
Chapter7
From Modules 
to Objects
Chapter Objectives

After studying this chapter, you should be able to

• Design modules and classes with high cohesion and low coupling.

• Understand the need for information hiding.

• Describe the software engineering implications of inheritance, polymorphism,
and dynamic binding.

• Distinguish among generalization, aggregation, and association.

• Discuss the object-oriented paradigm in greater depth than before.

Some of the more lurid computer magazines seem to suggest that the object-oriented para-
digm was a sudden, dramatic new discovery of the mid-1980s, a revolutionary alternative
to the then-popular classical paradigm. That is not the case. Instead, the theory of modular-
ity underwent steady progress during the 1970s and the 1980s, and objects were simply an
evolutionary development within the theory of modularity (but see Just in Case You Wanted
to Know Box 7.1). This chapter describes objects within the context of modularity.

This approach is taken because it is extremely difficult to use objects correctly without
understanding why the object-oriented paradigm is superior to the classical paradigm. And,
to do that, it is necessary to appreciate that an object is merely the next logical step in the
body of knowledge that begins with the concept of a module.

7.1 What Is a Module?
When a large product consists of a single monolithic block of code, maintenance is a night-
mare. Even for the author of such a monstrosity, attempting to debug the code is extremely
difficult; for another programmer to understand it is virtually impossible. The solution is to
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Just in Case You Wanted to Know Box 7.1
Object-oriented concepts were introduced as early as 1966 in the simulation language
Simula 67 [Dahl and Nygaard, 1966]. However, at that time, the technology was too radical
for practical use, so it lay dormant until the early 1980s, when it essentially was reinvented
within the context of the theory of modularity.

This chapter includes other examples of the way leading-edge technology lies dormant
until the world is ready for it. For example, information hiding (Section 7.6) was first pro-
posed in 1971 within the software context by Parnas [1971], but the technology was not
widely adopted until about 10 years later, when encapsulation and abstract data types had
become part of software engineering.

We humans seem to adopt new ideas only when we are ready to use them, not neces-
sarily when they are first presented.

break the product into smaller pieces, called modules. What is a module? Is the way a prod-
uct is broken into modules important in itself or is it important only to break a large product
into smaller pieces of code?

Stevens, Myers, and Constantine [1974] made an early attempt to describe modules.
They defined a module as, “A set of one or more contiguous program statements having a
name by which other parts of the system can invoke it, and preferably having its own dis-
tinct set of variable names.” In other words, a module consists of a single block of code that
can be invoked in the way that a procedure, function, or method is invoked. This definition
seems to be extremely broad. It includes procedures and functions of all kinds, whether in-
ternal or separately compiled. It includes COBOL paragraphs and sections, even though
they cannot have their own variables, because the definition states that the property of pos-
sessing a distinct set of variable names is merely “preferable.” It also includes modules
nested inside other modules. But, broad as it is, the definition does not go far enough. For
example, an assembler macro is not invoked and therefore, by the preceding definition, is
not a module. In C and C++, a header file of declarations that is #included in a product
similarly is not invoked. In short, this definition is too restrictive.

Yourdon and Constantine [1979] give a broader definition: “A module is a lexically
contiguous sequence of program statements, bounded by boundary elements, having an
aggregate identifier.” Examples of boundary elements are begin . . . end pairs in a block-
structured language like Pascal or {. . .} pairs in C++ or Java. This definition not only in-
cludes all the cases excluded by the previous definition but is broad enough to be used
throughout this book. In particular, procedures and functions of the classical paradigm are
modules. In the object-oriented paradigm, an object is a module and so is a method within
an object.

To understand the importance of modularization, consider the following somewhat fan-
ciful example. John Fence is a highly incompetent computer architect. He still has not dis-
covered that both NAND gates and NOR gates are complete; that is, every circuit can be
built with only NAND gates or with only NOR gates. John therefore decides to build an
ALU, shifter, and 16 registers using AND, OR, and NOT gates. The resulting computer is
shown in Figure 7.1. The three components are connected in a simple fashion. Now, our
architect friend decides that the circuit should be fabricated on three silicon chips, so he
designs the three chips shown in Figure 7.2. One chip has all the gates of the ALU, a second
contains the shifter, and the third is for the registers. At this point John vaguely recalls that
someone in a bar told him that it is best to build chips so that they have only one kind
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168 Part One Introduction to Software Engineering

FIGURE 7.1 The design of a
computer.
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FIGURE 7.2 The computer of
Figure 7.1 fabricated on three chips.
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FIGURE 7.3
The computer of
Figure 7.1
fabricated on
three other
chips. AND gates OR gates

NOT gates

Chip 2
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of gate, so he redesigns his chips. On chip 1 he puts all the AND gates, on chip 2 all the
OR gates, and all the NOT gates go onto chip 3. The resulting “work of art” is shown
schematically in Figure 7.3.

Figures 7.2 and 7.3 are functionally equivalent; that is, they do exactly the same thing.
But the two designs have markedly different properties:

1. Figure 7.3 is considerably harder to understand than Figure 7.2. Almost anyone with
a knowledge of digital logic immediately knows that the chips in Figure 7.2 form an
ALU, a shifter, and a set of registers. However, even a leading hardware expert would
have trouble understanding the function of the various AND, OR, and NOT gates in
Figure 7.3.
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Chapter 7 From Modules to Objects 169

2. Corrective maintenance of the circuits shown in Figure 7.3 is difficult. Should the com-
puter have a design fault—and anyone capable of coming up with Figure 7.3 is un-
doubtedly going to make lots and lots of mistakes—it would be difficult to determine
where the fault is located. On the other hand, if the design of the computer in Figure 7.2
has a fault, it can be localized by determining whether it appears to be in the way the
ALU works, the way the shifter works, or the way the registers work. Similarly, if the
computer of Figure 7.2 breaks down, it is relatively easy to determine which chip to re-
place; if the computer in Figure 7.3 breaks down, it is probably best to replace all three
chips.

3. The computer of Figure 7.3 is difficult to extend or enhance. If a new type of ALU is
needed or faster registers are required, it is back to the drawing board. But the design of
the computer of Figure 7.2 makes it easy to replace the appropriate chip. Perhaps worst
of all, the chips of Figure 7.3 cannot be reused in any new product. There is no way that
those three specific combinations of AND, OR, and NOT gates can be utilized for any
product other than the one for which they were designed. In all probability, the three
chips of Figure 7.2 can be reused in other products that require an ALU, a shifter, or
registers.

The point here is that software products have to be designed to look like Figure 7.2,
where there is a maximal relationship within each chip and a minimal relationship between
chips. A module can be likened to a chip, in that it performs an operation or series of oper-
ations and is connected to other modules. The functionality of the product as a whole is
fixed; what has to be determined is how to break the product into modules. Composite/
structured design [Stevens, Myers, and Constantine, 1974] provides a rationale for break-
ing a product into modules as a way to reduce the cost of maintenance, the major compo-
nent of the total software budget, as pointed out in Chapter 1. The maintenance effort,
whether corrective, perfective, or adaptive, is reduced when there is maximal interaction
within each module and minimal interaction between modules. In other words, the aim of
composite/structured design (C/SD) is to ensure that the module decomposition of the
product resembles Figure 7.2 rather than Figure 7.3.

Myers [1978b] quantified the ideas of module cohesion, the degree of interaction
within a module, and module coupling, the degree of interaction between two modules. To
be more precise, Myers used the term strength rather than cohesion. However, cohesion is
preferable because modules can have high strength or low strength, and something is inher-
ently contradictory in the expression low strength—something that is not strong is weak. To
prevent terminological inexactitude, C/SD now uses the term cohesion. Some authors have
used the term binding in place of coupling. Unfortunately, binding also is used in other
contexts in computer science, such as binding values to variables. But coupling has none of
these overtones and therefore is preferable.

It is necessary at this point to distinguish between the operation of a module, the logic
of a module, and the context of a module. The operation of a module is what it does, that
is, its behavior. For example, the operation of module m is to compute the square root of its
argument. The logic of a module is how the module performs its operation; in the case of
module m, the specific way of computing the square root is Newton’s method [Gerald and
Wheatley, 1999]. The context of a module is the specific use of that module. For example,
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170 Part One Introduction to Software Engineering

FIGURE 7.4
Levels of
cohesion.

7.    Informational cohesion (Good)

6.    Functional cohesion

5.    Communicational cohesion

4.    Procedural cohesion

3.    Temporal cohesion

2.    Logical cohesion

1.    Coincidental cohesion    (Bad)

1 For added clarity, the underscore is used in function names like compute_square_root to highlight that the
structured paradigm is used in this and the following sections. When the object-oriented paradigm is used (from
Section 7.4.2 onward), the corresponding method would be named computeSquareRoot.

module m is used to compute the square root of a double precision integer. A key point in
C/SD is that the name assigned a module is its operation and not its logic or its context.
Therefore, in C/SD, module m should be named compute_square_root;1 its logic and its
context are irrelevant from the viewpoint of its name.

7.2 Cohesion
Myers [1978b] defined seven categories or levels of cohesion. In the light of modern theo-
retical computer science, Myers’s first two levels need to be interchanged because, as will
be shown, informational cohesion supports reuse more strongly than functional cohesion.
The resulting ranking is shown in Figure 7.4. This is not a linear scale of any sort. It is
merely a relative ranking, a way of determining which types of cohesion are high (good)
and which are low (bad).

To understand what constitutes a module with high cohesion, it is necessary to start at
the other end and consider the lower cohesion levels.

7.2.1 Coincidental Cohesion
A module has coincidental cohesion if it performs multiple, completely unrelated
operations. An example of a module with coincidental cohesion is a module named
print_the_next_line, reverse_the_string_of_characters_comprising_the_second_
argument, add_7_to_the_fifth_argument, convert_the_fourth_argument_to_
floating_point. An obvious question is, How can such modules possibly arise in practice?
The most common cause is as a consequence of rigidly enforcing rules such as “every
module shall consist of between 35 and 50 executable statements.” If a software organization
insists that modules must be neither too big nor too small, then two undesirable things hap-
pen. First, two or more otherwise ideal smaller modules are lumped together to create a
larger module with coincidental cohesion. Second, pieces hacked from well-designed
modules that management considers too large are combined, again resulting in modules with
coincidental cohesion.
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Chapter 7 From Modules to Objects 171

Why is coincidental cohesion so bad? Modules with coincidental cohesion suffer from
two serious drawbacks. First, such modules degrade the maintainability of the product,
both corrective maintenance and enhancement. From the viewpoint of trying to understand
a product, modularization with coincidental cohesion is worse than no modularization at all
[Shneiderman and Mayer, 1975]. Second, these modules are not reusable. It is extremely
unlikely that the module with coincidental cohesion in the first paragraph of this section
could be reused in any other product.

