
CHAPTER 12

Cryptographic Hash Functions
(Solution to Odd-Numbered Problems)
Review Questions
1. A cryptographic hash function takes a message of arbitrary length and creates a

message digest of fixed length.

3. The Merkle-Damgard scheme is an iterated hash function that is collision resistant
if the compression function is collision resistant. If we use this scheme, we need
only to make the compression function collision resistant.

5. An iterated cryptographic hash function can use a symmetric-key block cipher as a
compression function. We mentioned Rabin, Davies-Meyer, Matyas-Meyer-Oseas,
and Miyaguchi-Preneel schemes.

7. Whirlpool is an iterated cryptographic hash function, based on the Miyaguchi-
Preneel scheme, that uses a symmetric-key block cipher in place of the compres-
sion function. The block cipher is a modified AES cipher that has been tailored for
this purpose. The following table shows some characteristics of Whirlpool.

Exercises
9. The size of the length field is 128 bit or 32 hexadecimal digits.

Characteristics Values

Minimum message size 2 < 256 bits

Block size 512 bits

Message digest size 512 bits

Number of rounds 10

a. 0000 0000 0000 0000 0000 0000 0000 03EB

b. 0000 0000 0000 0000 0000 0000 0000 2710

c. 0000 0000 0000 0000 0000 0000 000F 4240
1

SECTION 2
11. We need to have |M| + |P| + 128) mod 1024 = 0 or |P| = (−|M| − 128) mod 1024.

13.

a. In SHA-512, the last block, which is 1024 bits, consists of

In which, X is the rightmost part of the message of (|M| mod 1024) bits. If two
messages are the same, then X is the same, the padding section is the same, the
message length value is the same. This means the last block is the same.

b. In Whirlpool, the last block, which is 512 bits, consists of

In which, X is the rightmost part of the message of (|M| mod 256) bits. If two
messages are the same, then X is the same, the padding section is the same, the
message length value is the same. This means the last block is the same.

15. The compression function of SHA-512 can be compared to a Feistel cipher (or
encryption cipher) of 80 rounds:

a. The initial digest in the compression function can be thought as the plaintext in
the Feistel cipher.

b. The final digest in the compression function can be thought as the ciphertext in
the Feistel cipher.

c. Each word in the compression function can be thought as the corresponding
round key in the Feistel cipher.

17. If the final adding operation is removed from the SHA-512 compression function,
then its structure is similar to Rabin scheme, which is subject to the meet-in-the-
middle attack as discussed in the textbook.

19. In AES, the need for removing the third operation is to make the encryption and
decryption inverse of each other. In Whirlpool, we use a cryptographic cipher to
simulate a hash function. The cipher is used only as an encryption algorithm with-
out the decryption algorithm. The hash function can have any structure without
worrying about the inverse structure.

21. ShL12(x) means the left shifting of the argument by 12 bits or 3 hexadecimal digit.

a. |P| = (− |M| − 128) mod 1024 = (−5120 − 128) mod 1024 = 896

b. |P| = (−||M| − 128) mod 1024 = (−5121 − 128) mod 1024 = 895

c. |P| = (−||M| − 128) mod 1024 = (−6143 − 128) mod 1024 = 897

X | padding | 128-bit message length

X | padding | 256-bit message length

Before Shifting: 1234 5678 ABCD 2345 3456 5678 ABCD 2468

After Shifting: 4567 8ABC D234 5345 6567 8ABC D246 8000

SECTION 3
23. The three blocks differ only in the first digit (leftmost digit). For the first digits,
Conditional (0001, 0010, 0011) = (0011)2 = 216. For the rest of the block, it means
applying the Conditional function to three digits of equal values, which results in
the common digit. Therefore, we have

25. Although this operation is available in most high-level languages, we write a rou-
tine for that. The following routine calls another routine, RotR(x), which rotates
right only one bit. We assume that the word is stored in an array of 64 bits with the
leftmost bit as the first element and the rightmost bit as the last element.

