CHAPTER 2

Mathematics of Cryptography Part I

(Solution to Odd-Numbered Problems)

Review Questions

1. The set of integers is \mathbf{Z}. It contains all integral numbers from negative infinity to positive infinity. The set of residues modulo n is \mathbf{Z}_{n}. It contains integers from 0 to $n-1$. The set \mathbf{Z} has non-negative (positive and zero) and negative integers; the set \mathbf{Z}_{n} has only non-negative integers. To map a nonnegative integer from \mathbf{Z} to \mathbf{Z}_{n}, we need to divide the integer by n and use the remainder; to map a negative integer from \mathbf{Z} to \mathbf{Z}_{n}, we need to repeatedly add n to the integer to move it to the range 0 to $n-1$.
2. The number 1 is an integer with only one divisor, itself. A prime has only two divisors: 1 and itself. For example, the prime 7 has only two divisor 7 and 1 . A composite has more than two divisors. For example, the composite 42 has several divisors: $1,2,3,6,7,14,21$, and 42.
3. A linear Diophantine equation of two variables is of the form $a x+b y=c$. We need to find integer values for x and y that satisfy the equation. This type of equation has either no solution or an infinite number of solutions. Let $d=\operatorname{gcd}(a, b)$. If d does not divide c then the equation have no solitons. If d divides c, then we have an infinite number of solutions. One of them is called the particular solution; the rest, are called the general solutions.
4. A residue class [a] is the set of integers congruent modulo n. It is the set of all integers such that $x=a(\bmod n)$. In each set, there is one element called the least (nonnegative) residue. The set of all of these least residues is $\mathbf{Z}_{\boldsymbol{n}}$.
5. A matrix is a rectangular array of $l \times m$ elements, in which l is the number of rows and m is the number of columns. If a matrix has only one row $(l=1)$, it is called a row matrix; if it has only one column ($m=1$), it is called a column matrix. A square matrix is a matrix with the same number of rows and columns $(l=m)$. The determinant of a square matrix \mathbf{A} is a scalar defined in linear algebra. The multiplicative inverse of a square matrix exists only if its determinant has a multiplicative inverse in the corresponding set.

Exercises

11.

a. It is false because $26=2 \times 13$.
b. It is true because $123=3 \times 41$.
c. It is true because 127 is a prime.
d. It is true because $21=3 \times 7$.
e. It is false because $96=2^{5} \times 3$.
f. It is false because 8 is greater than 5 .
13.
a. $\operatorname{gcd}(a, b, 16)=\operatorname{gcd}(\operatorname{gcd}(a, b), 16)=\operatorname{gcd}(24,16)=8$
b. $\operatorname{gcd}(a, b, c, 16)=\operatorname{gcd}(\operatorname{gcd}(a, b, c), 16)=\operatorname{gcd}(12,16)=4$
c. $\operatorname{gcd}(200,180,450)=\operatorname{gcd}(\operatorname{gcd}(200,180), 450)=\operatorname{gcd}(20,450)=10$
d. $\operatorname{gcd}(200,180,450,600)=\operatorname{gcd}(\operatorname{gcd}(200,180,450), 600)=\operatorname{gcd}(10,600)=10$
15.
a. $\operatorname{gcd}(3 n+1,2 n+1)=\operatorname{gcd}(2 n+1, n)=1$
b.

$$
\begin{aligned}
& \operatorname{gcd}(301,201)=\operatorname{gcd}(3 \times 100+1,2 \times 100+1)=1 \\
& \operatorname{gcd}(121,81)=\operatorname{gcd}(3 \times 40+1,2 \times 40+1)=1
\end{aligned}
$$

17.