Lack of reusability is a serious drawback. The cost of building software is so great that
it is essential to try to reuse modules wherever possible. Designing, coding, documenting,
and above all, testing a module are time-consuming and hence costly processes. If an ex-
isting well-designed, thoroughly tested, and properly documented module can be used in
another product, then management should insist that the existing module be reused. But
there is no way that a module with coincidental cohesion can be reused, and the money
spent to develop it can never be recouped. (Reuse is discussed in detail in Chapter 8.)

It is generally easy to rectify a module with coincidental cohesion—because it per-
forms multiple operations, break the module into smaller modules that each perform one
operation.

7.2.2 Logical Cohesion
A module has logical cohesion when it performs a series of related operations, one of
which is selected by the calling module. All the following are examples of modules with
logical cohesion.
Example 1 Module new_operation, which is invoked as follows:

function_code = 7;
new_operation (function_code, dummy_1, dummy_2, dummy_3);
// dummy_1, dummy_2, and dummy_3 are dummy variables,
// not used if function_code is equal to 7

In this example, new_operation is called with four arguments, but as stated in the comment lines,
three of them are not needed if function_code is equal to 7. This degrades readability, with the usual
implications for maintenance, both corrective and enhancement.

Example 2 An object that performs all input and output.

Example 3 A module that edits insertions, deletions, and modifications of master file records.

Example 4 A module with logical cohesion in an early version of OS/VS2 that performed 13 dif-
ferent operations; its interface contained 21 pieces of data [Myers, 1978b].

Two problems occur when a module has logical cohesion. First, the interface is difficult
to understand (Example 1 is a case in point), and comprehensibility of the module as a
whole may suffer as a result. Second, the code for more than one operation may be inter-
twined, leading to severe maintenance problems. For instance, a module that performs all
input and output may be structured as shown in Figure 7.5. If a new tape unit is installed, it
may be necessary to modify the sections numbered 1, 2, 3, 4, 6, 9, and 10. These changes
may adversely affect other forms of input–output, such as laser printer output, because the
laser printer is affected by changes to sections 1 and 3. This intertwined property is char-
acteristic of modules with logical cohesion. A further consequence of intertwining is that it
is difficult to reuse such a module in other products.
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FIGURE 7.5
A module that
performs all
input and
output.

1. Code for all input and output

2. Code for input only
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4. Code for disk and tape I/O

5. Code for disk I/O

6. Code for tape I/O

7. Code for disk input

8. Code for disk output

9.  Code for tape input

10. Code for tape output

37. Code for keyboard input

. .
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. .
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7.2.3 Temporal Cohesion
A module has temporal cohesion when it performs a series of operations related in time.
An example of a module with temporal cohesion is one named open_old_master_file,
new_master_file, transaction_file, and print_file; initialize_sales_region_table;
read_first_transaction_record_and_first_old_master_file_record. In the bad old days
before C/SD, such a module would be called perform_initialization.

The operations of this module are related weakly to one another but more strongly 
to operations in other modules. Consider, for example, the sales_region_table. It is
initialized in this module, but operations such as update_sales_region_table and
print_sales_region_table are located in other modules. Therefore, if the structure of the
sales_region_table is changed, perhaps because the organization is expanding into areas
of the country where it previously had not done business, a number of modules have to be
changed. Not only is there more chance of a regression fault (a fault caused by a change
made to an apparently unrelated part of the product), but if the number of affected modules
is large, one or two modules are likely to be overlooked. It is much better to have all the
operations on the sales_region_table in one module, as described in Section 7.2.7. These
operations then can be invoked, when needed, by other modules. In addition, a module with
temporal cohesion is unlikely to be reusable in a different product.

7.2.4 Procedural Cohesion
A module has procedural cohesion if it performs a series of operations related by
the sequence of steps to be followed by the product. An example of a module with proce-
dural cohesion is read_part_number_from_database_and_update_repair_record_on_
maintenance_file.

This clearly is better than temporal cohesion—at least the operations are related proce-
durally to one another. Even so, the operations are still weakly connected, and again the
module is unlikely to be reusable in another product. The solution is to break a module with
procedural cohesion into separate modules, each performing one operation.

sch65512_ch07.qxd  12/18/03  11:26 AM  Page 172



Chapter 7 From Modules to Objects 173

7.2.5 Communicational Cohesion
A module has communicational cohesion if it performs a series of operations related
by the sequence of steps to be followed by the product and if all the operations are per-
formed on the same data. Two examples of modules with communicational cohesion are
update_record_in_database_and_write_it_to_the_audit_trail, and calculate_new_
trajectory_and_send_it_to_the_printer. This is better than procedural cohesion because
the operations of the module are more closely connected, but it still has the same drawback
as coincidental, logical, temporal, and procedural cohesion. The module cannot be reused.
Again the solution is to break such a module into separate modules, each performing one
operation.

In passing, it is interesting to note that Dan Berry [personal communication, 1978] uses the
term flowchart cohesion to refer to temporal, procedural, and communicational cohesion,
because the operations performed by such modules are adjacent in the product flowchart.The
operations are adjacent in the case of temporal cohesion because they are performed at the
same time.They are adjacent in procedural cohesion because the algorithm requires the oper-
ations to be performed in series. They are adjacent in communicational cohesion because, in
addition to being performed in series, the operations are performed on the same data, and
therefore it is natural that these operations should be adjacent in the flowchart.

7.2.6 Functional Cohesion
A module that performs exactly one operation or achieves a single goal has functional
cohesion. Examples of such modules are get_temperature_of_furnace; compute_
orbital_of_electron; write_to_diskette; and calculate_sales_commission.

A module with functional cohesion often can be reused because the one operation it
performs often needs to be performed in other products. A properly designed, thoroughly
tested, and well-documented module with functional cohesion is a valuable (economic and
technical) asset to any software organization and should be reused as often as possible (but
see Section 8.4).

Maintenance is easier to perform on a module with functional cohesion. First, functional
cohesion leads to fault isolation. If it is clear that the temperature of the furnace is not being
read correctly, then the fault almost certainly is in module get_temperature_of_furnace.
Similarly, if the orbital of an electron is computed incorrectly, then the first place to look is
in compute_orbital_of_electron.

Once the fault has been localized to a single module, the next step is to make the re-
quired changes. Because a module with functional cohesion performs only one operation,
such a module generally is easier to understand than a module with lower cohesion. This
ease in understanding also simplifies the maintenance. Finally, when the change is made,
the chance of that change affecting other modules is slight, especially if the coupling be-
tween modules is low (Section 7.3).

Functional cohesion also is valuable when a product has to be extended. For example,
suppose that a personal computer has a 10 gigabyte hard drive but the manufacturer now
wishes to market a more powerful model of the computer with a 30 gigabyte hard drive in-
stead. Reading through the list of modules, the maintenance programmer finds a module
named write_to_hard_drive. The obvious thing to do is to replace that module with a new
one called write_to_larger_hard_drive.
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FIGURE 7.6
A module with
informational
cohesion.
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In passing, it should be pointed out that the three “modules” of Figure 7.2 have func-
tional cohesion, and the arguments made in Section 7.1 for favoring the design of Fig-
ure 7.2 over that of Figure 7.3 are precisely those made in the preceding discussion for
favoring functional cohesion.

7.2.7 Informational Cohesion
A module has informational cohesion if it performs a number of operations, each with
its own entry point, with independent code for each operation, all performed on the same
data structure. An example is given in Figure 7.6. This does not violate the tenets of struc-
tured programming; each piece of code has exactly one entry point and one exit point. A
major difference between logical cohesion and informational cohesion is that the various
operations of a module with logical cohesion are intertwined, whereas in a module with
informational cohesion the code for each operation is completely independent.

A module with informational cohesion essentially is an implementation of an abstract
data type, as explained in Section 7.5, and all the advantages of using an abstract data type
are gained when a module with informational cohesion is used. Because an object essen-
tially is an instantiation (instance) of an abstract data type (Section 7.7), an object, too, is a
module with informational cohesion.2

7.2.8 Cohesion Example
For further insight into cohesion, consider the example shown in Figure 7.7. Two modules
in particular merit comment. It may seem somewhat surprising that the modules
initialize_sums_and_open_files and close_files_and_print_average_temperatures
have been labeled as having coincidental cohesion rather than temporal cohesion. First,
consider module initialize_sums_and_open_files. It performs two operations related
in time, in that both have to be done before any calculations can be performed, and there-
fore it seems that the module has temporal cohesion. Although the two operations of
initialize_sums_and_open_files indeed are performed at the beginning of the calculation,
another factor is involved. Initializing the sums is related to the problem, but opening files

2 The discussion in this paragraph assumes that the abstract data type or object is well designed. If the methods
of an object perform completely unrelated operations, then the object has coincidental cohesion.
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is a hardware issue that has nothing to do with the problem itself. The rule when two or
more levels of cohesion can be assigned to a module is to assign the lowest possible level.
Thus, because initialize_sums_and_open_files could have either temporal or coinciden-
tal cohesion, the lower of the two levels of cohesion (coincidental) is assigned that module.
That also is the reason why close_files_and_print_average_temperatures has coinci-
dental cohesion.

7.3 Coupling
Recall that cohesion is the degree of interaction within a module. Coupling is the degree of
interaction between two modules. As before, a number of levels can be distinguished, as
shown in Figure 7.8. To highlight good coupling, the various levels are described in order
from the worst to the best.

FIGURE 7.7 A module interconnection diagram showing the cohesion of each module.
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FIGURE 7.8
Levels of
coupling.

5.    Data coupling (Good)

4.    Stamp coupling

3.    Control coupling

2.    Common coupling

1.    Content coupling    (Bad)
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FIGURE 7.9 An example of common 
coupling.

global_variable

cca ccb while (global_variable �� 0)
{

if (argument_xyz � 25)
module_3 ();

else
module_4 ();

}

FIGURE 7.10 A pseudocode
fragment reflecting common
coupling.

7.3.1 Content Coupling
Two modules are content coupled if one directly references the contents of the other. All
the following are examples of content coupling:

Example 1. Module p modifies a statement of module q. This practice is not restricted to assem-
bly language programming. The alter verb, now mercifully removed from COBOL, did precisely
that: It modified another statement.

