Ch 14 Programming and Languages

I. Ch 14 Programming and Languages
Lecture Outline
A. Competencies pg 386
1. Describe the six steps of programming.

2. Discuss design tools including top-down design, pseudocode, flowcharts, and logic structures.

3. Describe program testing and the tools for finding and removing errors.

4. Describe CASE tools and object-oriented software development.

5. Explain the five generations of programming languages.

B. Introduction pg 387
· In systems analysis and design, we do some general problem solving.

· In programming, we do specific problem solving.

· You should know about programming for two key reasons:

· First, you may need to work with programmers, so it helps to understand something about the process.

· Second, you may need to do some programming yourself, such as end user application development.

· Programming occurs during Phase 4: System Development of the system life cycle

· Competent end users need to understand the relationship between system development and programming

· They need to know the six steps of programming, including:

· Program specifications

· Program design

· Program code

· Program test

· Program documentation, and

· Program maintenance

C. Programs and Programming pg 388
· Programming is a problem-solving procedure.

1. What is a program?

· A program is a list of instructions for the computer to follow to accomplish the task of processing data into information

· The instructions are made up of statement used in programming language

· Some programming languages include BASIC, C, and Java

· Some programs include application programs like a word processor or spreadsheet

· Others include system programs like an operating system

· Custom made programs might include something like a time-and-billing application

2. What is programming?

· Programming is also known as software development

· It is a six step procedure for creating that list of instructions

· The six steps include:

· Program specification – the objectives, outputs, inputs, and processing requirements are determined

· Program design – a solution is created using techniques such as top-down program design, pseudocode, flowcharts, and logic structures

· Program code – the program is written or coded using a programming language

· Program test – the program is tested (debugged) by looking for syntax and logic errors

· Program documentation – an ongoing process to formalize the written description and processes used in the program

· Program maintenance – completed programs are periodically reviewed to evaluate their accuracy, efficiency, standardization, and ease of use. Changes are made to the program’s code as needed.

· Software engineers (aka programmers) use these six steps to develop programs

D. Step 1: Program Specification pg 389
· In the program specification step, the objectives, outputs, inputs, and processing requirements are determined.

· The program specification is also called the program definition or program analysis.

1. Program Objectives
· Objectives are the problems you are trying to solve

· You need to make a clear statement of the problem you are trying to solve with this program

2. Desired Output

· It’s best to start with the outputs BEFORE you list the inputs

· Once you have the output, then you do the input, and finally, the process to convert inputs to output

· A sketch of a report is a good starting point

3. Input Data

· List the input data and the source of this data

· A sketch of a form may be helpful

4. Processing Requirements

· List the steps to convert the input into the output

5. Document the Program Specifications

· All the documents created above need to be combined into one portfolio for future reference

· Much of this documentation is possible to do electronically using CASE tools, etc.

E. Step 2: Program Design pg 391
· In the program design step, a solution is created using programming techniques such as top-down program design, pseudo code, flowcharts and logic structures

1. Top-Down Program Design

· Top-down program design is used to identify the program’s processing steps

· These steps are called program modules (or just modules)

· Each module is broken down into smaller sets of modules, until it has a single function, e.g. compute gross pay

· The program must pass in sequence from one module to the next until all have been processed

· The three principle computer system operations include input, process, and output

2. Pseudocode

· Pseudocode (pronounced “soo-doh-code”) is an outline of the logic of the program you will write

· It may be done in place of a program flowchart, depending on the design standards the organization follows

3. Flowcharts

· Program flowcharts graphically present the detailed sequence of steps needed to solve a programming problem

· Typical flowchart symbols include:

· Processing – rectangles

· Input/Output – parallelograms

· Decisions – diamonds

· Connectors – circles

· Terminal (start or end point) - oval

4. Logic Structures

· Three standard logic structures include sequence, selection, and loop

· A fourth structure, the case structure is often mentioned in program design literature, but can be thought of as a special format of the selection structure

a) Sequence Structure

· One program statement just follows the previous

b) Selection Structure

· One of two processing paths can be followed depending on a condition

· For example, the condition may test if an employee worked any overtime hours – if they did, you calculate the overtime pay, otherwise, you set overtime pay to zero

· This is known as an IF-THEN-ELSE structure

c) Loop Structure

· Describes a process that may be repeated as long as certain conditions remain true

· The structure is called a loop (or iteration) because the program literally loops around and performs the same code over and over again until a condition changes

· If for some reason the condition never changes, a program can get caught in an “infinite loop” which is a failure in the program (the program will “lock up”)

· Two forms of a loop structure include

· DO UNTIL – condition tested at end of loop – loop statements will be executed at least once

· DO WHILE – condition tested at beginning of loop – loop statements may not be executed if condition is never true

F. Step 3: Program Code pg 396
· Writing a program is called coding.

· You use the logic you developed in the program design step to actually write the program syntax.

1. The Good Program

· Good programs should be reliable: they should work under most conditions.

· They should catch obvious and common input errors.

· It should be well documented and understandable by programmers other than the person who wrote it.

· They should be structured programs, using the logic structures described previously

2. Coding

· Formatting or Presentation Languages use symbols, words, and phrases to instruct a computer as to how to display information to the user.

· HTML – Hyper Text Markup Language is an example. HTML is used to code web pages.

· Programming languages use a collection of symbols, works and phrases to instruct a computer to perform specific operations.

