
CHAPTER 12

Cryptographic Hash Functions
(Solution to Odd-Numbered Problems) 
Review Questions
1. A cryptographic hash function takes a message of arbitrary length and creates a

message digest of fixed length. 

3. The Merkle-Damgard scheme is an iterated hash function that is collision resistant
if the compression function is collision resistant. If we use this scheme, we need
only to make the compression function collision resistant. 

5. An iterated cryptographic hash function can use a symmetric-key block cipher as a
compression function. We mentioned Rabin, Davies-Meyer, Matyas-Meyer-Oseas,
and Miyaguchi-Preneel schemes. 

7. Whirlpool is an iterated cryptographic hash function, based on the Miyaguchi-
Preneel scheme, that uses a symmetric-key block cipher in place of the compres-
sion function. The block cipher is a modified AES cipher that has been tailored for
this purpose. The following table shows some characteristics of Whirlpool. 

Exercises
9. The size of the length field is 128 bit or 32 hexadecimal digits.

Characteristics Values

Minimum message size 2 < 256 bits

Block size 512 bits

Message digest size 512 bits

Number of rounds 10

a. 0000 0000 0000 0000 0000 0000 0000 03EB

b. 0000 0000 0000 0000 0000 0000 0000 2710

c. 0000 0000 0000 0000 0000 0000 000F 4240
1



SECTION 2
11.  We need to have |M| + |P| + 128) mod 1024 = 0 or |P| = (−|M| − 128) mod 1024. 

13.

a. In SHA-512, the last block, which is 1024 bits, consists of  

In which, X is the rightmost part of the message of (|M| mod 1024) bits. If two
messages are the same, then X is the same, the padding section is the same, the
message length value is the same. This means the last block is the same. 

b. In Whirlpool, the last block, which is 512 bits, consists of  

In which, X is the rightmost part of the message of (|M| mod 256) bits. If two
messages are the same, then X is the same, the padding section is the same, the
message length value is the same. This means the last block is the same. 

15. The compression function of SHA-512 can be compared to a Feistel cipher (or
encryption cipher) of 80 rounds:

a. The initial digest in the compression function can be thought as the plaintext in
the Feistel cipher.

b. The final digest in the compression function can be thought as the ciphertext in
the Feistel cipher.

c. Each word in the compression function can be thought as the corresponding
round key in the Feistel cipher.

17. If the final adding operation is removed from the SHA-512 compression function,
then its structure is similar to Rabin scheme, which is subject to the meet-in-the-
middle attack as discussed in the textbook. 

19. In AES, the need for removing the third operation is to make the encryption and
decryption inverse of each other. In Whirlpool, we use a cryptographic cipher to
simulate a hash function. The cipher is used only as an encryption algorithm with-
out the decryption algorithm. The hash function can have any structure without
worrying about the inverse structure. 

21. ShL12(x) means the left shifting of the argument by 12 bits or 3 hexadecimal digit.        

a. |P| = (− |M| − 128) mod 1024 = (−5120 − 128) mod 1024 = 896

b. |P| = (−||M| − 128) mod 1024 = (−5121 − 128) mod 1024 = 895

c. |P| = (−||M| − 128) mod 1024 = (−6143 − 128) mod 1024 = 897

X | padding | 128-bit message length 

X | padding | 256-bit message length 

Before Shifting: 1234 5678 ABCD 2345 3456 5678 ABCD 2468 

After Shifting: 4567 8ABC D234 5345 6567 8ABC D246 8000 
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23. The three blocks differ only in the first digit (leftmost digit). For the first digits,
Conditional (0001, 0010, 0011) = (0011)2 = 216. For the rest of the block, it means
applying the Conditional function to three digits of equal values, which results in
the common digit. Therefore, we have 

25. Although this operation is available in most high-level languages, we write a rou-
tine for that. The following routine calls another routine, RotR(x), which rotates
right only one bit. We assume that the word is stored in an array of 64 bits with the
leftmost bit as the first element and the rightmost bit as the last element.  

27. We assume that words x, y, z are represented as arrays of 64 elements. The follow-
ing routine shows how to find the result. We have use the if-else statement to show
the conditional nature of the operation. The code can be shorter if we use the logi-
cal operators (AND, OR, and NOT). 

Result: 2234 5678 ABCD 2345 3456 5678 ABCD 2468 

RotR (x, i)
{

count ← 1 
while (count < i)
{

 RotR(x)
 count ← count + 1

}
return x 

}
RotR(x)
{

temp ← x[64] 
j ← 63 
while (j  >  1)
{

 x[j + 1] ← x[j]
 j  ← j − 1

}
x[1]← temp 
return x 

}

Conditional (x, y, z)

{

i ← 1 

while (i ≤ 64)

{

 if (x[i] = 1)  
 result[i] ← y[i] 
 else  
 result[i] ← z[i] 
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29. We call the RotR(x, i) function we used in Exercise 25. 

31. This is the same as the previous example, except that we need to use the first
eighty primes and then take the cubic root of them. The routine uses the same rou-
tine, Convert64 defined in the solution to Exercise 30. 

 i ← i + 1  
}

return result

}

Rotate (x)

{

x1 ← x     x2 ← x     x3 ← x 

result ← RotR(x1, 28) ⊕  RotR(x2, 34) ⊕  RotR(x3, 39)

return result

}

CalcConstants ()

{

Primes [80] = {2, 3, …, 401, 409}

i ← 1 

while (i ≤ 80)

{

 temp ← (Primes [i])1/3       
 temp ← ExtractFraction (temp)       
 Constants [i]  ← Convert64 (temp)       
 i ← i + 1  

}

return (Constants[1 … 80])

}
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33.