Example 2. Module p refers to local data of module q in terms of some numerical displacement
within q.

Example 3. Module p branches to a local label of module q.

Suppose that module p and module q are content coupled. One of the many dangers is
that almost any change to q, even recompiling q with a new compiler or assembler, requires
a change to p. Furthermore, it is impossible to reuse module p in some new product with-
out reusing module q as well. When two modules are content coupled, they are inextrica-
bly interlinked.

7.3.2 Common Coupling
Two modules are common coupled if both have access to the same global data. The
situation is depicted in Figure 7.9. Instead of communicating with one another by passing
arguments, modules cca and ccb can access and change the value of global_variable. The
most common situation in which this arises is when both cca and ccb have access to the
same database and can read and write the same record. For common coupling, it is neces-
sary that both modules can read and write to the database; if the database access mode is
read-only, then this is not common coupling. But there are other ways of implementing
common coupling, including use of the C++ or Java modifier public.

This form of coupling is undesirable for a number of reasons:

1. It contradicts the spirit of structured programming in that the resulting code is virtually
unreadable. Consider the pseudocode fragment shown in Figure 7.10. If global_
variable is a global variable, then its value may be changed by module_3, module_4,
or any module called by them. Determining under what conditions the loop terminates
is a nontrivial question; if a run-time failure occurs, it may be difficult to reconstruct
what happened, because any of a number of modules could have changed the value of
global_variable.
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2. Consider the call edit_this_transaction (record_7). If there is common coupling, this
call could change not just the value of record_7 but any global variable that can be ac-
cessed by that module. In short, the entire module must be read to find out precisely
what it does.

3. If a maintenance change is made in one module to the declaration of a global variable,
then every module that can access that global variable has to be changed. Furthermore,
all changes must be consistent.

4. Another problem is that a common-coupled module is difficult to reuse because the
identical list of global variables has to be supplied each time the module is reused.

5. Common coupling possesses the unfortunate property that the number of instances of
common coupling between a module p and the other modules in a product can change
drastically, even if module p itself never changes; this is termed clandestine com-
mon coupling [Schach et al., 2003a]. For example, if both module p and module q
can modify global variable g_v, then there is one instance of common coupling between
module p and the other modules in the software product. But if 10 new modules are de-
signed and implemented, all of which can modify global variable g_v, then the number of
instances of common coupling between module p and the other modules increases to 11,
even though module p itself has not been changed in any way. Clandestine common
coupling can have surprising consequences. For example, between 1993 and 2000, there
were nearly 400 releases of Linux; 5332 versions of the 17 Linux kernel modules were
unchanged between successive releases. In more than half of the 5332 versions, the
number of instances of common coupling between each kernel module and the rest of
Linux increased or decreased, even though the kernel module itself did not change. Con-
siderably more modules exhibited clandestine common coupling in an upward direction
(2482) than downward (379) [Schach et al., 2003a]. The number of lines of code in the
Linux kernel grew linearly with version number, but the number of instances of com-
mon coupling grew exponentially [Schach et al., 2002]. It seems inevitable that, at some
future date, the dependencies between modules induced by clandestine common cou-
pling will render Linux extremely hard to maintain. It will then be exceedingly hard to
change one part of Linux without inducing a regression fault (an apparently unrelated
fault) elsewhere in the product.

6. This problem is potentially the most dangerous. As a consequence of common coupling,
a module may be exposed to more data than it needs. This defeats any attempts to con-
trol data access and ultimately may lead to computer crime. Many types of computer
crime need some form of collusion. Properly designed software should not allow any
one programmer access to all the data and modules needed to commit a crime. For ex-
ample, a programmer writing the check printing part of a payroll product needs to have
access to employee records; but, in a well-designed product, such access is exclusively
in read-only mode, preventing the programmer from making unauthorized changes to
his or her monthly salary. To make such changes, the programmer has to find another
dishonest employee, one with access to the relevant records in update mode. But, if the
product has been badly designed and every module can access the payroll database in
update mode, then an unscrupulous programmer acting alone can make unauthorized
changes to any record in the database.
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Although we hope that these arguments will dissuade all but the most daring of readers
from using common coupling, in some situations, common coupling might seem to be
preferable to the alternatives. Consider, for example, a product that performs computer-
aided design of petroleum storage tanks [Schach and Stevens-Guille, 1979]. A tank is spec-
ified by a large number of descriptors such as height, diameter, maximum wind speed to
which the tank will be subjected, and insulation thickness. The descriptors have to be ini-
tialized but do not change in value thereafter, and most of the modules in the product need
access to the values of the descriptors. Suppose that there are 55 tank descriptors. If all
these descriptors are passed as arguments to every module, then the interface to each mod-
ule will consist of at least 55 arguments and the potential for faults is huge. Even in a lan-
guage like Ada, which requires strict type checking of arguments, two arguments of the
same type still can be interchanged, a fault that would not be detected by a type checker.

One solution is to put all the tank descriptors in a database and design the product in
such a way that one module initializes the values of all the descriptors, whereas all the other
modules access the database exclusively in read-only mode. However, if the database solu-
tion is impractical, perhaps because the specified implementation language cannot be in-
terfaced with the available database management system, then an alternative is to use
common coupling but in a controlled way. That is, the product should be designed so that
the 55 descriptors are initialized by one module, but none of the other modules changes the
value of a descriptor. This programming style has to be enforced by management, unlike
the database solution, where enforcement is imposed by the software. Therefore, in situa-
tions where there is no good alternative to the use of common coupling, close supervision
by management can reduce some of the risks. A better solution, however, is to obviate
common coupling by using information hiding, as described in Section 7.6.

7.3.3 Control Coupling
Two modules are control coupled if one passes an element of control to the other mod-
ule; that is, one module explicitly controls the logic of the other. For example, control is
passed when a function code is passed to a module with logical cohesion (Section 7.2.2).
Another example of control coupling is when a control switch is passed as an argument.

If module p calls module q and q passes back a flag to p that says, “I am unable to com-
plete my task,” then q is passing data. But if the flag means, “I am unable to complete my
task; accordingly, write error message ABC123,” then p and q are control coupled. In other
words, if q passes information back to p and p decides what action to take as a conse-
quence of receiving that information, then q is passing data. But, if q not only passes back
information but also informs module p as to what action p must take, then control coupling
is present.

The major difficulty that arises as a consequence of control coupling is that the two
modules are not independent; module q, the called module, has to be aware of the internal
structure and logic of module p. As a result, the possibility of reuse is reduced. In addition,
control coupling generally is associated with modules that have logical cohesion and
includes the difficulties associated with logical cohesion.

7.3.4 Stamp Coupling
In some programming languages, only simple variables, such as part_number,
satellite_altitude, or degree_of_multiprogramming, can be passed as arguments. But

sch65512_ch07.qxd  12/18/03  11:26 AM  Page 178



many languages also support passing data structures, such as records or arrays, as argu-
ments. In such languages, valid arguments include part_record, satellite_coordinates, or
segment_table. Two modules are stamp coupled if a data structure is passed as an
argument, but the called module operates on only some of the individual components of
that data structure.

Consider, for example, the call calculate_withholding (employee_record). It is not
clear, without reading the entire calculate_withholding module, which fields of the
employee_record the module accesses or changes. Passing the employee’s salary obvi-
ously is essential for computing the withholding, but it is difficult to see how the
employee’s home telephone number is needed for this purpose. Instead, only those fields
that it actually needs for computing the withholding should be passed to module
calculate_withholding. Not only is the resulting module, and particularly its interface,
easier to understand, it is likely to be reusable in a variety of other products that also need
to compute withholding. (See Just in Case You Wanted to Know Box 7.2 for another per-
spective on this.)

Perhaps even more important, because the call calculate_withholding (employee_
record) passes more data than strictly necessary, the problems of uncontrolled data access,
and conceivably computer crime, once again arise. This issue is discussed in Section 7.3.2.

Nothing is at all wrong with passing a data structure as an argument, provided all
the components of the data structure are used by the called module. For example, calls 
like invert_matrix (original_matrix, inverted_matrix) or print_inventory_record
(warehouse_record) pass a data structure as an argument, but the called modules operate
on all the components of that data structure. Stamp coupling is present when a data structure
is passed as an argument but only some of the components are used by the called module.

A subtle form of stamp coupling can occur in languages like C or C++ when a pointer
to a record is passed as an argument. Consider the call check_altitude (pointer_to_
position_record). At first sight, what is being passed is a simple variable. But the called
module has access to all of the fields in the position_record pointed to by pointer_to_
position_record. Because of the potential problems, it is a good idea to examine the
coupling closely whenever a pointer is passed as an argument.

Just in Case You Wanted to Know Box 7.2
Passing four or five different fields to a module may be slower than passing a complete
record. This situation leads to a larger issue: What should be done when optimization issues
(such as response time or space constraints) clash with what is generally is considered to be
good software engineering practice?

In my experience, this question frequently turns out to be irrelevant. The recommended
approach may slow down the response time, but by only a millisecond or so, far too
small to be detected by users. Therefore, in accordance with Knuth’s [1974] First Law of
Optimization: Don’t!—rarely is there a need for optimization of any kind, including for
performance reasons.

But what if optimization really is required? In this case, Knuth’s Second Law of Opti-
mization applies. The Second Law (labeled for experts only) is Not yet! In other words, first
complete the entire product using appropriate software engineering techniques. Then, if
optimization really is required, make only the necessary changes, meticulously document-
ing what is being changed and why. If at all possible, this optimization should be done by
an experienced software engineer.
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FIGURE 7.11
Module
interconnection
diagram for a
coupling
example.

p

q

s

u

r

t

p, t, and u access
the same database
in update mode.

1

2

3 4

5 6

Number In Out

1 aircraft_type status_flag

2 list_of_aircraft_parts —

3 function_code —

4 list_of_aircraft_parts —

5 part_number part_manufacturer

6 part_number part_name

FIGURE 7.12
Interface
description for
Figure 7.11.

7.3.5 Data Coupling
Two modules are data coupled if all arguments are homogeneous data items. That is,
every argument is either a simple argument or a data structure in which all elements are
used by the called module. Examples include display_time_of_arrival (flight_number),
compute_product (first_number, second_number, result), and determine_job_
with_highest_priority (job_queue).

