
CHAPTER 13

Digital Signature
(Solution to Odd-Numbered Problems) 
Review Questions
1. We mentioned four areas in which there is a differences between a conventional

and a digital signature: inclusion, verification, document-signature relation, and
duplicity. 
a. Inclusion: a conventional signature is included in the document; a digital signa-

ture is a separate document. 

b. Verification: A conventional signature is verified by comparing with the signa-
ture on file. The verifier of a digital signature needs to create a new signature. 

c. Relation: A document and a conventional signature has a one-to-many relation;
a message and a digital signature has one-to-one relation. 

d. Duplicity: In conventional signature, a copy of the signed document can be dis-
tinguished from the original one on file. In digital signature, there is no such
distinction unless there is a factor of time (such as a timestamp) on the docu-
ment. 

3. The following table shows the relationship between attacks on a cryptosystem and
attacks on a digital signature. 

5. The idea behind the RSA digital signature scheme is the same as the RSA crypto-
system, but the roles of the private and public keys are changed. First, the private
and public keys of the sender, not the receiver, are used. Second, the sender uses
her own private key to sign the document; the receiver uses the sender’s public key
to verify it. 

Cryptosystem
attacks

Digital signature
Attacks

Ciphertext-only Key-only
Known-plaintext Known-message
Chosen-plaintext Chosen-message
Chosen-ciphertext
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7. The Schnorr digital signature scheme is similar the ElGamal digital signature but
the size of the signatures are smaller. 

9. The elliptic curve digital signature scheme is based on DSA, but uses elliptic
curves. The scheme is similar to the elliptic curve cryptosystem in which the signer
and verifiers manipulate points on an elliptic curve. 

Exercise
11. We have n = 809 × 751 = 607559  φ(n) = (809 −1) × (751 − 1) = 606000. Since d =

23, we have e = d −1mod φ(n) = 158087. 

a. We have  

b.  We have 

c. If M = M1 × M2 = 5000, we have 

13. We have q = 83, p = 997, and d = 23. We choose e0 = 7. Then e1 = e0
(p −1)/q mod p

= 9 e2 = e1
d mod p = 521. We calculate S1 and S2 in mod q. We let h(40067) = 81

(The actual value does not matter here).  

We can verify the signature assuming that h(40067) = 81.  

15.

a. In RSA scheme S = Md mod n. This means that the value of S can be as large as
(n − 1). In other words the size of |S| ≈ |n| ≈ 1024 bits. 

S1 = M1
d mod n = 10023 mod 607559 =  223388

M1 = S1
e mod n = 223388158087 mod 607559 =  100

S2 = M2
d mod n = 5023 mod 607559 =  5627

M2 = S2
e mod n = 5627158087 mod 607559 =  50

S = Md mod n = 500023 mod 607559 =  572264
S = (S1 × S2) mod n  = (223388 × 5627) mod 607559 = 572264   

S1 = h(M | e1
r mod p) = h(400 | 911 mod p) = h(400 | 67) = h(40067) = 81 

S2 = r + ds1 mod q = 11 + 23 × 81 mod 83 = 48 

V = h(M | e1
S2 e2

 −S1 mod p) = h(400 | 948 521−81 mod 997) =  

V = h(400 | 948 5212 mod 997) = h(400 | 877 × 257 mod 997) =   

V = h(400 | 67) = h(40067) = 81  
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b. In ElGamal scheme S1 = (…) mod p and S2 = (…) mod (p −1). This means that
the value of S1 can be as large as (p − 1) and the value of S2 can be as large as (p
− 2) In other words the size of |S1| ≈ |p| ≈ 1024 bits and the size of |S2| ≈ |p| ≈
1024 bits. This means the sign of the signature is 2048 bits. 

c. In Schnorr scheme S1 = h (...) and S2 = (…) mod (q). This means that the value
of S1 is exactly equals h (...) and the value of S2 can be as large as (q − 1). Since
q is required to be the same size as q. The size of |S1| ≈ |q| ≈ 160 bits and the
size of |S2| ≈ |q| ≈ 160 bits. This means the sign of the signature is 320 bits. The
signature in Schnorr is much smaller than signature in ElGamal.

d. In DSS scheme S1 = (…) mod q   S2 = (…) mod q. This means that the value of
S1 and S2 can be as large as (q − 1). The size of |S1| = |S2| ≈ |q| ≈ 160 bits and the
This means the sign of the signature is 320 bits. The signature in DSS is the
same size as the signature in the Schnorr scheme. 