a. $22 \bmod 7=1$
b. $291 \bmod 42=39$
c. $84 \bmod 320=84$
d. $400 \bmod 60=40$
19.
a. $(125 \times 45) \bmod 10=(125 \bmod 10 \times 45 \bmod 10) \bmod 10=(5 \times 5) \bmod 10$ $=5 \bmod 10$
b. $(424 \times 32) \bmod 10=(424 \bmod 10 \times 32 \bmod 10) \bmod 10=(4 \times 2) \bmod 10$ $=8 \bmod 10$
c. $(144 \times 34) \bmod 10=(144 \bmod 10 \times 34 \bmod 10) \bmod 10=(4 \times 4) \bmod 10$ $=6 \bmod 10$
d. $(221 \times 23) \bmod 10=(221 \bmod 10 \times 23 \bmod 10) \bmod 10=(1 \times 3) \bmod 10$ $=3 \bmod 10$
21. $a \bmod 5=\left(a_{n} \times 10^{n}+\ldots+a_{1} \times 10^{1}+a_{0}\right) \bmod 5$
$=\left[\left(a_{n} \times 10^{n}\right) \bmod 5+\ldots+\left(a_{1} \times 10^{1}\right) \bmod 5+a_{0} \bmod 5\right] \bmod 5$
$=\left[0+\ldots+0+a_{0} \bmod 5\right]=a_{0} \bmod 5$
23. $a \bmod 4=\left(a_{n} \times 10^{n}+\ldots+a_{1} \times 10^{1}+a_{0}\right) \bmod 4$ $=\left[\left(a_{n} \times 10^{n}\right) \bmod 4+\ldots+\left(a_{1} \times 10^{1}\right) \bmod 4+a_{0} \bmod 4\right] \bmod 4$ $=\left[0+\ldots+0+\left(a_{1} \times 10^{1}\right) \bmod 4+a_{0} \bmod 4\right]=\left(a_{1} \times 10^{1}+a_{0}\right) \bmod 4$
25. $a \bmod 9=\left(a_{n} \times 10^{n}+\ldots+a_{1} \times 10^{1}+a_{0}\right) \bmod 9$
$=\left[\left(a_{n} \times 10^{n}\right) \bmod 9+\ldots+\left(a_{1} \times 10^{1}\right) \bmod 9+a_{0} \bmod 9\right] \bmod 9$ $=\left(a_{n}+\ldots+a_{1}+a_{0}\right) \bmod 9$
27. $a \bmod 11=\left(a_{n} \times 10^{n}+\ldots+a_{1} \times 10^{1}+a_{0}\right) \bmod 11$ $=\left[\left(a_{n} \times 10^{n}\right) \bmod 11+\ldots+\left(a_{1} \times 10^{1}\right) \bmod 11+a_{0} \bmod 11\right] \bmod 11$ $\left.=\ldots+a_{3} \times(-1)+a_{2} \times(1)+a_{1} \times(-1)+a_{0} \times(1)\right] \bmod 11$
For example, $631453672 \bmod 11=[(1) 6+(-1) 3+(1) 1+(-1) 4+(1) 5+(-1) 3+$ $(1) 6+(-1) 7+(1) 2] \bmod 11=-8 \bmod 11=5 \bmod 11$
29.
a. $(\mathrm{A}+\mathrm{N}) \bmod 26=(0+13) \bmod 26=13 \bmod 26=\mathbf{N}$
b. $(\mathrm{A}+6) \bmod 26=(0+6) \bmod 26=6 \bmod 26=\mathbf{G}$
c. $(\mathrm{Y}-5) \bmod 26=(24-5) \bmod 26=19 \bmod 26=\mathbf{T}$
d. $(\mathrm{C}-10) \bmod 26=(2-10) \bmod 26=-8 \bmod 26=18 \bmod 26=\mathbf{S}$
31. (1, 1), (3, 7), (9, 9), (11, 11), (13, 17), (19, 19)
33.
a. We have $a=25, b=10$ and $c=15$. Since $d=\operatorname{gcd}(a, b)=5$ divides c, there is an infinite number of solutions. The reduced equation is $5 x+2 y=3$. We solve the equation $5 s+2 t=1$ using the extended Euclidean algorithm to get $s=1$ and $t=$ -2 . The particular and general solutions are

$$
\begin{array}{lll}
\text { Particular: } & x_{0}=(c / d) \times s=3 & y_{0}=(c / d) \times t=-6 \\
\text { General: } & x=3+2 \times k & y=-6-5 \times k \quad(k \text { is an integer })
\end{array}
$$

b. We have $a=19, b=13$ and $c=20$. Since $d=\operatorname{gcd}(a, b)=1$ and divides c, there is an infinite number of solutions. The reduced equation is $19 x+13 y=20$. We solve the equation $19 s+13 t=1$ to get $s=-2$ and $t=3$. The particular and general solutions are

Particular:	$x_{0}=(c / d) \times s=-40$	$y_{0}=(c / d) \times t=60$
General:	$x=-40+13 \times k$	$y=60-19 \times k(k$ is an integer $)$

c. We have $a=14, b=21$ and $c=77$. Since $d=\operatorname{gcd}(a, b)=7$ divides c, there is an infinite number of solutions. The reduced equation is $2 x+3 y=11$. We solve the equation $2 s+3 t=1$ to get $s=-1$ and $t=1$. The particular and general solutions are

Particular: $\quad x_{0}=(c / d) \times s=-11 \quad y_{0}=(c / d) \times t=11$
General: $\quad x=-11+3 \times k$
$y=11-2 \times k \quad(k$ is an integer)
d. We have $a=40, b=16$ and $c=88$. Since $d=\operatorname{gcd}(a, b)=8$ divides c, there is an infinite number of solutions. The reduced equation is $5 x+2 y=11$. We solve the equation $5 s+2 t=1$ to get $s=1$ and $t=-2$. The particular and general solutions are

$$
\begin{array}{lll}
\text { Particular: } & x_{0}=(c / d) \times s=11 & y_{0}=(c / d) \times t=-22 \\
\text { General: } & x=11+2 \times k & y=-\mathbf{2 2}-\mathbf{5} \times k(k \text { is an integer })
\end{array}
$$