Data coupling is a desirable goal. To put it in a negative way, if a product exhibits data
coupling exclusively, then the difficulties of content, common, control, and stamp coupling
are not present. From a more positive viewpoint, if two modules are data coupled, then
maintenance is easier, because a change to one module is less likely to cause a regression
fault in the other. The following example clarifies certain aspects of coupling.

7.3.6 Coupling Example
Consider the example shown in Figure 7.11. The numbers on the arcs represent interfaces
that are defined in greater detail in Figure 7.12. For example, when module p calls module q
(interface 1), it passes one argument, the type of the aircraft. When q returns control to p,
it passes back a status flag. Using the information in Figures 7.11 and 7.12, the coupling
between every pair of modules can be deduced. The results are shown in Figure 7.13.

Some of the entries in Figure 7.13 are obvious. For instance, the data coupling between
p and q (interface 1 in Figure 7.11), between r and t (interface 5), and between s and u
(interface 6) are a direct consequence of the fact that a simple variable is passed in each
direction. The coupling between p and s (interface 2) is data coupling if all the elements of
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the list of parts passed from p to s are used or updated, but it is stamp coupling if s operates
on only certain elements of the list. The coupling between q and s (interface 4) is similar.
Because the information in Figures 7.11 and 7.12 does not completely describe the func-
tion of the various modules, there is no way of determining whether the coupling is data or
stamp. The coupling between q and r (interface 3) is control coupling, because a function
code is passed from q to r.

Perhaps somewhat surprising are the three entries marked common coupling in Fig-
ure 7.13. The three module pairs that are farthest apart in Figure 7.11—p and t, p and u,
and t and u—at first appear not to be coupled in any way. After all, no interface connects
them, so the very idea of coupling between them, let alone common coupling, requires
some explanation. The answer lies in the annotation on the right-hand side of Figure 7.11,
namely, that p, t, and u all access the same database in update mode. The result is that a
number of global variables can be changed by all three modules, and hence they are pair-
wise common coupled.

7.3.7 The Importance of Coupling
Coupling is an important metric. If module p is tightly coupled to module q, then a change
to module p may require a corresponding change to module q. If this change is made, as
required, during integration or postdelivery maintenance, then the resulting product func-
tions correctly; however, progress at that stage is slower than would have been the case had
the coupling been looser. On the other hand, if the required change is not made to module
q at that time, then the fault manifests itself later. In the best case, the compiler or linker in-
forms the team right away that something is amiss or a failure will occur while testing the
change to module p. What usually happens, however, is that the product fails either during
subsequent integration testing or after the product has been installed on the client’s com-
puter. In both cases, the failure occurs after the change to module p has been completed.
There no longer is any apparent link between the change to module p and the overlooked
corresponding change to module q. The fault therefore may be hard to find.

Given that a design in which modules have high cohesion and low coupling is a good
design, the obvious question is, How can such a design be achieved? Because this chapter
is devoted to theoretical concepts surrounding design, the answer to the question is pre-
sented in Chapter 13. In the meantime, those qualities that identify a good design are ex-
amined further and refined. For convenience, the key definitions in this chapter appear in
Figure 7.14, together with the section in which each definition appears.

q r s t u

p Data — Data or Common Common
stamp

q Control Data or — —
stamp

r — Data —

s — Data

t Common

FIGURE 7.13
Coupling
between pairs of
modules of
Figure 7.11. {

{
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FIGURE 7.14
Key definitions
of this chapter,
and the sections
in which they
appear.

Abstract data type: a data type together with the operations performed on
instantiations of that data type (Section 7.5)

Abstraction: a means of achieving stepwise refinement by suppressing unnecessary
details and accentuating relevant details (Section 7.4.1)

Class: an abstract data type that supports inheritance (Section 7.7)

Cohesion: the degree of interaction within a module (Section 7.1)

Coupling: the degree of interaction between two modules (Section 7.1)

Data encapsulation: a data structure together with the operations performed on
that data structure (Section 7.4)

Encapsulation: the gathering together into one unit of all aspects of the real-world
entity modeled by that unit (Section 7.4.1)

Information hiding: structuring the design so that the resulting implementation
details are hidden from other modules (Section 7.6)

Object: an instantiation of a class (Section 7.7)

7.4 Data Encapsulation
Consider the problem of designing an operating system for a large mainframe computer.
According to the specifications, any job submitted to the computer is classified as high pri-
ority, medium priority, or low priority. The task of the operating system is to decide which
job to load into memory next, which of the jobs in memory gets the next time slice and how
long that time slice should be, and which of the jobs that require disk access has highest pri-
ority. In performing this scheduling, the operating system must consider the priority of
each job; the higher is the priority, the sooner that job should be assigned the resources of
the computer. One way of achieving this is to maintain separate job queues for each job-
priority level. The job queues have to be initialized, and facilities must exist for adding a job
to a job queue when the job requires memory, CPU time, or disk access as well as for
removing a job from a queue when the operating system decides to allocate the required
resource to that job.

To simplify matters, consider the restricted problem of batch jobs queuing up for mem-
ory access. There are three queues for incoming batch jobs, one for each priority level.
When submitted by a user, a job is added to the appropriate queue; and when the operating
system decides that a job is ready to be run, it is removed from its queue and memory is
allocated to it.

This portion of the product can be built in a number of different ways. One possible design,
shown in Figure 7.15, depicts modules for manipulating one of the three job queues. A C-like
pseudocode is used to highlight some of the problems that can arise in the classical paradigm.
Later in this chapter, these problems are solved using the object-oriented paradigm.

Consider Figure 7.15. Function initialize_job_queue in module m_1 is responsible for
the initialization of the job queue, and functions add_job_to_queue and remove_job_
from_queue in modules m_2 and m_3, respectively, are responsible for the addition and
deletion of jobs. Module m_123 contains invocations of all three functions in order to
manipulate the job queue. To concentrate on data encapsulation, issues such as underflow

sch65512_ch07.qxd  12/18/03  11:26 AM  Page 182



Chapter 7 From Modules to Objects 183

(trying to remove a job from an empty queue) and overflow (trying to add a job to a full
queue) have been suppressed here, as well as in the remainder of this chapter.

The modules of the design of Figure 7.15 have low cohesion, because operations on the
job queue are spread all over the product. If a decision is made to change the way
job_queue is implemented (for example, as a linked list of records instead of as a linear
list), then modules m_1, m_2, and m_3 have to be drastically revised. Module m_123 also
has to be changed; at the very least, the data structure definition has to be changed.

FIGURE 7.15
One possible
design of the
job queue
portion of the
operating
system.

Definition of
job_queue

{

}

add_job_to_queue (job j)

m_2

Definition of
job_queue

{

}

remove_job_from_queue (job j)

m_3

initialize_job_queue ();

remove_job_from_queue (job_b);

add_job_to_queue (job_a);

job job_a, job_b;
{

}

Definition of
job_queue

m_123

Definition of
job_queue

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .
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 .
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 .
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 .
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 .
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}

initialize_job_queue ()
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FIGURE 7.16
A design of the
job queue
portion of the
operating
system using
data
encapsulation. initialize_job_queue ();

remove_job_from_queue (job_b);

add_job_to_queue (job_a);

job  job_a, job_b;
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}
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Now suppose that the design of Figure 7.16 is chosen instead. The module on the right-
hand side of the figure has informational cohesion (Section 7.2.7), in that it performs a
number of operations on the same data structure. Each operation has its own entry point
and exit point and independent code. Module m_encapsulation in Figure 7.16 is an im-
plementation of data encapsulation; that is, a data structure, in this case the job queue,
together with the operations to be performed on that data structure.

An obvious question to ask at this point is, What is the advantage of designing a prod-
uct using data encapsulation? This will be answered in two ways, from the viewpoint of
development and from the viewpoint of maintenance.

7.4.1 Data Encapsulation and Development
Data encapsulation is an example of abstraction. Returning to the job queue example, a
data structure (the job queue) has been defined, together with three associated operations
(initialize the job queue, add a job to the queue, and delete a job from the queue). The de-
veloper can conceptualize the problem at a higher level, the level of jobs and job queues,
rather than at the lower level of records or arrays.

The basic theoretical concept behind abstraction, once again, is stepwise refinement.
First, a design for the product is produced in terms of high-level concepts such as jobs, job
queues, and the operations performed on job queues. At this stage, it is entirely irrelevant
how the job queue is implemented. Once a complete high-level design has been obtained,
the second step is to design the lower-level components in terms of which the data structure
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and operations on the data structure are implemented. In C, for example, the data structure
(the job queue) is implemented in terms of records (structures) or arrays; the three opera-
tions (initialize the job queue, add a job to the queue, and remove a job from the queue) are
implemented as functions. The key point is that, while this lower level is being designed,
the designer totally ignores the intended use of the jobs, job queue, and operations. There-
fore, during the first step, the existence of the lower level is assumed, even though at this
stage no thought has been given to that level; during the second step (the design of the
lower level), the existence of the higher level is ignored. At the higher level, the concern is
with the behavior of the data structure, the job queue; at the lower level, the implementa-
tion of that behavior is the primary concern. Of course, a larger product has many levels of
abstraction.

Different types of abstraction exist. Consider Figure 7.16. The figure has two types of
abstraction. Data encapsulation (that is, a data structure together with the operations to be
performed on that data structure) is an example of data abstraction; the C functions
themselves are an example of procedural abstraction. Abstraction, to summarize, sim-
ply is a means of achieving stepwise refinement by suppressing unnecessary details and
accentuating relevant details. Encapsulation now can be defined as the gathering into one
unit of all aspects of the real-world entity modeled by that unit; this was termed conceptual
independence in Section 1.9.

Data abstraction allows the designer to think at the level of the data structure and the
operations performed on it and only later be concerned with the details of how the data
structure and operations are implemented. Turning now to procedural abstraction, consider
the result of defining a C function, initialize_job_queue. The effect is to extend the lan-
guage by supplying the developer with another function, one that is not part of the language
as originally defined. The developer can use initialize_job_queue in the same way as sqrt
or abs.

The implications of procedural abstraction for design are as powerful as those of data
abstraction. The designer can conceptualize the product in terms of high-level operations.
These operations can be defined in terms of lower-level operations, until the lowest level is
reached. At this level, the operations are expressed in terms of the predefined constructs of
the programming language. At each level, the designer is concerned only with expressing
the product in terms of operations appropriate to that level. The designer can ignore the
level below, which is handled at the next level of abstraction, that is, the next refinement
step. The designer also can ignore the level above, a level irrelevant from the viewpoint of
designing the current level.

