
CHAPTER 4

Mathematics of Cryptography
Part II: Algebraic Structures

(Solution to Odd-Numbered Problems) 
Review Questions

1. The combination of the set and the operations that are applied to the elements of
the set is called an algebraic structure. We have defined three common algebraic
structures: groups, rings, and fields.

3. A ring is an algebraic structure with two operations. The first operation must sat-
isfy all five properties required for an abelian group. The second operation must
satisfy only the first two. In addition, the second operation must be distributed over
the first. A commutative ring is a ring in which the commutative property is also
satisfied for the second the operation.

5. A Galois field, GF(pn), is a finite field with pn elements. If n = 1, the field is some-
times referred to as GF(p). 

7. An example of a ring is R = <Z, +, × >. For the first operation, the identity element
is 0; the inverse of an element a is −a. Neither the identify element nor the inverse
of an element is defined for the second operation. 

9. A polynomial of degree n − 1 with coefficient in GF(2) can represent an n-bit word
with power of each term defining the position of the bit and the coefficients of the
terms defining the value of the bits.

Exercises

11.  The group G = <Z4, +> has only four members: 0, 1, 2, and 3.

a. For all a’s and b’s members of G, we need to prove that a + b = b + a. The fol-
lowing shows the proof (all operations are modulo 4). 

(0 + 1)  = (1 + 0)    (0 + 2)  = (2 + 0)    (0 + 3)  = (3 + 0)     

(1 + 2)  = (2 + 1)       (1 + 3)  = (3 + 1)              

(2 + 3)  = (3 + 2)                    
1
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b.   

13. Assume that the operation is (♦). We can say that (x ♦ y) is the same as x • (−y), in
which (−y) is the inverse of y with respect to operation (•). Using Table 4.1, we can
create the following table:  

Another way to solve the problem is to think about similarity between the group
represented in Table 4.1 and the group G = <Z4, +>. Make the table for subtraction
operation in the group G = <Z4, +> and replace 0 with a, 1 with b, 2 with c, and 3
with d. 

15. We use only two cases: 

a. We first prove that 

([1  3  2] °  [2  1  3])  °  [3  1  2]   =  [1  3  2] ° ([2  1  3]  °  [3  1  2])    

b. We then prove that 

([1  2  3] °  [2  1  3])  °  [3  1  2]   =  [1  2  3] ° ([2  1  3]  °  [3  1  2])   

17. The result of ([1  3  2]  °   [3  2  1])  °  [2  1  3]   =  [3  2  1]. Bob can use the permu-
tation [3  2  1] to reverse the operation. This proves that double or multiple permu-
tation does not help; Alice could have used one single permutation.    

19.

a. The order of the group is |G| = 18. The order of potential subgroups should
divide 18, which means |H| can be 1, 2, 3, 6, 9, and 18.

b. The order of the group is |G| = 29. The order of potential subgroups should
divide 29, which means |H| can be 1 and 29.

c. The order of the group is |G| = 4. The order of potential subgroups should
divide 4, which means |H| can be 1, 2, and 4.

(3 + 2) mod 4  = 1 mod 4    (3 − 2) mod 4   =  −1 mod 4 = 3 mod 4   

♦ a b c d
a a d c b

b b a d c

c c b a d

d d c b a

  ([1  3  2] °  [2  1  3])  °  [3  1  2]  =   [3  1  2] °  [3  1  2]  =   [2  3  1]   
   [1  3  2] ° ([2  1  3]  °  [3  1  2])  =   [1  3  2] °  [3  2  1]  =   [2   3  1]   

([1  2  3] °  [2  1  3])  °  [3  1  2]  =   [2  1  3] °  [3  1  2]  =   [3  2  1]   
 [1  2  3] ° ([2  1  3]  °  [3  1  2])  =   [1  2  3] °  [3  2  1]  =   [3  2  1]   
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d. The order of the group is |G| = 18. The order of potential subgroups should
divide 18, which means |H| can be 1, 2, 3, 6, 9, and 18.

21. The elements 0, g0, g1, g2, and g3 can be easily be generated, because they are the
4-bit representations of 0, 1, x2, and x3. We use the relation ƒ(g) = g4 + g3 + 1 = 0 to
generate other powers. Using this relation, we have g4 = g3 + 1. We use this rela-
tion to find the value of all elements as 4-bit words: 

23.

a. We show two examples of multiplication (using the results of Exercise 21): 

b. We show two examples of division (using the results of Exercise 21): 

25.

a. x4 + x 

b. x

c. x5 + 1

d. x + 1

27.

a. 5 + 3 = 8 mod 7 = 1 mod 7

b. 5 − 4 = 1 mod 7

0    
g0 
g1 
g2 
g3 
g4   
g5       
g6    
g7    
g8 

g9   
g10   
g11   
g12 

g13    
g14   

=
=    
=
=  
=  
=  
= 
=
= 
=
=
=
= 
=  
= 
=

0    
g0 
g1 
g2 
g3 
g4   
g (g4)       
g (g5)   
g (g6)    
g (g7) 
g (g8)    
g (g9)   
g (g10)  
g (g11) 
g (g12)   
g (g13)   