· Programming languages focus on processing data for a wide variety of different types of applications

· Examples of programming languages include C, C++, C#, Java, JavaScript, and Visual Basic

G. Step 4: Program Test pg 399
· Debugging is a programmer’s word for testing and then eliminating errors (“getting the bugs out”).

· Two types of programming errors include syntax errors and logic errors

1. Syntax Errors

· A syntax error is a violation of the rules of the programming language, for example, if you leave a semicolon (;) off the end of a C++ programming statement, it would result in a syntax error

2. Logic Errors

· A logic error occurs when a programmer uses an incorrect calculation or leaves out a programming procedure.

· An example of a logic error is a payroll program that did not compute overtime errors

3. Testing Process
· Several methods for finding and removing errors include:

a) Desk checking
· A programmer sitting at a desk checks (proofreads) a printout of the program.
· The programmer goes through the listing line by line looking for syntax and logic errors

b) Manually testing with sample data
· Using a calculator and sample data, the programmer follows each program statement and performs every calculation.
· Looking for programming logic errors, the programmer compares the manually calculated values to the correct values.

c) Attempt at translation
· The program is run through a computer, using a translator program.
· The translator program tries to convert the program from source code to machine language.
· Before the program can run, it must be free of syntax errors.

d) Testing sample data on the computer
· After all syntax errors have been removed, a sample run is made to test for logic errors

e) Testing by a select group of potential users
· Sometimes called Beta testing, it is usually the final testing of a program

H. Step 5: Documentation pg 400
· Documentation consists of written descriptions and procedures about a program and how to use it.

· Program documentation is carried on throughout all the programming steps

· Documentation can help the following people:

· Users - need to know how to use the software

· Operators – need to know how to correct errors

· Programmers – need to know how to modify programs

I. Step 6: Program Maintenance pg 402
· As much as 75% of the total lifetime cost of a program is for maintenance.

· Maintenance programmer are specialists that work on these types of projects

· The purpose of program maintenance is to ensure that the current programs are operating error free, efficiently, and effectively.

· Activities in this area fall into two categories, operations and changing needs

1. Operations

· Operations activities concern
· locating and correcting operational errors,
· making programs easier to use, and
· standardizing software using structured programming techniques

· For properly designed programs, these activities should be minimal

2. Changing Needs

· Changing needs are unavoidable

· Examples for changes include new tax laws, new information needs, new company policies, etc.

J. CASE and OOP pg 403
· CASE tools automate the development process.

1. CASE tools

· Professional programmers are constantly looking for ways to make their work easier, faster, and more reliable.

· Computer Aided Software Engineering (CASE) tools provide some automation and assistance in program design, coding, and testing.

2. Object-Oriented Software Development

· Traditional systems development is a careful, step by step approach focusing on the procedures needed to complete a certain objective

· Object-Oriented software development focuses less on the procedures and more on defining the relationships between previously defined procedures or “objects”

· Object-oriented programming (OOP) is a process by which a program is organized into objects.

· Each object contains both the data and processing operations necessary to perform a task

· OO programs use modules called objects that are reusable, self-contained components, e.g. a sort module that doesn’t need to be recreated each time it is used.
· C++ is one of the most widely used object-oriented programming languages

K. Generations of Programming Languages pg 404

· Levels or generations of programming languages range from low to high

· Lower level languages are closer to the language the computer uses itself (machine code – 1s and 0s)

· Higher level languages are closer to human languages

1. Machine Languages: the First Generation

· Data represented in machine language are written as a series of bits – 1s and 0s

· The computer runs programs once they are translated into a series of bits like this

· Machine code programs are very efficient, but obviously difficult to write
2. Assembly Languages: the Second Generation

· Assembly languages use abbreviation or mnemonics such as ADD that are automatically converted to the appropriate sequence of 1s and 0s

· Assembly languages are much easier to use than machine language, but still more difficult to use than higher level languages

· These tend to be hardware dependent, but very efficient

3. High-level Languages: the Third Generation

· These are considered portable languages because they are not tied specifically to certain hardware like machine and assembly languages

· Procedural languages (aka 3GLs – 3rd Generation Languages) are designed to express the logic procedures to solve general problems

· Cobol, Basic, and C++ are common 3rd generation languages

· Depending on the language, the source code is translated into machine code using an interpreter or a compiler

· Once compiled, the program code can be stored as the object code, which is then saved to be run over and over (without going through the compile process each time). Pascal, Cobol, and Fortran use compilers.
· An interpreter does a similar process, only the translated code is not saved – each time the program is run, it is interpreted into machine code and run again. The Basic programming language uses an interpreter.
4. Problem-oriented Languages: the Fourth Generation

· Problem-oriented languages (aka 4GLs – 4th generation languages) are very high level languages designed to make it easy for people to write programs

· These are designed to tackle specific problems, such as financial or statistical analysis

· IFPS (Interactive Financial Planning System) is used to create financial models

· Many 4GLs are part of DBMS systems, including:
a) Query Languages

· Query languages enable non-programmers to use certain easily understood commands to search and generate reports from a database

· Structured Query Language (SQL) is one of the most widely used query languages

b) Application Generators

· An application generator (aka program coder) is a program that provides modules of prewritten code.

· Programmers can quickly create a program by referencing the appropriate modules

· MS Access has a report generation application and a Report Wizard for quickly creating reports

5. Natural Languages and Visual Programming: the Fifth Generation

· A 5th GL is a computer language that incorporates the concepts of artificial intelligence to allow direct human communication.

· These languages would enable a computer to learn and to apply new information as people do.

