1. (25) For the following function,

$$f(x, y, z) = \sum m(0, 2, 4, 6, 7)$$

- a) Complete a truth table
- b) Write a sum of minterms function in algebraic form (for example, x' y z + ...)
- c) Find a minimum sum of products expression (2 terms, 3 literals)
- d) Find a PRODUCT OF SUMS expression in product of maxterms form.
- e) Find a minimum PRODUCT OF SUMS form (2 terms, 4 literals)
- 2. Map each of the following functions: (Be sure to label the maps.)
- a) (5) $f(x, y, z) = \sum m(0, 3, 6, 7) + \sum d(1, 4)$
- b) (10) g = abcd + b'd + a'bc' + ab'cCircle each of the terms.
- 3. (5) Expand the following to sum of minterms (sum of standard product terms). Eliminate any duplicates.

$$f = x y z + x' y + x z + x' z$$

- 4. (10) a) Manipulate the following to a sum of products expression. f = (a' + b' + d) (a' + c' + d') (a + b + c')
 - b) Reduce it to a minimum sum of products (4 terms, 9 literals)

5. Assume all inputs are available both uncomplemented and complemented. Show a two-level implementation of

$$g = w x + x z' + w z' + y z' = (w + z') (w + x + y) (x + y + z')$$

- a) (5) using NAND gates of any size.
- b) (5) using NOR gates of any size.
- c) (5) using 2-input NAND gates (none of which may be used as a NOT)
- 6. For the each of the following function find a minimum sum of products expression. Show each algebraic step and show maps corresponding to those steps.
 - a) (15) f = a'b'd + ab + ab'd + b'c'd' + abd' (3 terms, 6 literals)
 - b) (15) g = w x' + w' y + w y z' + x' y + w' x z + x y' z (4 terms, 9 literals)