27. We assume that words x, y, z are represented as arrays of 64 elements. The follow-
ing routine shows how to find the result. We have use the if-else statement to show
the conditional nature of the operation. The code can be shorter if we use the logi-
cal operators (AND, OR, and NOT).

Result: 2234 5678 ABCD 2345 3456 5678 ABCD 2468

RotR (x, i)
{

count ← 1
while (count < i)
{

 RotR(x)
 count ← count + 1

}
return x

}
RotR(x)
{

temp ← x[64]
j ← 63
while (j > 1)
{

 x[j + 1] ← x[j]
 j ← j − 1

}
x[1]← temp
return x

}

Conditional (x, y, z)

{

i ← 1

while (i ≤ 64)

{

 if (x[i] = 1)
 result[i] ← y[i]
 else
 result[i] ← z[i]

SECTION 4
29. We call the RotR(x, i) function we used in Exercise 25.

31. This is the same as the previous example, except that we need to use the first
eighty primes and then take the cubic root of them. The routine uses the same rou-
tine, Convert64 defined in the solution to Exercise 30.

 i ← i + 1
}

return result

}

Rotate (x)

{

x1 ← x x2 ← x x3 ← x

result ← RotR(x1, 28) ⊕ RotR(x2, 34) ⊕ RotR(x3, 39)

return result

}

CalcConstants ()

{

Primes [80] = {2, 3, …, 401, 409}

i ← 1

while (i ≤ 80)

{

 temp ← (Primes [i])1/3
 temp ← ExtractFraction (temp)
 Constants [i] ← Convert64 (temp)
 i ← i + 1

}

return (Constants[1 … 80])

}

SECTION 5
33.

CompressionFunction (H[1 … 8], W[0 …79], K[0 … 79])

{

i ← 1

while (i ≤ 8)

{

 Temp[i] ← H[i]
 i ← i + 1

}

j ← 0

while (j < 80)

{

 H[1 … 8] ← RoundFunction(H[1 … 8], W[j], K[j])
 j ← j + 1

}

i ← 1

while (i ≤ 8)

{

 H[i] ← (H[i] + Temp[i]) mod 264
 i ← i + 1

}

return (H[1 … 8])

}

RoundFunction (H[1 … 8], W, K)

{

i ← 1

while (i ≤ 8)

{

T[i] ← H[i]
i ← i + 1

}

H[2] ← T[1]

H[3] ← T[2]

H[4] ← T[3]

H[6] ← T[5]

H[7] ← T[6]

H[8] ← T[7]

Temp1 ← (Majority (T[1], T[2], T[3]) + Rotate [T[1]) mod 264

Temp2 ← (Conditional (T[5], T[6], T[7]) + Rotate [T[5] + W + K) mod 264

H[1] ← (Temp1 + Temp2) mod 264

H[5] ← (Temp2 + T[4]) mod 264

SECTION 6
35.

37.

return (H[1 … 8])

}

TransformStateToBlock (S[0 … 7][0 … 7])

{

i ← 0

j ← 0

while (i < 8)

{

 while (j < 8)
 {
 b[i × 8 + j] ← S[i][j]

 j ← j + 1

 }
 i ← i + 1

}

return (b[0 … 63])

}

ShiftColumns (S[0 … 7] [0 … 7])

{

c ← 1

while (c ≤ 7)

{

 shiftcolumn (S[c], c)
 c ← c + 1

}

return (S[0 … 7][0 … 7])

}

shiftcolumn (col[1 … 8], n)

{

CopyColumn (col, temp)

r ← 0

while (r ≤ 7)

{

 col [(r − n) mod 8] ← temp [r]
 r ← r + 1

}

SECTION 7
39.

41.

return col[1 … 8]

}

AddRoundKey (S[0 … 7][0 … 7], k[0 … 7][0 … 7])

{

i ← 0

j ← 0

while (i < 8)

{
while (j < 8)
{

s[i][j] ← s[i][j] ⊕ k[i][j]

j ← j + 1

}
i ← i + 1

}

return (S[0 … 7][0 … 7])

}

RoundConstant ()

{

r ← 0

i ← 0

j ← 0

while (r ≤ 10)

{

while (i < 8)

{

 while (j < 8)
 {

 if (i = 0)

 RC [r][i][j] ← ByteTrans (8 × (r −1) + j)

 else

 RC [r][i][j] ← 0
 j ← j + 1

 }

 i ← i + 1

 }
 r ← r + 1

SECTION 8
43.

