fitness values are 1.0 for the dominant homozygote and the heterozygote and 0 for 
the recessive homozygote. The first thing we need to do is to calculate the mean fitness for the population. 

2 2

2

2

(0.78) 2(0.78)(0.22)
0.95

AA Aa aap W pqW q W W

W
W

+ + =

+ =

=

 

  The genotype frequency in the next generation for AA equals 
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  For the second generation, we first need to calculate the mean fitness of the population, which now equals 0.96. 
Using the preceding equation, the genotype frequency of AA in the second generation equals 0.67 and the allele 
frequency equals 0.816. The frequency of the recessive allele in the second generation would equal 0.184 and the 
mean fitness would now equal 0.967. The genotype frequency of AA in the third generation would be 0.688 and 
the allele frequency would be 0.83. The frequency of the recessive allele would be 0.17. 

E11. A.    Probability of fixation = 1/2N (Assuming equal numbers of males and females contributing to the next 
generation) 

 Probability of fixation = 1/2(2,000,000) 

 = 1 in 4,000,000 chance  

 B.     where t =  the average number of generations to achieve fixation 

           N = the number of individuals in population, assuming that males and females contribute equally to 
each succeeding generation 

 C. If the blue allele had a selective advantage, the value calculated in part A would be slightly larger; there would 
be a higher chance of allele fixation. The value calculated in part B would be smaller; it would take a shorter 
period of time to reach fixation. 

E12. If we let C represent the carbonaria allele and c represent the typical allele: 

WCC = 1.0 

WCc = 1.0 

Wcc = 0.47 

  In the next generation, we expect that the Hardy-Weinberg equilibrium will be modified by the following amount: 

p2WCC + 2pqWCc + q2Wcc  

  In a population that is changing due to natural selection, these three genotypes will not add up to 1.0 as in the 
Hardy-Weinberg equilibrium. Instead, the three genotypes will add up to the mean fitness of the population. 
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   After one generation of selection: 

   Allele frequency of C:  

2

2(0.7) (1.0) (0.7)(0.3)(1.0)
0.95 0.95

0.74

CC Ccp W pqWp
W W

p

p

= +

= +

=

 

   Allele frequency of c:  
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  After one generation, the allele frequency of C has increased from 0.7 to about 0.74 while the frequency of c 
has decreased from 0.3 to about 0.27. This is because the homozygous, cc, genotype has a lower fitness 
compared to the heterozygous, Cc, and homozygous, CC, genotypes. 

E13. The selection coefficients are 

sww = 1 – 0.19 = 0.81 

sWW = 1 – 0.37 = 0.63 

 

  If the rats are not exposed to warfarin, the equilibrium will no longer exist and natural selection will tend to 
eliminate the warfarin-resistance allele because the homozygotes are vitamin K deficient. 

E14. Each area that he tested had its own endogenous population of moths. For example, the polluted areas had many 
more darkly colored moths, so we would expect to capture many more of these simply because there are more of 
them in the first place. Kettlewell wanted to release an equal number of moths of both types and then recapture 
them as a way to examine how well each type of moth could survive in polluted and unpolluted environments. 

E15. Let’s use the data for bird predation, but we could also carry out a chi square analysis for the percentage of 
recapture. 

  Hypothesis: Color has nothing to do with predation by birds. Note: We need to propose this hypothesis to obtain 
expected values. According to this hypothesis, we would expect an equal number of dark and light moths to be 
eaten by birds. 
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  In the Dorset woods, there were (43 + 15) = 58 moths that were eaten. We would expect 29 to be carbonaria and 
29 to be typical according to our hypothesis. In the Birmingham woods, there were (26 + 164) = 190 moths eaten, 
so we would expect 95 to be carbonaria and 95 to be typical. 
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  If we look in the chi square table in Chapter 2 with 3 degrees of freedom, this rather high chi square value is very 
unlikely to occur as a matter of chance (less than 1% of the time). Therefore, we reject our hypothesis that color 
does not affect predation. As an alternative, we would propose that the color of the moths does have a significant 
effect on their likelihood of predation. 



E16. Fitness based on the number eaten by birds: 

  The number of moths eaten by birds is really a measure of the selection coefficient (s), not a measure of fitness. s 
= 1 – W 

  We first need to compare the carbonaria and the typicals. 
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  If we wish to give the typical moths a fitness value of 1.0, this means the selection coefficient for typical moths 
must be zero. Therefore, to calculate the selection coefficient for the carbonaria moths: 

scarbonaria = 0.74 – 0.26 = 0.48 

Wcarbonaria = 1 – 0.48 = 0.52 

  Fitness based on the number of moths recaptured: 
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  The two values (0.52 and 0.56) agree reasonably well. The fitness value based on recapture data is probably more 
reliable since it seems to be an unbiased measure of the survival rate. The fitness based on the number eaten by 
birds is somewhat biased because it assumes that this is the only factor that affects the survival of the two types of 
moths. However, there could be other factors. For example, animals other than birds may eat moths. 

E17. If we assume that the different phenotypes of snails have the same level of fertility, we can estimate their fitness 
values by determining their survival percentages in the different habitats. This calculation assumes that the snails 
freely migrate through these different environments during their lifetimes, and that the percentages of snails in any 
given environment reflect their likelihood of survival. This assumption may not be valid if the snails are fairly 
sedentary and do not migrate very far from where they were born. 

 A. In beechwoods, the pink snails have the greatest survival rate. If we assign a fitness value of 1 for the pink 
snails, then the brown snails have a fitness of 0.23/0.61 = 0.38, and the yellow snails have a fitness value of 
0.16/0.61 = 0.26. 

 B. In deciduous woods, the pink snails also have the greatest survival rate. If we assign a fitness value of 1 for the 
pink snails, then the brown snails have a fitness of 0.05/0.68 = 0.07, and the yellow snails have a fitness value 
of 0.27/0.68 = 0.40. 

 C. In hedgerows, the yellow snails have the greatest survival rate. If we assign a fitness value of 1 for the yellow 
snails, then the brown snails have a fitness of 0.05/0.64 = 0.08, and the pink snails have a fitness value of 
0.31/0.64 = 0.48. 

E18. One could follow an analogous protocol as conducted by Kettlewell. You could mark snails with a dye and release 
equal numbers of dark and light snails into dimly lit forested regions and sunny fields. At a later time, recapture 
the snails and count them. It would be important to have a method of unbiased recapture because the experimenter 
would have an easier time locating the light snails in a forest and the dark snails in a field. Perhaps one could bait 
the region with something that the snails like to eat and only collect snails that are at the bait. In addition to this 
type of experiment, one could also sit in a blind and observe predation as it occurs. 

 