· Visual programming languages are also included in 5GLs, such as Microsoft’s Visual Basic

L. Using IT At DVD Direct – A Case Study pg 408
1. Programming and Languages

· This section briefly describes DVD Direct, a fictitious organization, to demonstrate how programs are developed by a business.

· In the case, and application has been written to allow users to log in and download movies from the net.

· Use the Computing Essentials CD to follow this case

M. A Look to the Future pg 409
1. MI-tech Takes the Pain Out of Programming
· Synapse Solution is a firm that has developed a product that allows you to easily write programs that run on Windows PCs, Macs, or Linux boxes.

· The product, MI-tech, understands word order and meaning in English. You enter a “wish list” and the computer translates these sentences into machine language.

· This product is an example of the types of technologies that come closer to creating a true “fifth generation programming language”.

· Try accessing http://www.synapseadaptive.com for more information

N. Visual Summary at a glance – Programming and Languages pg 410
1. Step 1: Program Specification

a) Program objectives

b) Desired output

c) Input data

d) Processing requirements

e) Program specifications document

2. Step 2: Program Design

a) Top-down design

b) Pseudocode

c) Flowcharts

d) Logic Structures

3. Step 3: Program Code

a) Good programs

b) Coding

(1) Formatting languages

(2) Programming languages

4. Step 4: Program Test

a) Syntax errors

b) Logic errors

c) Testing process

5. Step 5: Program Documentation

(1) For users

(2) For operators

(3) For programmers

6. Step 6: Program Maintenance

a) Operations

b) Changing Needs

7. CASE and OOP

a) CASE

b) OOP

8. Programming Generations

a) First: machine

b) Second: assembly

c) Third: procedural

d) Fourth: problem

e) Fifth: natural and visual

O. Key Terms pg 413
	1
	application generator
	
	406
	software that can speed up the process of writing programs since it pulls in common modules, etc

	2
	assembly language
	
	405
	low level programming language used to write efficient programs - typically used for system software authoring

	3
	beta testing
	
	400
	having a group of key users try out a program before the final version is released

	4
	code
	
	396
	computer instructions in a program, or the process for writing them

	5
	Coding
	
	396
	the process of writing the actual syntax of a computer program

	6
	Compiler
	
	405
	translates computer source code into machine code and stores it in an object file for later execution

	7
	computer-aided software engineering tools
	CASE
	403
	special software programs used to speed up the design and development of computer programs

	8
	Debugging
	
	399
	process of finding and eliminating errors from computer programs

	9
	desk checking
	
	399
	manually checking each line of code for syntax errors

	11
	DO UNTIL structure
	
	394
	loop structure with the test after the code is executed at least one time

	12
	DO WHILE structure
	
	394
	loop structure with the test before the code is done the first time

	10
	Documentation
	
	400
	written plans, diagrams, explanations, etc. for a computer system, e.g. user, operator, and program manuals

	13
	fifth generation language
	5GL
	407
	highest level of computer languages, includes both natural and visual languages

	14
	formatting language
	
	396
	computer language that controls the context and format for information, e.g. HTML

	15
	fourth generation language
	4GL
	406
	high level language designed to be easy to program, e.g. SQL or other special application programming environments

	16
	Generation
	
	404
	a level of a computer programming language - low are close to machine code, high are close to human language

	17
	higher level
	
	404
	programming languages that are closer to human language than they are to machine language

	19
	IF-THEN-ELSE structure
	
	393
	common decision structure in which a program can execute two different paths depending on a condition

	18
	interactive financial planning system
	IFPS
	406
	software product used by organizations for creating financial models

	20
	Interpreter
	
	406
	translates computer source code into machine code and executes it at the same time

	21
	Level
	
	404
	a generation of programming language, lower close to machine code, higher to human language

	22
	logic error
	
	399
	mistake in a computer program in which the processing step does not accomplish what needs to be done

	23
	logic structure
	
	393
	order of computer program statements, including sequence, selection, and loops

	24
	loop structure
	
	393
	logical programming structure in which you can repeat code over and over until a condition is reached

	25
	lower level
	
	404
	programming language that is close to the machine code that the computer actually runs

	26
	machine language
	
	405
	the programming steps that can be processed by the computer - a series of 1s and 0s

	27
	maintenance programmer
	
	402
	specialist responsible for enhancing programs that have already been written

	28
	Module
	
	392
	program function often used in OO programming to perform certain procedures

	29
	natural language
	
	407
	human language - what 5GLs strive to be able to use as a way to program a computer

	30
	Object
	
	404
	a "thing" used in OO Programming, such as a module, a program, data, etc.

	31
	object code
	
	405
	compiled source code that is ready to be executed (run) on a computer

	32
	Objectives
	
	390
	the tasks that need to be completed when designing a computer program

	33
	object-oriented programming
	OOP
	404
	technique of writing programs in which the data & procedures are closely linked

	34
	object-oriented software development
	
	404
	technique of planning systems using OO programming

	35
	Operator
	
	401
	person responsible for running computer programs

	36
	portable language
	
	405
	computer language that can run on a number of different hardware platforms

	37
	presentation language
	
	396
	aka formatting language, it controls the context and format for a document, e.g. HTML

	38
	problem-oriented language
	
	406
	aka 4GL, it is used to code programs to solve specific problems such as financial or statistical analysis programs

	39
	procedural language
	
	405
	aka 3GL, are designed to express the logic (procedures) to solve general problems, e.g. COBOL