7.4.2 Data Encapsulation and Maintenance
Approaching data encapsulation from the viewpoint of maintenance, a basic issue is to
identify the aspects of a product likely to change and design the product to minimize the
effects of future changes. Data structures as such are unlikely to change; if a product
includes job queues, for instance, then future versions are likely to incorporate them. At the
same time, the specific way that job queues are implemented may well change, and data
encapsulation provides a means of coping with that change.

Figure 7.17 depicts an implementation in C++ of the job queue data structure as class
JobQueue; Figure 7.18 is the corresponding Java implementation. (Just in Case You
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//
// Warning:
// This code has been written in such a way as to be accessible to readers
// who are not C++ experts, as opposed to using good C++ style. Also, vital
// features such as checks for overflow and underflow have been omitted for simplicity.
// See Just in Case You Wanted to Know Box 7.3 for details.
//
class JobQueue
{

// attributes
public:

int queueLength; // length of job queue
int queue[25]; // queue can contain up to 25 jobs

// methods
public:

void initializeJobQueue ()
/*
* an empty job queue has length 0
*/

{
queueLength = 0;

}

void addJobToQueue (int jobNumber)
/*
* add the job to the end of the job queue
*/

{
queue[queueLength] = jobNumber;
queueLength = queueLength + 1;

}

int removeJobFromQueue ()
/*
* set jobNumber equal to the number of the job stored at the head of the queue,
* remove the job at the head of the job queue, move up the remaining jobs,
* and return jobNumber
*/

{
int jobNumber = queue[0];
queueLength = queueLength � 1;
for (int k = 0; k < queueLength; k++)

queue[k] = queue[k + 1];
return jobNumber;

}
}// class JobQueue

FIGURE 7.17
A C++

implementation
of class
JobQueue.
(Problems
caused by
public
attributes will
be solved in
Section 7.7.)
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//
// Warning:
// This code has been written in such a way as to be accessible to readers
// who are not Java experts, as opposed to using good Java style.
// Also, vital features such as checks for overflow and underflow
// have been omitted for simplicity.
// See Just in Case You Wanted to Know Box 7.3 for details.
//
class JobQueue
{

// attributes
public int queueLength; // length of job queue
public int queue[ ] = new int[25]; // queue can contain up to 25 jobs

// methods
public void initializeJobQueue ()
/*
* an empty job queue has length 0
*/

{
queueLength = 0;

}

public void addJobToQueue (int jobNumber)
/*
* add the job to the end of the job queue
*/

{
queue[queueLength] = jobNumber;
queueLength = queueLength + 1;

}

public int removeJobFromQueue ()
/*
* set jobNumber equal to the number of the job stored at the head of the queue,
* remove the job at the head of the job queue, move up the remaining jobs,
* and return jobNumber
*/

{
int jobNumber = queue[0];
queueLength = queueLength – 1;
for (int k = 0; k < queueLength; k++)

queue[k] = queue[k + 1];
return jobNumber;

}
}// class JobQueue

FIGURE 7.18
A Java
implementation
of class
JobQueue.
(Problems
caused by
public
attributes will
be solved in
Section 7.7.)
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Just in Case You Wanted to Know Box 7.3
I deliberately wrote the code examples of Figure 7.17 and Figure 7.18 as well as the subse-
quent code examples in this chapter in such a way as to highlight data abstraction issues at
the cost of good programming practice. For example, the number 25 in the definition of
JobQueue in Figures 7.17 and 7.18 certainly should be coded as a parameter, that is, as a
const in C++ or a public static final variable in Java. Also, for simplicity, I omitted
checks for conditions such as underflow (trying to remove an item from an empty queue)
or overflow (trying to add an item to a full queue). In any real product, it is absolutely es-
sential to include such checks.

In addition, language-specific features have been minimized. For instance, a C++ pro-
grammer usually writes

queueLength++;

to increment the value of queueLength by 1, rather than

queueLength = queueLength + 1;

Similarly, use of constructors and destructors has been minimized.
In summary, I wrote the code in this chapter for pedagogic purposes only. It should not

be utilized for any other purpose.

Wanted to Know Box 7.3 has comments on the programming style in Figures 7.17 and
7.18, as well as in the subsequent code examples in this chapter.) In Figure 7.17 or Fig-
ure 7.18, the queue is implemented as an array of up to 25 job numbers; the first element is
queue[0] and the 25th is queue[24]. Each job number is represented as an integer. The
reserved word public allows queueLength and queue to be visible everywhere in the
operating system. The resulting common coupling is extremely poor practice and is cor-
rected in Section 7.6.

Because they are public, the methods in class JobQueue may be invoked from any-
where in the operating system. In particular, Figure 7.19 shows how class JobQueue
may be used by method queueHandler using C++, and Figure 7.20 is the corresponding

class Scheduler
{

. . .
public:

void queueHandler ()
{

int jobA, jobB;
JobQueue jobQueueJ;

// various statements
jobQueueJ.initializeJobQueue ();

// more statements
jobQueueJ.addJobToQueue ( jobA);

// still more statements
jobB � jobQueueJ.removeJobFromQueue ();

// further statements
}// queueHandler

. . .
}// class Scheduler

FIGURE 7.19
A C++
implementation
of
queueHandler.
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Java implementation. Method queueHandler invokes methods initializeJobQueue,
addJobToQueue, and removeJobFromQueue of JobQueue without having any
knowledge as to how the job queue is implemented; the only information needed to use
class JobQueue is interface information regarding the three methods.

Now suppose that the job queue currently is implemented as a linear list of job numbers,
but a decision has been made to reimplement it as a two-way, linked list of job records. Each
job record will have three components: the job number as before, a pointer to the job record
in front of it in the linked list, and a pointer to the job record behind it. This is specified in
C++ as shown in Figure 7.21 and in Java as shown in Figure 7.22. What changes must be
made to the software product as a whole as a consequence of this modification to the way

class Scheduler
{

. . .
public void queueHandler ()

{
int jobA, jobB;
JobQueue jobQueueJ = new JobQueue ();

// various statements
jobQueueJ.initializeJobQueue ();

// more statements
jobQueueJ.addJobToQueue ( jobA);

// still more statements
jobB = jobQueueJ.removeJobFromQueue ();

// further statements
}// queueHandler
. . .

}// class Scheduler

FIGURE 7.20
A Java
implementation
of
queueHandler.

class JobRecord
{

public:
int jobNo; // number of the job (integer)
JobRecord *inFront; // pointer to the job record in front
JobRecord *inRear; // pointer to the job record behind

}// class JobRecord

FIGURE 7.21 A C++ implementation of a two-way linked class
JobRecord. (Problems caused by public attributes will be solved
in Section 7.6.)

class JobRecord
{

public int jobNo; // number of the job (integer)
public JobRecord inFront; // reference to the job record in front
public JobRecord inRear; // reference to the job record behind

} // class JobRecord

FIGURE 7.22 A Java implementation of a two-way linked class JobRecord.
(Problems caused by public attributes will be solved in Section 7.6.)
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the job queue is implemented? In fact, only JobQueue itself has to be changed. Figure 7.23
shows the outline of a C++ implementation of JobQueue using the two-way linked list
of Figure 7.21. Implementation details have been suppressed to highlight that the interface
between JobQueue and the rest of the product (including method queueHandler) has
not changed (but see Problem 7.12). That is, the three methods initializeJobQueue,
addJobToQueue, and removeJobFromQueue are invoked in exactly the same way as be-
fore. Specifically, when method addJobToQueue is invoked, it still passes an integer value
to JobQueue, and removeJobFromQueue still returns an integer value from
JobQueue, even though the job queue itself has been implemented in an entirely different
way. Consequently, the source code of method queueHandler (Figure 7.19) need not be
changed at all. Thus, data encapsulation supports the implementation of data abstraction in
a way that simplifies maintenance and reduces the chance of a regression fault.

class JobQueue
{

public:
JobRecord *frontOfQueue; // pointer to the front of the queue
JobRecord *rearOfQueue; // pointer to the rear of the queue

void initializeJobQueue ()
{

/*
* initialize the job queue by setting frontOfQueue and rearOfQueue to NULL
*/

}

void addJobToQueue (int JobNumber)
{

/*
* Create a new job record,
* place jobNumber in its jobNo field,
* set its inFront field to point to the current rearOfQueue
* (thereby linking the new record to the rear of the queue),
* and set its inRear field to NULL.
* Set the inRear field of the record pointed to by the current rearOfQueue
* to point to the new record (thereby setting up a two-way link), and
* finally, set rearOfQueue to point to this new record.
*/

}

int removeJobFromQueue ()
{

/*
* set jobNumber equal to the jobNo field of the record at the front of the queue,
* update frontOfQueue to point to the next item in the queue,
* set the inFront field of the record that is now the head of the queue to NULL,
* and return jobNumber.
*/

}
}// class JobQueue

FIGURE 7.23
Outline of a
C++
implementation
of class
JobQueue
using a two-way
linked list.
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Comparing Figures 7.17 and 7.18 and Figures 7.19 and 7.20, it is clear that, in these
instances, the differences between the C++ and Java implementations essentially are syn-
tactic. In the remainder of this chapter, we give only one implementation, together with a
description of the syntactic differences in the other implementation. Specifically, the rest of
the job queue code is in C++ and all the other code examples are in Java.

7.5 Abstract Data Types
Figure 7.17 (equivalently, Figure 7.18) is an implementation of a job queue class, that is,
a data type together with the operations to be performed on instantiations of that data type.
Such a construct is called an abstract data type.

Figure 7.24 shows how this abstract data type may be utilized in C++ for the three job
queues of the operating system. Three job queues are instantiated: highPriorityQueue,
mediumPriorityQueue, and lowPriorityQueue. (The Java version differs only in the
syntax of the data declarations of the three job queues.) The statement highPriority-
Queue.initializeJobQueue () means “apply method initializeJobQueue to data structure
highPriorityQueue,” and similarly for the other two statements.