35. We have the equation $39 x+15 y=270$. We have $a=39, b=15$ and $c=270$. Since $d=\operatorname{gcd}(a, b)=3$ divides c, there is an infinite number of solutions. The reduced equation is $13 x+5 y=90$. We solve the equation $13 s+5 t=1: s=2$ and $t=-5$. The particular and general solutions are

$$
\begin{array}{lll}
\text { Particular: } & x_{0}=(c / d) \times s=180 & y_{0}=(c / d) \times t=-450 \\
\text { General: } & x=\mathbf{1 8 0}+\mathbf{5} \times \boldsymbol{k} & y=-\mathbf{4 5 0} \mathbf{- 1 3} \times k
\end{array}
$$

To find an acceptable solution (nonnegative values) for x and y, we need to start with negative values for k. Two acceptable solutions are

$$
k=-35 \rightarrow x=5 \text { and } y=5 \quad k=-36 \rightarrow x=0 \text { and } y=18
$$

37.

a.

$$
\begin{aligned}
& 3 x+5 \equiv 4(\bmod 5) \rightarrow 3 x \equiv(-5+4)(\bmod 5) \rightarrow 3 x \equiv 4(\bmod 5) \\
& a=3, b=4, n=5 \rightarrow d=\operatorname{gcd}(a, n)=1
\end{aligned}
$$

Since \boldsymbol{d} divides \boldsymbol{b}, there is only one solution.
Reduction: $3 x \equiv 4(\bmod 5)$
$x_{0}=\left(3^{-1} \times 4\right)(\bmod 5)=2$
b.

$$
\begin{aligned}
& 4 x+6 \equiv 4(\bmod 6) \rightarrow 4 x \equiv(-6+4)(\bmod 6) \rightarrow 4 x \equiv 4(\bmod 6) \\
& a=4, b=4, n=6 \rightarrow d=\operatorname{gcd}(a, n)=2
\end{aligned}
$$

Since \boldsymbol{d} divides \boldsymbol{b}, there are two solutions.
Reduction: $2 x \equiv 2(\bmod 3)$
$x_{0}=\left(2^{-1} \times 2\right)(\bmod 3)=1$
$x_{1}=1+6 / 2=4$
c.

$$
\begin{aligned}
& 9 x+4 \equiv 12(\bmod 7) \rightarrow 9 x \equiv(-4+12)(\bmod 7) \rightarrow 9 x \equiv 1(\bmod 7) \\
& a=9, b=1, n=7 \rightarrow d=\operatorname{gcd}(a, n)=1
\end{aligned}
$$

Since \boldsymbol{d} divides \boldsymbol{b}, there is only one solution.
Reduction: $9 x \equiv 1(\bmod 7)$

$$
x_{0}=\left(9^{-1} \times 1\right)(\bmod 7)=4
$$

d.

$$
\begin{aligned}
& 232 x+42 \equiv 248(\bmod 50) \rightarrow 232 x \equiv 206(\bmod 50) \\
& a=232, b=206, n=50 \rightarrow d=\operatorname{gcd}(a, n)=2
\end{aligned}
$$

Since d divides \boldsymbol{b}, there are two solutions.
Reduction: $116 x \equiv 103(\bmod 25) \rightarrow 16 x \equiv 3(\bmod 25)$

$$
\begin{aligned}
& x_{0}=\left(16^{-1} \times 3\right)(\bmod 25)=8 \\
& x_{1}=8+50 / 2=33
\end{aligned}
$$

39.

a. The determinant and the inverse of matrix A are shown below:

$$
\begin{gathered}
\mathrm{A}=\left[\begin{array}{ll}
3 & 0 \\
1 & 1
\end{array}\right] \rightarrow \operatorname{det}(\mathrm{A})=3 \bmod 10 \rightarrow(\operatorname{det}(\mathrm{~A}))^{-1}=7 \bmod 10 \\
\mathrm{~A}^{-1}=7 \times\left[\begin{array}{ll}
1 & 0 \\
9 & 3
\end{array}\right] \rightarrow \mathrm{A}^{-1}=\left[\begin{array}{ll}
7 & 0 \\
3 & 1
\end{array}\right]
\end{gathered}
$$

b. Matrix B has no inverse because $\operatorname{det}(B)=(4 \times 1-2 \times 1) \bmod =2 \bmod 10$, which has no inverse in \mathbf{Z}_{10}.
c. The determinant and the inverse of matrix C are shown below:

$$
\begin{aligned}
& C=\left[\begin{array}{lll}
3 & 4 & 6 \\
1 & 1 & 8 \\
5 & 8 & 3
\end{array}\right] \rightarrow \operatorname{det}(\mathrm{C})=3 \bmod 10 \rightarrow(\operatorname{det}(\mathrm{C}))^{-1}=7 \bmod 10 \\
& \mathrm{C}^{-1}=\left[\begin{array}{lll}
3 & 2 & 2 \\
9 & 3 & 4 \\
1 & 2 & 3
\end{array}\right]
\end{aligned}
$$

In this case, $\operatorname{det}(C)=3 \bmod 10$; its inverse in \mathbf{Z}_{10} is $7 \bmod 10$. It can proved that $\mathrm{C} \times \mathrm{C}^{-1}=\mathbf{I}$ (identity matrix).