	40
	program
	
	388
	a list of instruction for the computer to follow to accomplish the task of processing data into information

	41
	program analysis
	
	389
	aka program specification or definition - lists the objectives, outputs, inputs, and processing requirements for a program

	42
	program coder
	
	406
	aka application generator - speeds up the process of writing programs

	43
	program definition
	
	389
	aka program specification or analysis - lists the objectives, outputs, inputs, and processing requirements for a program

	44
	program design
	
	391
	second step of the programming process in which you plan and document the flowcharts, etc. for writing the code

	45
	program documentation
	
	400
	all the charts, diagrams, narrative needed for user, operator, and programmer manuals

	46
	program flowchart
	
	393
	graphical design tool for planning the processing steps of a program

	47
	program maintenance
	
	402
	last step of the programming process in which you enhance the performance of the program

	51
	program module
	
	392
	a function consisting of program code to perform one thing

	52
	program specification
	
	389
	aka program analysis or definition - lists the objectives, outputs, inputs, and processing requirements for a program

	48
	Programmer
	
	389
	person responsible for generating and testing program source code

	49
	Programming
	
	388
	process of writing source code that can be translated and run on a computer

	50
	programming language
	
	396
	use a collection of symbols, words and phrases that instruct a computer to perform specific operations

	53
	Pseudocode
	
	393
	"not real code", it is used to plan the logic of a program in a written format

	54
	query language
	
	406
	special database language used to pull selected data from a DBMS

	55
	selection structure
	
	393
	programming logic that allows a decision to be made to run one set of code or another depending on a condition

	56
	sequence structure
	
	393
	programming logic in which one line of code is executed after another in order

	57
	software development
	
	388
	aka programming - the creation and modification of computer programs

	58
	software engineer
	
	389
	aka programmer - person responsible for creating and maintaining computer programs

	59
	source code
	
	405
	the syntax written in a specific computer programming language that will be translated into machine code

	60
	structured program
	
	396
	technique used to enhance the readability and maintainability of computer programs using sequence, selection, and loops

	61
	structured programming techniques
	
	391
	technique used to enhance the readability and maintainability of computer programs using sequence, selection, and loops

	62
	syntax error
	
	399
	mistake in a computer program in which you "break a programming language rule", e.g. spell a command wrong, etc.

	63
	third generation language
	3GL
	405
	aka procedural language - used to write programs to solve general problems, e.g. COBOL, BASIC

	64
	top-down program design
	
	392
	technique of designing programs by planning the main modules first, then breaking them down into smaller ones

	65
	User
	
	401
	person who benefits from the use of a computer program

	66
	very high level language
	
	406
	aka 5GLs - the most human like programming languages

	67
	visual programming language
	
	407
	high level programming language that uses icons & other graphical tools for building systems, e.g. MS Visual Basic

P. Chapter Review pg 319
1. Crossword

a) Across

	1
	APPLICATION GENERATOR
	PG 406

	5
	LEVELS
	PG 404

	7
	PORTABLE LANGUAGE
	PG 405

	9
	OPERATORS
	PG 401

	12
	CODING
	PG 396

	15
	OBJECT
	PG 404

	16
	GENERATIONS
	PG 404

	17
	DEBUGGING
	PG 399

	18
	SOURCE CODE
	PG 405

	19
	COMPILER
	PG 405

	20
	SYNTAX ERROR
	PG 399

	21
	LOOP STRUCTURE
	PG 393

	22
	BETA TESTING
	PG 400

	23
	MACHINE LANGUAGE
	PG 405

	24
	MODULE
	PG 392

	25
	NATURAL LANGUAGE
	PG 407

b) Down

	2
	PACKAGED PROGRAM
	PG 388

	3
	QUERY LANGUAGE
	PG 406

	4
	ASSEMBLY LANGUAGE
	PG 405

	6
	SELECTION STRUCTURE
	PG 393

	7
	PROCEDURAL LANGUAGE
	PG 405

	8
	FLOWCHARTS
	PG 393

	10
	SEQUENCE STRUCTURE
	PG 393

	11
	PSEUDOCODE
	PG 393

	13
	LOGIC ERROR
	PG 399

	14
	INTERPRETER
	PG 406

	17
	DOCUMENTATION
	PG 400

2. Multiple Choice

	1
	C
	Program code
	Pg 396

	2
	B
	Program design
	Pg 391

	3
	A
	Program definition, program analysis
	Pg 389

	4
	C
	One
	Pg 392

	5
	C
	Do while, do until
	Pg 394

	6
	B
	Structured programs
	Pg 396

	7
	E
	Syntax
	Pg 399

	8
	D
	Documentation
	Pg 400

	9
	B
	Portable languages
	Pg 405

	10
	A
	Application generator
	Pg 406

3. Matching

	TERM
	MATCH
	NUMBER
	HINT
	PAGE

	program
	Q
	1
	A list of instructions for the computer to follow to process data
	388

	software development
	T
	2
	A six-step procedure used to create a program
	388

	procedural language
	N
	3
	Off-the-shelf programs. Designed to express the logic that can solve general problems
	405

	programmer
	P
	4
	Computer professional who creates new software or revises existing software
	389

	program specification
	O
	5
	Programming step in which objectives, outputs, inputs, and processing requirements are determined.
	389

	objectives
	L
	6
	The problems you are trying to solve
	390

	modules
	K
	7
	Logically related program statements
	392

	pseudocode
	S
	8
	An outline of the logic of the program to be written
	393

	program flowchart
	R
	9
	Graphically presents the detailed sequence of steps needed to solve a programming problem
	393