45. All of these three hash functions are either similar to SHA-1 or SHA-512. The dif-
ferences are in the block size, digest size, word size, and the number of rounds.

a. SHA-224 is very similar to SHA-1 (See Figure S12.45a) except that the digest
size is 224 bits (7 words, each of 32 bits). The number of rounds is 64.

b. SHA-256 is very similar to SHA-1 (See Figure S12.45b) except that the digest
size is 256 bits (8 words, each of 32 bits). The number of rounds is 64.

c. SHA-256 is very similar to SHA-512 (See Figure S12.45c) except that the
digest size is 384 bits (6 words, each of 64 bits). The number of rounds is 80.

}

return (RC[0 … 10][0 … 7] [0 … 7])

}

WhirlpoolHashFunction (M[1 … N], N)

{

 H ← (00 … 0) // 520 of 0’s
i ← 0

while (i ≤ N)

{

H ← WhirlpoolCipher (M[i], H) ⊕ H ⊕ M[i]

i ← i + 1

}

return H

}

Figure S12.45a Solution to Exercise 45 part a

A B C D E F G

A B C D E F G

 64 rounds

Compression
Function

224 bits (7 32-bit words)

224 bits (7 32-bit words)

Data Block
(512 bits)W

or
d

Ex
pa

ns
io

nW0

W63

SECTION 9
47.

a. HAVAL is a hashing algorithm of variable-size digest designed by Yuliang
Zheng, Josef Pieprzyk, and Jennifer Seberry in 1992 as shown in Figure
S12.47a.
The digest can be 128, 160, 192, 224, or 256 bits. The block size is 1024 bits.
The algorithm actually creates a digest of 256 bits, but a folding algorithm
matches the resulting 256 bits to one of the desired sizes.

b. The compression function uses 3, 4, and 5 passes in which each pass uses 16
iteration of different complex functions. The three-pass version is the fastest,
but least secure; the five-pass version is the slowest, but the most secure. Figure
S12.47b shows the structure of the compression function in HAVAL.

Figure S12.45b Solution to Exercise 45 part b

Figure S12.45c Solution to Exercise 45 part c

A B C D E F G H

H A B C D E F G

64 rounds

Compression
Function

256 bits (eight 32-bit words)

256 bits (eight 32-bit words)

Data Block
(512 bits)W

or
d

Ex
pa

ns
io

nW0

W63

A B C D E F

A B C D E F

(80 rounds)

Compression
Function Data Block

(1024 bits)W
or

d
Ex

pa
ns

io
n

384 bits (six 62-bit word)

384 bits (six 62-bit word)

W0

W79

SECTION 10
Figure S12.47a Solution to Exercise 47 Part a

Figure S12.47b Solution to Exercise 47 part b

256 bits 256 bits 256 bits 256 bits
Initial value

Block 1 Block 2 Block N
1024 bits 1024 bits 1024 bits

Message
digest

128, 160, 192,
224, or 256 bits

Compression
function

Compression
function

Compression
function

Augmented message: multiple of 1024-bit blocks

Folder

T0 T1 T2 T3 T4 T5 T6 T7

T0 T1 T2 T3 T4 T5 T6 T7

Pass 1 (16 iterations)

Pass 5 (16 iterations)

Pass 2 (16 iterations)

Pass 3 (16 iterations)

Pass 4 (16 iterations)

C
om

pr
es

si
on

 F
un

ct
io

n

Data Block
(1024 bits)

	Chapter 12
	Cryptographic Hash Functions (Solution to Odd-Numbered Problems)
	Review Questions
	1. A cryptographic hash function takes a message of arbitrary length and creates a message digest of fixed length.
	3. The Merkle-Damgard scheme is an iterated hash function that is collision resistant if the compression function is collision resistant. If we use this scheme, we need only to make the compression function collision resistant.
	5. An iterated cryptographic hash function can use a symmetric-key block cipher as a compression function. We mentioned Rabin, Davies-Meyer, Matyas-Meyer-Oseas, and Miyaguchi-Preneel schemes.
	7. Whirlpool is an iterated cryptographic hash function, based on the Miyaguchi- Preneel scheme, that uses a symmetric-key block...