Abstract data types are a widely applicable design tool. For example, suppose that a
product is to be written in which a large number of operations have to be performed on
rational numbers, that is, numbers that can be represented in the form n/d, where n and d
are integers, d � 0. Rational numbers can be represented in a variety of ways, such as two
elements of a one-dimensional array of integers or two attributes of a class. To implement
rational numbers in terms of an abstract data type, a suitable representation for the data
structure is chosen. In Java, it could be defined as shown in Figure 7.25, together with the
various operations performed on rational numbers, such as constructing a rational number
from two integers, adding two rational numbers, or multiplying two rational numbers.

class Scheduler
{

. . .
public:

void queueHandler ()
{

int job1, job2;
JobQueue highPriorityQueue;
JobQueue mediumPriorityQueue;
JobQueue lowPriorityQueue;

// some statements
highPriorityQueue.initializeJobQueue ();

// some more statements
mediumPriorityQueue.addJobToQueue ( job1);

// still more statements
job2 = lowPriorityQueue.removeJobFromQueue ();

// even more statements
}// queueHandler

. . .
}// class Scheduler

FIGURE 7.24
C++ method
queueHandler
implemented
using the
abstract data
type of 
Figure 7.17.
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(The problems induced by public attributes such as numerator and denominator in
Figure 7.25 will be fixed in Section 7.6.) The corresponding C++ implementation differs in
the placement of the reserved word public. Also, an ampersand is needed when an argu-
ment is passed by reference.

Abstract data types support both data abstraction and procedural abstraction (Sec-
tion 7.4.1). In addition, when a product is modified, it is unlikely that the abstract data types
will be changed; at worst, additional operations may have to be added to an abstract data
type. Therefore, from both the development and the maintenance viewpoints, abstract data
types are an attractive tool for software producers.

7.6 Information Hiding
The two types of abstraction discussed in Section 7.4.1 (data abstraction and procedural
abstraction) are in turn instances of a more general design concept put forward by Parnas,
information hiding [Parnas, 1971, 1972a, 1972b]. Parnas’s ideas are directed toward
future maintenance. Before a product is designed, a list should be made of implementation
decisions likely to change in the future. Modules then should be designed so that the
implementation details of the resulting design are hidden from other modules. Thus, each
future change is localized to one specific module. Because the details of the original
implementation decision are not visible to other modules, changing the design clearly can-
not affect any other module. (See Just in Case You Wanted to Know Box 7.4 for a further
insight into information hiding.)

To see how these ideas can be used in practice, consider Figure 7.24, which uses the
abstract data type implementation of Figure 7.17. A primary reason for using an abstract
data type is to ensure that the contents of a job queue can be changed only by invoking one

class Rational
{

public int numerator;
public int denominator;

public void sameDenominator (Rational r, Rational s)
{

// code to reduce r and s to the same denominator
}

public boolean equal (Rational t, Rational u)
{

Rational v, w;
v = t;
w = u;
sameDenominator (v, w);
return (v.numerator == w.numerator);

}

// methods to add, subtract, multiply, and divide two rational numbers

}// class Rational

FIGURE 7.25
Java abstract
data type
implementation
of a rational
number.
(Problems
caused by
public
attributes will
be solved in
Section 7.6.)
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of the three methods of Figure 7.17. Unfortunately, the nature of that implementation is
such that job queues can be changed in other ways as well. Attributes queueLength and
queue are both declared public in Figure 7.17 and therefore accessible inside queue-
Handler. As a result, in Figure 7.24, it is perfectly legal C++ (or Java) to use an assignment
statement such as

highPriorityQueue.queue[7] = –5678;

anywhere in queueHandler to change highPriorityQueue. In other words, the contents of
a job queue can be changed without using any of the three operations of the abstract data
type. In addition to the implications this might have with regard to lowering cohesion and
increasing coupling, management must recognize that the product may be vulnerable to
computer crime as described in Section 7.3.2.

Fortunately, there is a way out. The designers of both C++ and Java provided for infor-
mation hiding within a class specification. This is shown in Figure 7.26 for C++ (the Java
syntactic differences are as before). Other than changing the visibility modifier for the
attributes from public to private, Figure 7.26 is identical to Figure 7.17. Now the only
information visible to other modules is that JobQueue is a class and that three operations
with specified interfaces can operate on the resulting job queues. But the exact way job

Just in Case You Wanted to Know Box 7.4
The term information hiding is somewhat of a misnomer. A more accurate description would
be “details hiding,” because what is hidden is not information but implementation details.

class JobQueue
{

// attributes
private:

int queueLength; // length of job queue
int queue[25]; // queue can contain up to 25 jobs

// methods
public:

void initializeJobQueue ()
{

// body of method unchanged from Figure 7.17
}

void addJobToQueue (int jobNumber)
{

// body of method unchanged from Figure 7.17
}

int removeJobFromQueue ()
{

// body of method unchanged from Figure 7.17
}

}// class JobQueue

FIGURE 7.26
A C++ abstract
data type
implementation
with
information
hiding,
correcting the
problem of
Figures 7.17,
7.18, 7.21, 7.22,
and 7.25.
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queues are implemented is private, that is, invisible to the outside. The diagram in Fig-
ure 7.27 shows how a class with private attributes enables a C++ or Java user to imple-
ment an abstract data type with full information hiding.

Information hiding techniques also can be used to obviate common coupling, as men-
tioned at the end of Section 7.3.2. Consider again the product described in that section, a
computer-aided design tool for petroleum storage tanks specified by 55 descriptors. If the
product is implemented with private operations for initializing a descriptor and public
operations for obtaining the value of a descriptor, then there is no common coupling.This type
of solution is characteristic of the object-oriented paradigm, because as described in the next
section, objects support information hiding. This is another strength of object technology.

7.7 Objects
As stated at the beginning of this chapter, objects simply are the next step in the progres-
sion shown in Figure 7.28. Nothing is special about objects; they are as ordinary as abstract
data types or modules with informational cohesion. The importance of objects is that they
have all the properties possessed by their predecessors in Figure 7.28, as well as additional
properties of their own.

An incomplete definition of an object is that an object is an instantiation (instance) of an
abstract data type. That is, a product is designed in terms of abstract data types, and the
variables (objects) of the product are instantiations of the abstract data types. But defining
an object as an instantiation of an abstract data type is too simplistic. Something more is
needed; namely, inheritance, a concept first introduced in Simula 67 [Dahl and Nygaard,

FIGURE 7.27 Representation of an abstract data type with information hiding achieved via private attributes 
(Figure 7.26 with Figure 7.24).
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1966]. Inheritance is supported by all object-oriented programming languages, such as
Smalltalk [Goldberg and Robson 1989], C++ [Stroustrup, 2000], and Java [Flanagan,
2002]. The basic idea behind inheritance is that new data types can be defined as extensions
of previously defined types, rather than having to be defined from scratch [Meyer, 1986].

In an object-oriented language, a class can be defined as an abstract data type that sup-
ports inheritance. An object then is an instantiation of a class. To see how classes are used,
consider the following example. Define HumanBeing to be a class and Joe to be an
object, an instance of that class. Every HumanBeing has certain attributes such as age and
height, and values can be assigned to those attributes when describing the object Joe. Now
suppose that Parent is defined to be a subclass (or derived class) of HumanBeing.
This means that an instance of subclass Parent has all the attributes of a HumanBeing
and, in addition, may have attributes of his or her own such as name of oldest child and
number of children. This is depicted in Figure 7.29. In object-oriented terminology, 
a Parent isA HumanBeing. That is why the arrow in Figure 7.29 seems to be going in
the wrong direction. In fact, the arrow depicts the isA relation and therefore points from the
derived class to the base class. (The use of the open arrowhead to denote inheritance is a
UML convention; another is that class names appear in boldface with the first letter of each
word capitalized. UML is discussed in more detail in Part 2, especially in Chapter 16.)

Class Parent inherits all the attributes of HumanBeing, because class Parent is
a derived class (or subclass) of base class HumanBeing. If Fred is an object and an
instance of class Parent, then Fred has all the attributes of a Parent and also inherits all
the attributes of a HumanBeing. A Java implementation is shown in Figure 7.30. The
C++ version differs in the placement of the private and public modifiers. Also, the Java
syntax extends is replaced in C++ by : public in this example.

The property of inheritance is an essential feature of all object-oriented programming
languages. However, neither inheritance nor the concept of a class is supported by classical

FIGURE 7.28
The major
concepts of
Chapter 7 and
the section in
which each is
described.

Objects (Section 7.7)

Information hiding (Section 7.6)

Abstract data types (Section 7.5)

Data encapsulation (Section 7.4)

Modules with high cohesion and low coupling (Sections 7.2 and 7.3)

Modules (Section 7.1)
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languages such as C, COBOL, or FORTRAN. Therefore, the object-oriented paradigm can-
not be directly implemented in these languages (but see Section 8.7.4).

In the terminology of the object-oriented paradigm, there are two other ways of looking
at the relationship between Parent and HumanBeing in Figure 7.29. We can say that
Parent is aspecializationofHumanBeingor thatHumanBeing is ageneralization
of Parent. In addition to specialization and generalization, classes have two other basic
relationships [Blaha, Premerlani, and Rumbaugh, 1988]: aggregation and association.
Aggregation refers to the components of a class. For example, classPersonalComputer
might consist of components CPU, Monitor, Keyboard, and Printer.This is depicted in
Figure 7.31 (the use of a diamond to denote aggregation is another UML convention). Nothing
is new about this; it occurs whenever a language supports records, such as a struct in C.
Within the object-oriented context, however, it is used to group related items, resulting in a
reusable class (Section 8.1).

class HumanBeing
{

private int age;
private float height;

// public declarations of operations on HumanBeing

}// class HumanBeing

class Parent extends HumanBeing
{

private String nameOfOldestChild;
private int numberOfChildren;

// public declarations of operations on Parent

}// class Parent

FIGURE 7.30
Java
implementation
of Figure 7.29.

FIGURE 7.29
Derived types
and inheritance.

inherits from (“isA”)

(Base class)

(Derived class)

Parent

Derived
part

Incremental
part

HumanBeing
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Association refers to a relationship of some kind between two apparently unrelated
classes. For example, there seems to be no connection between a radiologist and an artist,
but a radiologist may consult an artist in regard to drawing the diagrams for a book
describing how an MRI machine works. Association is depicted in Figure 7.32. The nature
of the association in this instance is indicated by the word consults. In addition, the solid
triangle (termed a navigation triangle in UML) indicates the direction of the associa-
tion; after all, an artist with a broken ankle might consult a radiologist.

In passing, one aspect of Java and C++ notation, like that of other object-oriented lan-
guages, explicitly reflects the equivalence of operation and data. First, consider a classical
language that supports records; C, for example. Suppose that record_1 is a struct (record)
and field_2 is a field within the class. Then, the field is referred to as record_1.field_2. That
is, the period . denotes membership within the record. If function_3 is a function within a
C module, then function_3 ( ) denotes an invocation of that function.