	logic structure
	H
	10
	Structure that controls the logical sequence in which computer program instructions are executed
	393

	loop structure
	I
	11
	Logic structure in which a process may be repeated as long as a certain condition remains true
	393

	coding
	C
	12
	Actual writing of a program
	396

	debugging
	D
	13
	Testing and eliminating errors from a program
	399

	logic error
	G
	14
	Error that occurs when an incorrect calculation or incorrect procedure is used in a program
	399

	desk checking
	E
	15
	Studying a computer program line by line looking for syntax and logic errors
	399

	beta testing
	B
	16
	Potential users are given the opportunity to try out a program and provide feedback
	400

	maintenance (programmer)
	J
	17
	Computer specialist whose job is to ensure current programs run error free, efficiently, and effectively
	402

	OOP
	M
	18
	Process by which a program is organized into objects
	404

	higher level languages
	F
	19
	Programming languages closer to human languages
	404

	assembly
	A
	20
	Languages that use abbreviations or mnemonics
	405

4. Open-ended

a) What are the six steps of programming? What part does coding play in program development?
· Program specifications

· Program design

· Program code

· Program test

· Program documentation, and

· Program maintenance

· Coding is needed to write the actual instructions that the computer uses to do its processing.
· See page 388
b) Describe CASE tools and OOP. How does CASE assist programmers?

· Computer Aided Software Engineering (CASE) tools are used to help systems analysts and programs to design and code computer systems.
· Object Oriented Programming (OOP) are tools and languages used to create systems by creating objects that combine both the data and methods, as opposed to traditional models that focus more on the procedures and keep the data separate. C++ is a popular OO programming language
· See page 403
c) What is meant by “generation” in reference to programming languages? What is the different between low-level and high-level languages?

· Generations refer to levels that programming languages are classified in, the lower the level, the closer to machine language (computer language) they are, the higher the level, the closer to human language they are.
· See page 404
d) What is the difference between a compiler and an interpreter? What role would these tools have in programming with natural languages?

· A compiler takes the program source code and converts it into machine code which is stored in an object file. The object file can then be run again and again without having to go through the translation process
· An interpreter translates the program into machine code right at execution time – each time the program runs, it is “re-translated”.

· With natural languages, you could use a compiler if you wished to “store” a process – the programmer could “speak” the program, and then store the compiled version for later execution
· With an interpreter, you could change the natural language program each time – this might work well for doing queries from a database

· See pages 405-407
e) What are logic structures? Describe the differences between the three types discussed in the chapter.

· Key logic structures include sequence, decision, and loops.
· Sequence just means that one line of code is executed in order
· Decision structures allow you to choose different processing paths based on a condition
· Loop structures allow you to repeat the same code over and over again until a condition is reached

· See page 393
Q. Using Technology pg 417
1. CVS
· Concurrent Versions System (CVS) is a tool used on large programming projects.

· You can learn more about this system by visiting the CVS website at http://www.cvshome.org and by going to the text web site

· Students are asked to answer questions such as (a) What is CVS and who uses it, etc.

2. .NET Framework
· Microsoft’s .NET framework is a platform for developing applications that run on a variety of hardware devices, including computers, mobile phones and PDAs, and even across the Internet.

· Students may wish to visit the Microsoft .NET framework website at http://msdn.microsoft.com/netframework
· Visit the text web site to learn more about the tool, and answer some questions listed in the text such as (a) What are the basic components of the .NET framework, etc.
R. Expanding Your Knowledge pg 418
1. Computing Essentials CD

· Encourages students to following along with the DVD Direct case using the materials on the CD

2. Source Code Generators
· Source code generators are used to save programmers time in creating and testing applications

· Have students search the web to find information about source code generators.

S. Building Your Portfolio pg 419
1. Java
· Its ease of learning and its current momentum make Java an important and valuable programming language. Students are asked to write a one page paper titled “Java” and answer questions discussed in the text, such as (a) What generation of programming language is Java, etc.
2. Bugs
· In 1986, two people died and a third was maimed after receiving excessive radiation from a medical machine. The malfunction was caused by a bug in the software that controlled the machine.

· Students are asked to write a one page paper addressing the possible consequences of software failure where life is at stake, and answer questions such as (a) are there situations when software bugs are unethical?, etc.

II. Concept Checks at a glance
A. Ch 14 pg 389

1. What is a program?

· A program is a list of instructions for the computer to follow to accomplish the task of processing data into information

· The instructions are made up of statement used in programming language

· Some programming languages include BASIC, C, and Java

· Some programs include application programs like a word processor or spreadsheet

· Others include system programs like an operating system

· Custom made programs might include something like a time-and-billing application

2. What are the six programming steps?

· Program specification – the objectives, outputs, inputs, and processing requirements are determined

· Program design – a solution is created using techniques such as top-down program design, pseudocode, flowcharts, and logic structures

· Program code – the program is written or coded using a programming language

· Program test – the program is tested (debugged) by looking for syntax and logic errors

· Program documentation – an ongoing process to formalize the written description and processes used in the program

· Program maintenance – completed programs are periodically reviewed to evaluate their accuracy, efficiency, standardization, and ease of use. Changes are made to the program’s code as needed.

B. Ch 14 pg 391

1. What are program specifications?

· In the program specification step, the objectives, outputs, inputs, and processing requirements are determined.

· The program specification is also called the program definition or program analysis.