17. In all of these schemes, Eve can calculate the value of d if she intercept a message
and its signature. She can then forge a message from Alice to Bob. Each case is
described separately in Exercises 23, 24, and 25. 

19. If p = 19 and q = 3, n = 57. Eve can easily calculate φ(n) = φ(57) = 36. Since e is
public, Eve can find d  = e−1 mod n. Eve can now choose a message of her own M,
calculate S = Md mod n. Eve then sends M and S to Bob and pretends that they are
coming from Alice. 

21. If p = 29 and q = 7, then the value of d is between 2 and 7 (it should be less than q
− 1). Since e2 = e1

d mod p and the values of e1, e2, p, and q are public, Eve can find
the value of d using exhaustive search. Eve can now choose a message of her own
M, calculates S1 and S2. Eve then sends M, S1, and S2 to Bob and pretends that
they are coming from Alice.

23. In ElGamal scheme, if Eve can somehow finds out what value of r is used by Alice
to calculate the signature for a particular message, the whole system is broken. Eve
knows the value of M, S1, S2 and r. She can calculate the value of d as shown
below:

     d = (M  − rS2)S1
−1 mod (p − 1)

This is possible if gcd(S1, p −1) = 1, which is very probable. When d is
found, Eve can choose a message of her own (selective forgery), calculate
the signature and send them to Bob fooling him that the message is coming
from Alice. 

25. In DSS scheme, if the value of r revealed, the whole system is broken. Eve knows
the value of M, S1, S2 and r. She can calculate the value of d as shown below:

     d = (rS2 − h(M))S1
−1 mod q

This is possible if gcd(S1, q) = 1, which is very probable. When d is found,
Eve can choose a message of her own (selective forgery), calculate the sig-
nature and send them to Bob fooling him that the message is coming from
Alice. 
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27. This is done to make the calculation possible because if ax ≡ ay mod p, then x ≡ y
mod (p − 1). 

29. In the DSS scheme, we need to make both S1 and S2 smaller than q. However, to
make it more difficult for Eve to find the value of r, we first do exponentiation in
modulo p (which is much larger than q), but we apply another modulo operation to
reduce the size of S1. In case of S2, since there is no exponentiation and the size of
the digest is smaller than q, we need to apply only a modulo q operation to make
the size of S2 smaller than q.   

31. We start with V and show that it is congruent to S1. Let h(M) = x.  

33.

V = (e1
xS2−1 e2

S1 S2−1 mod p mod q  = (e1
x   e2

S1) S2−1 mod p mod q 

 V = (e1
x   e1

dS1) S2−1 mod p mod q                                // Since e2 = e1
d mod p   

 V = (e1
x + dS1) S2−1 mod p mod q   

 V = (e1 
rS2) S2−1 mod p mod q                          // Since S2 = (x + dS) r−1mod q

 V = (e1
r) S2S2−1 mod p mod q = (e1

r) mod p mod q = S1
 

RSA_Signing (M, d, n)
{

S  ← Md mod n 
return (M, S) 

}

RSA_Verifying (M, e, n, S)
{

M′  ← Se mod n 
if (M’ = M)     

   Accept M
else    

   Reject M
}



5

35.

37.

Schnorr_Signing (M, r, e1, d, p, q)
{

S1  ← h (M | e1
r mod p) 

S2  ← (r  + d × S1)  mod q 
return (M, S1, S2)

}

Schnorr_Verifying (M, e1, e2, p, q, S1, S2)
{

V  ← h (M | e1
S1 × e2 

−
 
S2 mod p) 

if (S1 = V)     
   Accept M

else    
   Reject M
}

EllipticCurve_Signing (M, a, b, r, e1(…, …), d, p, q)
{

P(u, v)  ← r × e1(…, …) 
S1  ← u mod q 
S2  ← (h (M)  + d × S1) r−1  mod q 
return (M, S1, S2)

}

EllipticCurve_Verifying (M, a, b, e1(…, …), e1(…, …), p, q, S1, S2)
{

A ← (h (M) × S2
−1) mod q   

B ← (S1 × S2
−1) mod q

T(x, y)  ← A × e1(…, …) + B × e1(…, …)    
V  ← x mod q 
if (S1 = V)     

   Accept M
else    

   Reject M
}
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