In contrast, suppose that ClassA is a class, with attribute attributeB and method
methodC. Suppose further that ourObject is an instance of ClassA. Then the field is
referred to as ourObject.attributeB. Furthermore, ourObject.methodC ( ) denotes an
invocation of the method. Here, the period is used to denote membership within an object,
whether the member is an attribute or a method.

The advantages of using objects (or, rather, classes) are precisely those of using abstract
data types, including data abstraction and procedural abstraction. In addition, the inheri-
tance aspects of classes provide a further layer of data abstraction, leading to easier and less
fault-prone product development. Yet another strength follows from combining inheritance
with polymorphism and dynamic binding, the subject of the next section.

FIGURE 7.31 An aggregation example.

MonitorCPU PrinterKeyboard

PersonalComputer

FIGURE 7.32
An association
example.

Radiologist Class Artist Class

consults
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FIGURE 7.33 Operations needed to open a file. (a) Classical implementation. (b) Object-oriented file class hierarchy
using Java notation.

function open_tape_filefunction open_disk_file function open_diskette_file

(b)
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Implementation of
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for a tape file

TapeFileClass

abstract method
open

FileClass

Implementation of
method open
for a disk file

DiskFileClass

7.8 Inheritance, Polymorphism, and Dynamic Binding
Suppose that the operating system of a computer is called on to open a file. That file could be
stored on a number of different media. For example, it could be a disk file, a tape file, or a
diskette file. Using the classical paradigm, there would be three differently named functions,
open_disk_file, open_tape_file, and open_diskette_file; this is shown in Figure 7.33(a).
If my_file is declared to be a file, then at run time, it is necessary to test whether it is a disk
file, a tape file, or a diskette file to determine which function to invoke. The corresponding
classical code is shown in Figure 7.34(a).

In contrast, when the object-oriented paradigm is used, a class named FileClass is
defined, with three derived classes DiskFileClass, TapeFileClass, and DisketteFile-
Class. This is shown in Figure 7.33(b); recall that the open arrowhead denotes inheritance.

Now, suppose that method open were defined in parent class FileClass and inherited
by the three derived classes. Unfortunately, this would not work, because different opera-
tions need to be carried out to open the three different types of files.

The solution is as follows. In parent class FileClass, a dummy method open is declared.
In Java, such a method is declared to be abstract; in C++, the reserved word virtual is
used instead. A specific implementation of the method appears in each of the three derived
classes and each method is given an identical name, that is, open, as shown in Figure 7.33(b).
Again, suppose that myFile is declared to be a file. At run time, the message

myFile.open ( )
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is sent. The object-oriented system now determines whether myFile is a disk file, a tape file,
or a diskette file and invokes the appropriate version of open. That is, the system deter-
mines at run time whether object myFile is an instance of class DiskFileClass, class
TapeFileClass, or class DisketteFileClass and automatically invokes the correct
method. Because this has to be done at run time (dynamically) and not at compile time
(statically), the act of connecting an object to the appropriate method is termed dynamic
binding. Furthermore, because the method open can be applied to objects of different
classes, it is termed polymorphic, which means “of many shapes.” Just as carbon crystals
come in many different shapes, including hard diamonds and soft graphite, so the method
open comes in three different versions. In Java, these versions are denoted Disk-
FileClass.open, TapeFileClass.open, and DisketteFileClass.open. (In C++, the period
is replaced by two colons, and the files are denoted DiskFileClass::open, TapeFile-
Class::open, and DisketteFileClass::open.) However, because of dynamic binding, it
is not necessary to determine which method to invoke to open a specific file. Instead, at
run time, it is necessary to send only the message myFile.open ( ) and the system will
determine the type (class) of myFile and invoke the correct method; this is shown in
Figure 7.34(b).

These ideas are applicable to more than just abstract (virtual) methods. Consider a
hierarchy of classes, as shown in Figure 7.35. All classes are derived by inheritance from
the Base class. Suppose method checkOrder (b : Base) takes as argument an instance of
class Base. Then, as a consequence of inheritance, polymorphism, and dynamic binding,
it is valid to invoke checkOrder with an argument not just of class Base but also of any
subclass of class Base, that is, any class derived from Base. All that is needed is to invoke
checkOrder and everything is taken care of at run time. This technique is extremely pow-
erful, in that the software professional need not be concerned about the precise type of an
argument at the time that a message is sent.

switch (file_type)
{

case 1:
open_disk_file ( ); // file_type 1 corresponds to a disk file
break;

case 2:
open_tape_file ( ); // file_type 2 corresponds to a tape file
break;

case 3:
open_diskette_file ( ); // file_type 3 corresponds to a diskette file
break;

}

(a)

myFile.open ( )

(b)

FIGURE 7.34
(a) Classical
code to open a
file, corres-
ponding to
Figure 7.33(a).
(b) Object-
oriented code
to open a file,
corresponding to
Figure 7.33(b).
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However, polymorphism and dynamic binding also have major weaknesses.

1. It generally is not possible to determine at compilation time which version of a specific
polymorphic method will be invoked at run time. Accordingly, the cause of a failure can
be extremely difficult to determine.

2. Polymorphism and dynamic binding can have a negative impact on maintenance. The
first task of a maintenance programmer usually is to try to understand the product (as
explained in Chapter 15, the maintainer rarely is the person who developed that code).
However, this can be laborious if there are multiple possibilities for a specific method.
The programmer has to consider all the possible methods that could be invoked dynam-
ically at a specific place in the code, a time-consuming task.

Thus, polymorphism and dynamic binding add both strengths and weaknesses to the
object-oriented paradigm.

We conclude this chapter with a discussion of the object-oriented paradigm.

7.9 The Object-Oriented Paradigm
There are two ways of looking at every software product. One way is to consider just the
data, including local and global variables, arguments, dynamic data structures, files, and
so on. Another way of viewing a product is to consider just the operations performed on the
data, that is, the procedures and the functions. In terms of this division of software into data
and operations, the classical techniques essentially fall into two groups. Operation-oriented

FIGURE 7.35
A hierarchy of
classes.

Base
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techniques primarily consider the operations of the product. The data are of secondary
importance, considered only after the operations of the product have been analyzed in
depth. Conversely, data-oriented techniques stress the data of the product; the operations
are examined only within the framework of the data.

A fundamental weakness of both the data- and operation-oriented approaches is that data
and operation are two sides of the same coin; a data item cannot change unless an operation
is performed on it, and operations without associated data are equally meaningless. There-
fore, techniques that give equal weight to data and operations are needed. It should not come
as a surprise that the object-oriented techniques do this. After all, an object comprises both
data and operations. Recall that an object is an instance of an abstract data type (more pre-
cisely, of a class). It therefore incorporates both data and the operations performed on those
data, and the data and the operations are present in objects as equal partners. Similarly, in all
the object-oriented techniques, data and operations are considered of the same importance;
neither takes precedence over the other.

It is inaccurate to claim that data and operations are considered simultaneously in the
techniques of the object-oriented paradigm. From the material on stepwise refinement
(Section 5.1), it is clear that sometimes data have to be stressed and other times operations
are more critical. Overall, however, data and operations are given equal importance during
the workflows of the object-oriented paradigm.

Many reasons are given in Chapter 1 and this chapter as to why the object-oriented
paradigm is superior to the classical paradigm. Underlying all these reasons is that a well-
designed object, that is, an object with high cohesion and low coupling, models all the
aspects of one physical entity. That is, there is a clear mapping between a real-world entity
and the object that models it.

The details of how this is implemented are hidden; the only communication with an
object is via messages sent to that object. As a result, objects essentially are independent
units with a well-defined interface. Consequently, they can be maintained easily and safely;
the chance of a regression fault is reduced. Furthermore, as will be explained in Chapter 8,
objects are reusable, and this reusability is enhanced by the property of inheritance. Turning
now to development using objects, it is safer to construct a large-scale product by combining
these fundamental building blocks of software than to use the classical paradigm. Because
objects essentially are independent components of a product, development of the product, as
well as management of that development, is easier and hence less likely to induce faults.

All these aspects of the superiority of the object-oriented paradigm raise a question: If
the classical paradigm is so inferior to the object-oriented paradigm, why has the classical
paradigm had so much success? This can be explained by realizing that the classical para-
digm was adopted at a time when software engineering was not widely practiced. Instead,
software was simply “written.” For managers, the most important thing was for program-
mers to churn out lines of code. Little more than lip service was paid to the requirements
and analysis (systems analysis) of a product, and design was almost never performed. The
code-and-fix model (Section 3.1) was typical of the techniques of the 1970s. Therefore, use
of the classical paradigm exposed the majority of software developers to methodical
techniques for the first time. Small wonder, then, that the so-called structured techniques of
the classical paradigm led to major improvements in the software industry worldwide.
However, as software products grew in size, inadequacies of the structured techniques
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started to become apparent, and the object-oriented paradigm was proposed as a better
alternative.

This, in turn, leads to another question: How do we know for certain that the object-
oriented paradigm is superior to all other present-day techniques? No data are available that
prove beyond all doubt that object-oriented technology is better than anything else cur-
rently available, and it is hard to imagine how such data could be obtained. The best we can
do is to rely on the experiences of organizations that have adopted the object-oriented
paradigm. Although not all reports are favorable, the majority (if not the overwhelming
majority) attest that using the object-oriented paradigm is a wise decision.

For example, IBM has reported on three totally different projects that were developed
using object-oriented technology [Capper, Colgate, Hunter, and James, 1994]. In almost
every respect, the object-oriented paradigm greatly outperformed the classical paradigm.
Specifically, there were major decreases in the number of faults detected, far fewer change
requests during both development and postdelivery maintenance that were not the result of
unforeseeable business changes, and significant increases in both adaptive and perfective
maintainability. Also improvement in usability was found, although not as large as the pre-
vious four improvements, and no meaningful difference in performance.

A survey of 150 experienced U.S. software developers was undertaken to determine their
attitudes toward the object-oriented paradigm [Johnson, 2000]. The sample consisted of
96 developers who used the object-oriented paradigm and 54 who still use the classical
paradigm to develop software. Both groups felt that the object-oriented paradigm is supe-
rior, although the positive attitude of the object-oriented group was significantly stronger.
Both groups essentially discounted the various weaknesses of the object-oriented paradigm.