2. What are the five tasks of the program specification phase?

· Program specification – the objectives, outputs, inputs, and processing requirements are determined

a) Program Objectives

· Objectives are the problems you are trying to solve

· You need to make a clear statement of the problem you are trying to solve with this program

b) Desired Output

· It’s best to start with the outputs BEFORE you list the inputs

· Once you have the output, then you do the input, and finally, the process to convert inputs to output

· A sketch of a report is a good starting point

c) Input Data

· List the input data and the source of this data

· A sketch of a form may be helpful

d) Processing Requirements

· List the steps to convert the input into the output

e) Document the Program Specifications

· All the documents created above need to be combined into one portfolio for future reference

· Much of this documentation is possible to do electronically using CASE tools, etc.

C. Ch 14 pg 395

1. Define the goal of the program design step.

· In the program design step, a solution is created using programming techniques such as top-down program design, pseudo code, flowcharts and logic structures

2. Discuss top-down program design, pseudocode, flowcharts, and logic structures.

a) Top-Down Program Design

· Top-down program design is used to identify the program’s processing steps

· These steps are called program modules (or just modules)

· Each module is broken down into smaller sets of modules, until it has a single function, e.g. compute gross pay

· The program must pass in sequence from one module to the next until all have been processed

· The three principle computer system operations include input, process, and output

b) Pseudocode

· Pseudocode (pronounced “soo-doh-code”) is an outline of the logic of the program you will write

· It may be done in place of a program flowchart, depending on the design standards the organization follows

c) Flowcharts

· Program flowcharts graphically present the detailed sequence of steps needed to solve a programming problem

· Typical flowchart symbols include:

· Processing – rectangles

· Input/Output – parallelograms

· Decisions – diamonds

· Connectors – circles

· Terminal (start or end point) - oval

d) Logic Structures

· Three standard logic structures include sequence, selection, and loop

· A fourth structure, the case structure is often mentioned in program design literature, but can be thought of as a special format of the selection structure

3. Describe three logic structures.

a) Sequence Structure

· One program statement just follows the previous

b) Selection Structure

· One of two processing paths can be followed depending on a condition

· For example, the condition may test if an employee worked any overtime hours – if they did, you calculate the overtime pay, otherwise, you set overtime pay to zero

· This is known as an IF-THEN-ELSE structure

c) Loop Structure

· Describes a process that may be repeated as long as certain conditions remain true

· The structure is called a loop (or iteration) because the program literally loops around and performs the same code over and over again until a condition changes

· If for some reason the condition never changes, a program can get caught in an “infinite loop” which is a failure in the program (the program will “lock up”)

· Two forms of a loop structure include

· DO UNTIL – condition tested at end of loop – loop statements will be executed at least once

· DO WHILE – condition tested at beginning of loop – loop statements may not be executed if condition is never true

D. Ch 14 pg 398

1. What is coding?

· Writing a program is called coding.

· You use the logic you developed in the program design step to actually write the program syntax.

2. What makes a good program?

· Good programs should be reliable: they should work under most conditions.

· They should catch obvious and common input errors.

· It should be well documented and understandable by programmers other than the person who wrote it.

· They should be structured programs, using the logic structures described previously

3. What is the difference between a formatting and a programming language?

· Formatting or Presentation Languages use symbols, words, and phrases to instruct a computer as to how to display information to the user.

· HTML – Hyper Text Markup Language is an example. HTML is used to code web pages.

· Programming languages use a collection of symbols, works and phrases to instruct a computer to perform specific operations.

· Programming languages focus on processing data for a wide variety of different types of applications

· Examples of programming languages include C, C++, C#, Java, JavaScript, and Visual Basic

E. Ch 14 pg 400

1. What is debugging?

· Debugging is a programmer’s word for testing and then eliminating errors (“getting the bugs out”).

· Two types of programming errors include syntax errors and logic errors

2. What is the difference between syntax errors and logic errors?

· A syntax error is a violation of the rules of the programming language, for example, if you leave a semicolon (;) off the end of a C++ programming statement, it would result in a syntax error

· A logic error occurs when a programmer uses an incorrect calculation or leaves out a programming procedure.

· An example of a logic error is a payroll program that did not compute overtime errors

3. Briefly describe the testing process.

a) Desk checking

· A programmer sitting at a desk checks (proofreads) a printout of the program.

· The programmer goes through the listing line by line looking for syntax and logic errors

b) Manually testing with sample data

· Using a calculator and sample data, the programmer follows each program statement and performs every calculation.

· Looking for programming logic errors, the programmer compares the manually calculated values to the correct values.

c) Attempt at translation

· The program is run through a computer, using a translator program.

· The translator program tries to convert the program from source code to machine language.

· Before the program can run, it must be free of syntax errors.

d) Testing sample data on the computer

· After all syntax errors have been removed, a sample run is made to test for logic errors

e) Testing by a select group of potential users

· Sometimes called Beta testing, it is usually the final testing of a program

F. Ch 14 pg 401

1. What is documentation?

· Documentation consists of written descriptions and procedures about a program and how to use it.

2. When does program documentation occur?

· Program documentation is carried on throughout all the programming steps

3. Who is affected by documentation?

· Documentation can help the following people:

· Users - need to know how to use the software

· Operators – need to know how to correct errors

· Programmers – need to know how to modify programs

G. Ch 14 pg 403

1. What is the purpose of program maintenance?

· The purpose of program maintenance is to ensure that the current programs are operating error free, efficiently, and effectively.