	Characteristics
	Values
	Exercises
	9. The size of the length field is 128 bit or 32 hexadecimal digits.
	11. We need to have |M| + |P| + 128) mod 1024 = 0 or |P| = (-|M| - 128) mod 1024.
	13.
	a. In SHA-512, the last block, which is 1024 bits, consists of In which, X is the rightmost part of the message of (|M| mod 1024...

	X | padding | 128-bit message length
	b. In Whirlpool, the last block, which is 512 bits, consists of In which, X is the rightmost part of the message of (|M| mod 256...

	X | padding | 256-bit message length
	15. The compression function of SHA-512 can be compared to a Feistel cipher (or encryption cipher) of 80 rounds:
	a. The initial digest in the compression function can be thought as the plaintext in the Feistel cipher.
	b. The final digest in the compression function can be thought as the ciphertext in the Feistel cipher.
	c. Each word in the compression function can be thought as the corresponding round key in the Feistel cipher.

	17. If the final adding operation is removed from the SHA-512 compression function, then its structure is similar to Rabin scheme, which is subject to the meet-in-the- middle attack as discussed in the textbook.
	19. In AES, the need for removing the third operation is to make the encryption and decryption inverse of each other. In Whirlpo...
	21. ShL12(x) means the left shifting of the argument by 12 bits or 3 hexadecimal digit.
	23. The three blocks differ only in the first digit (leftmost digit). For the first digits, Conditional (0001, 0010, 0011) = (00...
	25. Although this operation is available in most high-level languages, we write a routine for that. The following routine calls ...

	RotR (x, i)
	{
	count ¨ 1
	while (count < i)
	{
	RotR (x)
	count ¨ count + 1
	}
	return x
	}
	RotR (x)
	{
	temp ¨ x [64]
	j ¨ 63
	while (j > 1)
	{
	x [j + 1] ¨ x [j]
	j ¨ j - 1
	}
	x [1]¨ temp
	return x
	}
	27. We assume that words x, y, z are represented as arrays of 64 elements. The following routine shows how to find the result. W...

	Conditional (x, y, z)
	{
	i ¨ 1
	while (i £ 64)
	{
	if (x[i] = 1)
	result [i] ¨ y [i]
	else
	result [i] ¨ z [i]
	i ¨ i + 1
	}
	return result
	}
	29. We call the RotR (x, i) function we used in Exercise 25.

	Rotate (x)
	{
	x1 ¨ x x2 ¨ x x3 ¨ x
	result ¨ RotR (x1, 28) Å RotR (x2, 34) Å RotR (x3, 39)
	return result
	}
	31. This is the same as the previous example, except that we need to use the first eighty primes and then take the cubic root of them. The routine uses the same routine, Convert64 defined in the solution to Exercise 30.

	CalcConstants ()
	{
	Primes [80] = {2, 3, º, 401, 409}
	i ¨ 1
	while (i £ 80)
	{
	temp ¨ (Primes [i])1/3
	temp ¨ ExtractFraction (temp)
	Constants [i] ¨ Convert64 (temp)
	i ¨ i + 1
	}
	return (Constants[1 º 80])
	}
	33.