Notwithstanding the many strengths of the object-oriented paradigm, some difficulties
and problems indeed have been reported. A frequently reported problem concerns devel-
opment effort and size. The first time anything new is done, it takes longer than on subse-
quent occasions; this initial period is sometimes referred to as the learning curve. But
when the object-oriented paradigm is used for the first time by an organization, it often
takes longer than anticipated, even allowing for the learning curve, because the size of the
product is larger than when structured techniques are used. This is particularly noticeable
when the product has a graphical user interface (GUI) (see Section 10.13). Thereafter,
things improve greatly. First, postdelivery maintenance costs are lower, reducing the over-
all lifetime cost of the product. Second, the next time that a new product is developed, some
of the classes from the previous project can be reused, further reducing software costs. This
has been especially significant when a GUI has been used for the first time; much of the
effort that went into the GUI can be recouped in subsequent products.

Problems of inheritance are harder to solve. A major reason for using inheritance is to
create a new subclass that differs slightly from its parent class without affecting the parent
class or any other ancestor class in the inheritance hierarchy. Conversely, however, once a
product has been implemented, any change to an existing class directly affects all its de-
scendants in the inheritance hierarchy; this often is referred to as the fragile base class
problem. At the very least, the affected units have to be recompiled. In some cases, the
methods of the relevant objects (instantiations of the affected subclasses) have to be re-
coded; this can be a nontrivial task. To minimize this problem, it is important that all classes
be meticulously designed during the development process. This will reduce the ripple effect
induced by a change to an existing class.
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A second problem can result from a cavalier use of inheritance. Unless explicitly pre-
vented, a subclass inherits all the attributes of its parent class(es). Usually, subclasses have
additional attributes of their own. As a consequence, objects lower in the inheritance hier-
archy quickly can get large, with resulting storage problems [Bruegge, Blythe, Jackson, and
Shufelt, 1992]. One way to prevent this is to change the dictum “use inheritance wherever
possible” to “use inheritance wherever appropriate.” In addition, if a descendent class does
not need an attribute of an ancestor, then that attribute should be explicitly excluded.

A third group of problems stem from polymorphism and dynamic binding. These were
described in Section 7.8.

Fourth, it is possible to write bad code in any language. However, it is easier to write bad
code in an object-oriented language than in a classical language because object-oriented
languages support a variety of constructs that, when misused, add unnecessary complexity
to a software product. Therefore, when using the object-oriented paradigm, extra care needs
to be taken to ensure that the code is always of the highest quality.

One final question is this: Someday might there be something better than the object-
oriented paradigm? That is, in the future will a new technology appear in the space above the
topmost arrow in Figure 7.28? Even its strongest proponents do not claim that the object-
oriented paradigm is the ultimate answer to all software engineering problems. Furthermore,
today’s software engineers are looking beyond objects to the next major breakthrough. After
all, in few fields of human endeavor are the discoveries of the past superior to anything that
is being put forward today. The object-oriented paradigm is sure to be superseded by the
methodologies of the future. It has been suggested that aspect-oriented programming
(AOP) may play a role [Murphy et al., 2001]. It remains to be seen whether AOP will indeed
be the next major concept in future versions of Figure 7.28 or whether some other technol-
ogy will be widely adopted as the successor to the object-oriented paradigm. The important
lesson is that, based on today’s knowledge, the object-oriented paradigm appears to be better
than the alternatives.

The chapter begins with a description of a module (Section 7.1). The next two sections analyze what
constitutes a well-designed module in terms of module cohesion and module coupling (Sections 7.2
and 7.3). Specifically, a module should have high cohesion and low coupling. A description is given
of the different types of cohesion and coupling. Various types of abstraction are presented in Sections
7.4 through 7.7. In data encapsulation (Section 7.4), a module comprises a data structure and the
actions performed on that data structure. An abstract data type (Section 7.5) is a data type, together
with the actions performed on instances of that type. Information hiding (Section 7.6) consists of
designing a module in such a way that implementation details are hidden from other modules. The
progression of increasing abstraction culminates in the description of a class, an abstract data type
that supports inheritance (Section 7.7). An object is an instance of a class. Inheritance, polymor-
phism, and dynamic binding are the subjects of Section 7.8. The chapter concludes with a discussion
of the object-oriented paradigm (Section 7.9).

Objects were first described in Dahl and Nygaard [1966]. Many of the ideas in this chapter originally
were put forward by Parnas [1971, 1972a, 1972b]. The use of abstract data types in software devel-
opment was put forward in Liskov and Zilles [1974]; another important early paper is [Guttag, 
1977].

For 
Further 
Reading

Chapter
Review
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The primary source on cohesion and coupling is [Stevens, Myers, and Constantine, 1974]. The
ideas of composite/structured design have been extended to objects [Binkley and Schach, 1997].

Introductory material on objects can be found in Meyer [1997]. Different types of inheritance are
described in Meyer [1996b]. A number of short articles on the object-oriented paradigm can be found
in El-Rewini et al. [1995]. The proceedings of the annual Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA) include a wide selection of research
papers as well as reports describing successful object-oriented projects. The successful use of the
object-oriented paradigm in three IBM projects is described in Capper, Colgate, Hunter, and James
[1994]. A survey of attitudes toward the object-oriented paradigm appears in Johnson [2000]. Fayad,
Tsai, and Fulghum [1996] describe how to make the transition to object-oriented technology; a
number of recommendations for managers are included.

The October 1992 issue of IEEE Computer contains a number of important articles on objects, in-
cluding [Meyer, 1992], which describes “design by contract.” A variety of articles on objects can be
found in the January 1993 issue of IEEE Software; Snyder’s [1993] paper precisely defining key
terms in the field is particularly useful. Possible drawbacks of polymorphism are described in Ponder
and Bush [1994]. The October 1995 issue of the Communications of the ACM contains articles on
object technology, as does issue no. 2, 1996, of the IBM Systems Journal.

Eleven articles on aspect-oriented programming appear in the October 2001 issue of the Commu-
nications of the ACM; [Elrad et al., 2001] and [Murphy et al., 2001] are of particular interest. An
investigation of the impact of inheritance on fault densities appears in Cartwright and Shepperd
[2000].

Key Terms abstract data type, 191
abstraction, 184
aggregation, 196
aspect-oriented programming

(AOP), 203
association, 197
binding, 169
clandestine common 

coupling, 177
class, 175
cohesion, 169
coincidental cohesion, 170
common coupling, 176
communicational 

cohesion, 173
content coupling, 176

context, 169
control coupling, 178
coupling, 169
data abstraction, 185
data coupling, 180
data encapsulation, 184
dynamic binding, 199
encapsulation, 185
flowchart cohesion, 173
fragile base class problem, 202
functional cohesion, 173
generalization, 196
information hiding, 192
informational cohesion, 174
inheritance, 194
isA, 195

learning curve, 202
logic, 169
logical cohesion, 171
module, 167
navigation triangle, 197
object, 195
operation, 169
polymorphism, 199
procedural abstraction, 185
procedural cohesion, 172
specialization, 196
stamp coupling, 179
strength, 169
subclass, 195
temporal cohesion, 172

7.1 Choose any programming language with which you are familiar. Consider the two definitions
of modularity given in Section 7.1. Determine which of the two definitions includes what you
intuitively understand to constitute a module in the language you have chosen.

7.2 Determine the cohesion of the following modules:

edit_profit_and_tax_record
edit_profit_record_and_tax_record

Problems
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read_delivery_record_and_check_salary_payments
compute_the_optimal_cost_using_Aksen’s_algorithm
measure_vapor_pressure_and_sound_alarm_if_necessary

7.3 You are a software engineer involved in product development. Your manager asks you to inves-
tigate ways of ensuring that modules designed by your group will be as reusable as possible.
What do you tell her?

7.4 Your manager now asks you to determine how existing modules can be reused. Your first sug-
gestion is to break each module with coincidental cohesion into separate modules with func-
tional cohesion. Your manager correctly points out that the separate modules have not been
tested nor have they been documented. What do you say now?

7.5 What is the influence of cohesion on maintenance?

7.6 What is the influence of coupling on maintenance?

7.7 Distinguish between data encapsulation and abstract data types.

7.8 Distinguish between abstraction and information hiding.

7.9 Distinguish between polymorphism and dynamic binding.

7.10 What happens if we use polymorphism without dynamic binding?

7.11 What happens if we use dynamic binding without polymorphism?

7.12 Convert the comments in Figure 7.23 to C++ or Java, as specified by your instructor. Make sure
that the resulting module executes correctly.

7.13 It has been suggested that C++ and Java support implementation of abstract data types but only
at the cost of giving up information hiding. Discuss this claim.

7.14 As pointed out in Just in Case You Wanted to Know Box 7.1, objects first were put forward in
1966. Only after essentially being reinvented nearly 20 years later did objects begin to receive
widespread acceptance. Can you explain this phenomenon?

7.15 Your instructor will distribute a classical software product. Analyze the modules from the view-
points of information hiding, levels of abstraction, coupling, and cohesion.

7.16 Your instructor will distribute an object-oriented software product. Analyze the modules from
the viewpoints of information hiding, levels of abstraction, coupling, and cohesion. Compare
your answer with that of Problem 7.15.

7.17 (Term Project) Suppose that the Ophelia’s Oasis product of Appendix A were developed using
the classical paradigm. Give examples of modules of functional cohesion that you would expect
to find. Now suppose that the product was developed using the object-oriented paradigm. Give
examples of classes that you would expect to find.

7.18 (Readings in Software Engineering) Your instructor will distribute copies of [Johnson, 2000].
Why do you think that the respondents viewed the drawbacks to the object-oriented paradigm
as essentially irrelevant?

[Binkley and Schach, 1997] A. B. BINKLEY AND S. R. SCHACH, “Toward a Unified Approach to
Object-Oriented Coupling,” Proceedings of the 35th Annual ACM Southeast Conference,
Murfreesboro, TN, April 2–4, 1997, pp. 91–97.

[Blaha, Premerlani, and Rumbaugh, 1988] M. R. BLAHA, W. J. PREMERLANI, AND J. E. RUMBAUGH,
“Relational Database Design Using an Object-Oriented Methodology,” Communications of the
ACM 31 (April 1988), pp. 414–27.

[Bruegge, Blythe, Jackson, and Shufelt, 1992] B. BRUEGGE, J. BLYTHE, J. JACKSON, AND J. SHUFELT,
“Object-Oriented Modeling with OMT,” Proceedings of the Conference on Object-Oriented
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