2. Discuss operational activities.

· Operations activities concern

· locating and correcting operational errors,

· making programs easier to use, and

· standardizing software using structured programming techniques

· For properly designed programs, these activities should be minimal

3. What are changing needs and how do they affect programs?

· Changing needs are unavoidable

· Examples for changes include new tax laws, new information needs, new company policies, etc.

H. Ch 14 pg 404

1. What are CASE tools?

· Professional programmers are constantly looking for ways to make their work easier, faster, and more reliable.

· Computer Aided Software Engineering (CASE) tools provide some automation and assistance in program design, coding, and testing.

2. What is object-oriented software development?

· Traditional systems development is a careful, step by step approach focusing on the procedures needed to complete a certain objective

· Object-Oriented software development focuses less on the procedures and more on defining the relationships between previously defined procedures or “objects”

3. What is object-oriented programming?

· Object-oriented programming (OOP) is a process by which a program is organized into objects.

· Each object contains both the data and processing operations necessary to perform a task

· OO programs use modules called objects that are reusable, self-contained components, e.g. a sort module that doesn’t need to be recreated each time it is used.

· C++ is one of the most widely used object-oriented programming languages

I. Ch 14 pg 407

1. What distinguishes a lower-level language from a higher-level language?

· Levels or generations of programming languages range from low to high

· Lower level languages are closer to the language the computer uses itself (machine code – 1s and 0s)

· Higher level languages are closer to human languages

2. Outline the five generations of programming languages.

a) Machine Languages: the First Generation

· Data represented in machine language are written as a series of bits – 1s and 0s

· The computer runs programs once they are translated into a series of bits like this

· Machine code programs are very efficient, but obviously difficult to write

b) Assembly Languages: the Second Generation

· Assembly languages use abbreviation or mnemonics such as ADD that are automatically converted to the appropriate sequence of 1s and 0s

· Assembly languages are much easier to use than machine language, but still more difficult to use than higher level languages

· These tend to be hardware dependent, but very efficient

c) High-level Languages: the Third Generation

· These are considered portable languages because they are not tied specifically to certain hardware like machine and assembly languages

· Procedural languages (aka 3GLs – 3rd Generation Languages) are designed to express the logic procedures to solve general problems

· Cobol, Basic, and C++ are common 3rd generation languages

· Depending on the language, the source code is translated into machine code using an interpreter or a compiler

· Once compiled, the program code can be stored as the object code, which is then saved to be run over and over (without going through the compile process each time). Pascal, Cobol, and Fortran use compilers.

· An interpreter does a similar process, only the translated code is not saved – each time the program is run, it is interpreted into machine code and run again. The Basic programming language uses an interpreter.

d) Problem-oriented Languages: the Fourth Generation

· Problem-oriented languages (aka 4GLs – 4th generation languages) are very high level languages designed to make it easy for people to write programs

· These are designed to tackle specific problems, such as financial or statistical analysis

· IFPS (Interactive Financial Planning System) is used to create financial models

· Many 4GLs are part of DBMS systems, including:

(1) Query Languages

· Query languages enable non-programmers to use certain easily understood commands to search and generate reports from a database

· Structured Query Language (SQL) is one of the most widely used query languages

(2) Application Generators

· An application generator (aka program coder) is a program that provides modules of prewritten code.

· Programmers can quickly create a program by referencing the appropriate modules

· MS Access has a report generation application and a Report Wizard for quickly creating reports

e) Natural Languages and Visual Programming: the Fifth Generation

· A 5th GL is a computer language that incorporates the concepts of artificial intelligence to allow direct human communication.

· These languages would enable a computer to learn and to apply new information as people do.

· Visual programming languages are also included in 5GLs, such as Microsoft’s Visual Basic

3. Distinguish between natural and visual programming languages.

· A natural language would allow a user to “talk” to a computer using their natural language, e.g. “give me a list of customers who have ordered more than $10,000 worth of goods”

· A visual language uses icons and other visual aids to create programs, e.g. Microsoft’s Visual Basic

III. List of Figures at a glance
· Ch 14 pg 388 figure 14-1 Software development

· Image showing six steps in the software development procedure

· Program specifications

· Program design

· Program code

· Program test

· Program documentation

· Program maintenance

· Note that Software development (or systems development) is the fourth phase of the systems life cycle – it follows the

· Preliminary investigation

· Systems analysis, and

· Systems design

· Ch 14 pg 389 figure 14-2 Step 1: Program specifications

· Also called the program definition or program analysis, this image shows the key components of the program specifications including:

· Objectives

· Outputs

· Inputs

· Processing

· Document

· Ch 14 pg 390 figure 14-3 Problem definition: Make a clear statement of the problem

· Photo of people talking at a conference table, presumably discussing the problem definition

· A clear statement would include making measurable outcomes for such things as outputs, inputs, etc.

· Ch 14 pg 390 figure 14-4 End user’s sketch of desired output

· Image showing a hand written table for a simple billing report, including columns for the worker’s name, regular hours and pay rate, overtime hours and pay rate, and the total bill.

· It’s important to note that the program specification can start with simple sketches such as these

· Ch 14 pg 391 figure 14-5 Example of statement of hours worked – manual system; hours are expressed in military time

· Image showing another table for a “Daily Log” including columns for the worker’s name, the job title, time in, and time out

· Ch 14 pg 392 figure 14-6 Step 2: Program design

· Image listing the tasks for this step including:

· Planning – using top down design, flowcharts, etc.