	CompressionFunction (H[1 º 8], W[0 º79], K[0 º 79])
	{
	i ¨ 1
	while (i £ 8)
	{
	Temp [i] ¨ H[i]
	i ¨ i + 1
	}
	j ¨ 0
	while (j < 80)
	{
	H[1 º 8] ¨ RoundFunction (H[1 º 8], W [j], K [j])
	j ¨ j + 1
	}
	i ¨ 1
	while (i £ 8)
	{
	H [i] ¨ (H[i] + Temp [i]) mod 264
	i ¨ i + 1
	}
	return (H[1 º 8])
	}
	RoundFunction (H[1 º 8], W, K)
	{
	i ¨ 1
	while (i £ 8)
	{
	T [i] ¨ H[i]
	i ¨ i + 1
	}
	H [2] ¨ T [1]
	H [3] ¨ T [2]
	H [4] ¨ T [3]
	H [6] ¨ T [5]
	H [7] ¨ T [6]
	H [8] ¨ T [7]
	Temp1 ¨ (Majority (T[1], T[2], T[3]) + Rotate [T[1]) mod 264
	Temp2 ¨ (Conditional (T[5], T[6], T[7]) + Rotate [T[5] + W + K) mod 264
	H [1] ¨ (Temp1 + Temp2) mod 264
	H [5] ¨ (Temp2 + T[4]) mod 264
	return (H[1 º 8])
	}
	35.

	{
	i ¨ 0
	j ¨ 0
	while (i < 8)
	{
	while (j < 8)
	{
	b [i ¥ 8 + j] ¨ S [i][j]
	j ¨ j + 1
	}
	i ¨ i + 1
	}
	return (b[0 º 63])
	}
	37.

	ShiftColumns (S[0 º 7] [0 º 7])
	{
	c ¨ 1
	while (c £ 7)
	{
	shiftcolumn (S [c], c)
	c ¨ c + 1
	}
	return (S[0 º 7][0 º 7])
	}
	shiftcolumn (col[1 º 8], n)
	{
	CopyColumn (col, temp)
	r ¨ 0
	while (r £ 7)
	{
	col [(r - n) mod 8] ¨ temp [r]
	r ¨ r + 1
	}
	return col[1 º 8]
	}
	39.

	{
	i ¨ 0
	j ¨ 0
	while (i < 8)
	{
	while (j < 8)
	{
	s [i] [j] ¨ s [i] [j] Å k [i] [j]
	j ¨ j + 1
	}
	i ¨ i + 1
	}
	return (S[0 º 7][0 º 7])
	}
	41.

	{
	r ¨ 0
	i ¨ 0
	j ¨ 0
	while (r £ 10)
	{
	while (i < 8)
	{
	while (j < 8)
	{
	if (i = 0)
	RC [r] [i] [j] ¨ ByteTrans (8 ¥ (r -1) + j)
	else
	RC [r] [i] [j] ¨ 0
	j ¨ j + 1
	}
	i ¨ i + 1
	}
	r ¨ r + 1
	}
	return (RC[0 º 10][0 º 7] [0 º 7])
	}
	43.

	{
	H ¨ (00 º 0) // 520 of 0’s
	i ¨ 0
	while (i £ N)
	{
	H ¨ WhirlpoolCipher (M[i], H) Å H Å M[i]
	i ¨ i + 1
	}
	return H
	}
	45. All of these three hash functions are either similar to SHA-1 or SHA-512. The differences are in the block size, digest size, word size, and the number of rounds.
	a. SHA-224 is very similar to SHA-1 (See Figure S12.45a) except that the digest size is 224 bits (7 words, each of 32 bits). The number of rounds is 64.
	Figure S12.45a Solution to Exercise 45 part a
	b. SHA-256 is very similar to SHA-1 (See Figure S12.45b) except that the digest size is 256 bits (8 words, each of 32 bits). The number of rounds is 64.
	Figure S12.45b Solution to Exercise 45 part b

	c. SHA-256 is very similar to SHA-512 (See Figure S12.45c) except that the digest size is 384 bits (6 words, each of 64 bits). The number of rounds is 80.
	Figure S12.45c Solution to Exercise 45 part c

	47.
	a. HAVAL is a hashing algorithm of variable-size digest designed by Yuliang Zheng, Josef Pieprzyk, and Jennifer Seberry in 1992 ...
	Figure S12.47a Solution to Exercise 47 Part a
	b. The compression function uses 3, 4, and 5 passes in which each pass uses 16 iteration of different complex functions. The thr...
	Figure S12.47b Solution to Exercise 47 part b