CompressionFunction (H[1 … 8], W[0 …79], K[0 … 79])

{

i ← 1 

while (i ≤ 8)

{

 Temp[i] ← H[i]       
 i ← i + 1  

}

j ← 0 

while (j < 80)

{

 H[1 … 8] ←  RoundFunction(H[1 … 8], W[j], K[j])        
 j ← j + 1  

}

i ← 1 

while (i ≤ 8)

{

 H[i] ← (H[i] + Temp[i]) mod 264       
 i ← i + 1  

}

return (H[1 … 8])

}

RoundFunction (H[1 … 8], W, K)

{

i ← 1 

while (i ≤ 8)

{

T[i] ← H[i]       
i ← i + 1  

}

H[2] ← T[1]   

H[3] ← T[2]   

H[4] ← T[3]   

H[6] ← T[5]   

H[7] ← T[6]   

H[8] ← T[7]   

Temp1 ← (Majority (T[1], T[2], T[3]) + Rotate [T[1]) mod 264    

Temp2 ← (Conditional (T[5], T[6], T[7]) + Rotate [T[5] + W + K) mod 264    

H[1] ← (Temp1 + Temp2) mod 264    

H[5] ← (Temp2 + T[4]) mod 264    
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35.    

37.

return (H[1 … 8])

}

TransformStateToBlock (S[0 … 7][0 … 7])

{

i ← 0 

j ← 0 

while (i < 8)

{

 while (j < 8)       
 {      
 b[i × 8 + j]  ← S[i][j] 

 j ← j + 1

 }  
 i ← i + 1  

}

return (b[0 … 63])

}

ShiftColumns (S[0 … 7] [0 … 7])

{

c ← 1 

while (c ≤ 7)

{

 shiftcolumn (S[c], c)       
 c ← c + 1  

}

return (S[0 … 7][0 … 7])

}

shiftcolumn (col[1 … 8], n)

{

CopyColumn (col, temp) 

r ← 0 

while (r ≤ 7)

{

 col [(r − n) mod 8] ← temp [r]       
 r ← r + 1  

}
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39.  

41.  

return col[1 … 8]

}

AddRoundKey (S[0 … 7][0 … 7], k[0 … 7][0 … 7])

{

i ← 0 

j ← 0 

while (i < 8)

{
while (j < 8)       
{      

s[i][j]  ←  s[i][j] ⊕ k[i][j] 

j ← j + 1

}  
i ← i + 1  

}

return (S[0 … 7][0 … 7])

}

RoundConstant ()

{

r ← 0 

i ← 0 

j ← 0 

while (r  ≤ 10)

{

while (i < 8)

{

        while (j < 8)       
       {

  if (i = 0)

          RC [r][i][j] ← ByteTrans (8 × (r −1) + j)

  else

          RC [r][i][j]  ←  0
 j ← j + 1

       }

  i ← i + 1 

 }  
  r ← r + 1
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43.

45. All of these three hash functions are either similar to SHA-1 or SHA-512. The dif-
ferences are in the block size, digest size, word size, and the number of rounds. 

a. SHA-224 is very similar to SHA-1 (See Figure S12.45a) except that the digest
size is 224 bits (7 words, each of 32 bits). The number of rounds is 64.

b. SHA-256 is very similar to SHA-1 (See Figure S12.45b) except that the digest
size is 256 bits (8 words, each of 32 bits). The number of rounds is 64.

c. SHA-256 is very similar to SHA-512 (See Figure S12.45c) except that the
digest size is 384 bits (6 words, each of 64 bits). The number of rounds is 80.

}

return (RC[0 … 10][0 … 7] [0 … 7])

}

WhirlpoolHashFunction (M[1 … N], N)

{

 H ← (00 … 0)                                      // 520 of 0’s
i ← 0 

while (i  ≤ N)

{

H ← WhirlpoolCipher (M[i], H)  ⊕ H ⊕ M[i]

i ← i + 1

}

return H

}

Figure S12.45a Solution to Exercise 45 part a
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47.

a. HAVAL is a hashing algorithm of variable-size digest designed by Yuliang
Zheng, Josef Pieprzyk, and Jennifer Seberry in 1992 as shown in Figure
S12.47a. 
The digest can be 128, 160, 192, 224, or 256 bits. The block size is 1024 bits.
The algorithm actually creates a digest of 256 bits, but a folding algorithm
matches the resulting 256 bits to one of the desired sizes. 

b. The compression function uses 3, 4, and 5 passes in which each pass uses 16
iteration of different complex functions. The three-pass version is the fastest,
but least secure; the five-pass version is the slowest, but the most secure. Figure
S12.47b shows the structure of the compression function in HAVAL. 

 

Figure S12.45b Solution to Exercise 45 part b

Figure S12.45c Solution to Exercise 45 part c
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Figure S12.47a   Solution to Exercise 47 Part a

Figure S12.47b Solution to Exercise 47 part b
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