=
=    
=
=  
=  
=  
= 
=
= 
=
=
=
= 
=  
= 
=

0 
g0 
g1

g2

g3

g4  
g (g3 + 1)      
g (g3 + g + 1) 
g (g3 + g2 + g + 1)  
g (g2 + g + 1) 
g (g3 + g2 + g)  
g (g2 + 1) 
g (g3 + g) 
g (g3 + g2 + 1)
g (g + 1)  
g (g2 + g)  

=
=    
=
=  
=  
=  
= 
=
= 
=
=
=
= 
=  
= 
=

0    
g0 
g1 
g2 
g3 
g3 + 1  
g3 + g + 1 
g3 + g2 + g + 1  
g2 + g + 1
g3 + g2 + g
g2 + 1
g3 + g
g3 + g2 + 1 
g + 1 
g2 + g 
g3 + g2

−−→    
−−→  
−−→  
−−→  
−−→ 
−−→  
−−→  
−−→ 
−−→
−−→ 
−−→
−−→
−−→
−−→ 
−−→  
−−→ 

0    
g0 
g1 
g2 
g3 
g4  
g5   
g6 

g7 

g8 

g9

g10 

g11 
g12 

g13  
g14 

=    
=  
=  
=  
= 
=  
=  
= 
=
= 
=
=
=
= 
=  
= 

(0000) 
(0001)
(0010)
(0100)
(1000)
(1001)
(1011) 
(1111)
(0111) 
(1110) 
(0101) 
(1010)
(1101)
(0011)
(0110)
(1100)

g3  ×  g12 = g15 mod 15 = g0 = 1 → (0001) = (1000) × (0011)   
g10 ×  g12 = g22 mod 15 = g7 = g2 + g + 1 → (0111) = (1010) + (0011)   

g3  ÷  g9 =  g−6 mod 15 = g9 = g2 + 1 → (0101) = (1000) ÷ (0101)   
g10 ÷  g4 = g6 mod 15 = g6 = g3 + g2 + g + 1 → (1111) = (1010) − (1001)   
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c. 5 × 3 = 15 mod 7 = 1 mod 7

d. 5 ÷ 3 = 5 × (3−1) =  5 × 5 = 25 mod 7 = 4 mod 7

29. A polynomial f(x) of degree n is irreducible if f(x) = g(x) × h(x), where g and h are
two polynomials, each with the degree greater than zero. According to this defini-
tion we have degree (f) = degree (g) + degree (h). Based on this, a reducible poly-
nomial of degree 2 can be factored only as two polynomials of degree 1 (2 = 1 + 1).
In other words, a factors of a reducible polynomial of degree 2 can be only x or (x
+ 1) (the only two polynomials of degree 1). We can check all polynomials of
degree 2 to see which one can be factored as such.   

It can also be proved that f(x) = x2 + x + 1 cannot be evenly divided by x or x
+1 because this implies that x = 0 or x = −1 must be the root of the f(x),
which are not (f(0) = 1 and f(−1) = 1.    

31. We first write each number as a polynomial with coefficient in GF(2). We then
multiply the polynomials. Finally, we convert the result to the binary pattern.

a. (x  + 1) × (x + 1) → (x2 + x + x + 1) → (x2 + 1)  → 101   

b. (x3 +  x) ×  (x3) →  (x6+  x4)  → 1010000  

c. (x4 + x3 + x2) × (x4)  →  (x16 + x7+ x6)   → 10000000011000000 

33. The inverse is x3 + x, as shown below (using the extended Euclidean algorithm).

35. We use Table 4.10 to find the multiplicative inverse of the second word. We then
use the same table to multiply the first word with the inverse of the second word. 

a. (100) ÷ (010) = (100) × (010)−1 = (100) × (110) = (010)

b. (100) ÷ (000) → Τhis operation is impossible because (000) has no inverse.   

c. (101) ÷ (011) = (101) × (011)−1 = (101) × (100) = (011)

d. (000) ÷ (111) = (000) × (111)−1 = (000) × (101) = (111)

(x2) = (x) × (x) → (x2) is reducible

(x2 + 1) = (x + 1) × (x + 1) → (x2 + 1) is reducible

(x2 + x) = (x) × (x + 1) → (x2 + x) is reducible

(x2 + x + 1) cannot be factored. → (x2 + x + 1) is irreducible

q r1                   r2  r t1                       t2 t 

x + 1  x5 + x2 + 1          x4 + x3 + 1     x3 + x2 + x 0 1 x + 1

x    x4 + x3 + 1         x3 + x2 + x x2 + 1 1 x + 1 x2 + x + 1   

x + 1    x3 + x2 + x         x2 + 1 1 x + 1 x2 + x + 1 x3 + x   

x2 + 1    x2 + 1 1 0 x2 + x + 1 x3 + x 1    

1 0 x3 + x 1



5

37. We let P1 = (10000), P2 = (10101), and modulus = (100101). The following table
shows the process: 

The result is (10111) or (x4 + x2 + x + 1), which can be proved using multipli-
cation and division by the modulus. 
 

Powers Shift-Let Operation               Exclusive-Or

x0  ⊗ P2           10101

x1  ⊗ P2  01010 01010 ⊕ 00101 = 01111 

x2  ⊗ P2 11110  11110 

x3  ⊗ P2 11100 11100 ⊕ 00101 = 11001

x4  ⊗ P2 10010 10010 ⊕ 00101 = 10111

P1
  ⊗ P2  = (x4   ⊗ P2) = 10111
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