· Documenting – organizing printed or electronic documents

· And moving on to the next step, Coding

· Ch 14 pg 392 figure 14-7 Program design: plan the solution

· Photo of people working on a computer, presumably planning a program solution

· Ch 14 pg 392 figure 14-8 Example of top-down program design

· Image of a series of modules being broken down into smaller modules, finally ending once each sub-module contains a single function

· Ch 14 pg 393 figure 14-9 Example of pseudocode

· Image showing sample pseudocode to compute the time for client A

· Set total regular hours and total overtime to zero

· Get time in and time out for a job

· If worked past 1700 hours, then compute overtime pay

· Etc.

· Ch 14 pg 393 figure 14-10 Flowchart symbols

· Image showing a few program flowchart symbols including:

· Processing – rectangles

· Input/Output – parallelograms

· Decisions – diamonds

· Connectors – circles

· Terminal (start or end point) - oval

· Ch 14 pg 394 figure 14-11 Flowchart example

· Image of a program flowchart showing how to compute regular and overtime pay

· The flowchart demonstrates the use of some of the different program logic structures including

· Sequence – one step following the next

· Selection – a decision to choose what processing steps to take

· Loop – the code repeats until there are no more jobs for the client

· Ch 14 pg 394 figure 14-12 Sequence logic structure

· Image showing how one program statement would follow another

· Ch 14 pg 394 figure 14-13 Selection (IF-THEN-ELSE) logic structure

· Image showing how two different processing paths can be followed depending on the results of testing a condition

· Ch 14 pg 395 figure 14-14 Loop logic structures: DO UNTIL and DO WHILE

· Images showing the logic for two kinds of loop;

· DO UNTIL – condition test occurs at the bottom, so the processing steps will be executed at least one time

· DO WHILE – condition test occurs at the top, so the processing steps will only be executed if the condition is true

· Ch 14 pg 395 figure 14-15 Summary of structured programming techniques

· Table listing the techniques and brief description, including:

· Top-down design

· Pseudocode

· Program flowcharts

· Logic structures

· Ch 14 pg 396 figure 14-16 Step 3: Program code

· Image showing the tasks to complete in the programming phase

· Logic

· Language

· Code

· And then move on to the Testing phase

· Ch 14 pg 396 figure 14-17 Program code: Write the program

· Photo of a person typing on a laptop computer, presumably entering computer program code

· Ch 14 pg 397 figure 14-18 Portion of HTML code to display Explore the Nile Web page

· Sample of some HTML code, which is not a true programming language, but instead is a markup language helping to define the structure and format of the web page

· Ch 14 pg 397 figure 14-19 Widely used formatting languages

· Table listing several languages and a brief description of each, including:

· HTML – Hyper Text Markup Language

· DHTML – Dynamic HTML

· XHTML – eXtended HTML

· XML – eXtensible Markup Language

· WML – Wireless Markup Language

· Ch 14 pg 398 figure 14-20 C++ code for compute time module

· Sample of some C++ programming code, includes

· Variable declarations: floating point, integer

· Initializations: total_regular = 0;

· Loop: While (input_file != NULL)

· Input: input_file >> hour_in

· Decision: IF-ELSE

· Output: cout << “Regular: “

· Ch 14 pg 398 figure 14-21 Widely used programming languages

· Table listing some common programming languages and a brief description of each, including:

· C

· C++

· C#

· Java

· JavaScript

· Visual Basic

· Ch 14 pg 399 figure 14-22 Step 4: Program Test

· Lists the steps to complete during program testing, including

· Desk-check

· Manual test

· Translate

· Sample data

· Beta test

· Ch 14 pg 399 figure 14-23 Program test: locate errors

· Photo of people, presumably working on testing a program

· Ch 14 pg 400 figure 14-24 Syntax error identified

· Screen shot of Microsoft Developer Studio, a programming environment that is used to enter programming code

· Syntax errors are immediately detected and the reason for the error is listed at the bottom of the screen

· Ch 14 pg 400 figure 14-25 Step 4: testing process

· Table listing the steps for testing programs, including

· Desk check for syntax and logic errors

· Manually test with sample data

· Translate program to identify syntax errors

· Run program with sample data

· Beta test with potential users

· Ch 14 pg 401 figure 14-26 Step 5: Program documentation

· Lists tasks to complete as part of the documentation step, including:

· Review

· Finalize

· Distribute

· Ch 14 pg 401 figure 14-27 Program documentation: an ongoing process

· Photo of a person working with a laptop computer, presumably reviewing or entering documentation

· Ch 14 pg 402 figure 14-28 Step 6: Program maintenance

· Image listing the reasons for program maintenance, including:

· Finding errors

· Enhancing ease of use

· Standardizing code

· Changing needs

· Ch 14 pg 403 figure 14-30 Summary of six steps of programming

· Table listing these steps and a brief description of each, including:

· Program specification

· Program design

· Program code

· Program test

· Program documentation

· Program maintenance

· Ch 14 pg 404 figure 14-31 CASE tool: providing code-generation assistance

· Screen shot of LLCOOL, a code generator tool

· Tools like these can be used to speed up the program development process, and also help to standardize code

· Ch 14 pg 407 figure 14-32 Summary of five programming generations

· Table listing generations, sample languages, and sample code including

· First: machine language – 1s and 0s

· Second: assembly language – mnemonics and registers

· Third: procedural language – Cobol, Basic

· Fourth: problem oriented – SQL

· Fifth: natural and visual – MS Visual Basic

Page 1 of 31

