11

Scheduling Problems
and Bin Packing

Author: Robert A. McGuigan, Department of Mathematics, Westfield State
College.

Prerequisites: The prerequisites for this chapter are basic concepts of graph
theory. See, for example, Sections 9.1, 9.2, and 9.4 of Discrete Mathematics and
Its Applications.

Introduction

Imagine a job which is composed of a number of different tasks. To complete
the job all the tasks must be completed. The tasks are performed by a number
of identical processors (machines, humans, etc.) Each task has an associated
length of time required for its completion. A scheduling problem, then, is
to decide in what order and at what times the tasks should be assigned to
processors; that is, how the tasks should be scheduled. These problems are
found in many places. They can be involved in such activities as budgeting and
resource allocation, making work assignments, manufacturing, and planning.
Scheduling problems also arise in the efficient use of highly parallel computers.

The goal in scheduling may be to achieve the shortest possible time for
completion of the job, to use the smallest possible number of processors to

187

188 Applications of Discrete Mathematics

complete the job within a specified time, or to optimize performance according
to some other criterion.

Scheduling Problems

In order to make our problem more specific and for simplicity, we need to make
some assumptions. First we will assume that any processor can work on any
task. In addition we will always assume the following two rules:

(i) No processor can be idle if there is some task it can be doing.

(ii) Once a processor has begun a task, it alone must continue to
process that task until it is finished.

We make these rules to simplify our discussion. Rule (i) seems reasonable
if our goal is efficiency. Rule (ii) seems more restrictive. After all, a lot of jobs
are done by teams, and a processor might well do part of a task, leave it or turn
it over to another processor, and work on some other task. In theory, though,
we could consider very small, “atomic” tasks that could not be shared. An
example might be punching a key on a keyboard. For such tasks rule (ii) does
not seem unreasonable. We can also make a case for rule (ii) on the grounds
of efficiency. If the processors are people, time may be lost in the change of
processors in mid-task.

Example 1 Suppose two people are planning a dinner party. Both people
are skilled cooks and can do any of the tasks associated with this job, so rules (i)
and (ii) are satisfied. Suppose the job of giving the dinner party is composed
of the following tasks and completion times.

Task Time

(in minutes)
Decide guest list (GL) 15
Plan the menu (M) 30
Clean house (CH) 80
Purchase food (PF) 45
Cook food (CF) 125
Set table (ST) 15
Serve food (SF) 15

Some of these tasks must be done before others can be begun. For ex-
ample, the food must be purchased before it is cooked or served. When this
happens we say that purchasing the food is a precedent of cooking the food.
Whenever task A must be completed before task B can be started we say A is
a predecessor or a precedent of B. Dependence of tasks on the completion
of other tasks is common in complex projects. We can state the precedence
relations for our cooking project in the following list.

Chapter 11 Scheduling Problems and Bin Packing 189

Task Must be preceded
by task(s)
Decide guest list (GL) none
Plan the menu (M) GL
Clean house (CH) none
Purchase food (PF) M
Cook food (CF) CH, PF
Set table (ST) CH, M
Serve food (SF) ST, CF O

Another way to describe the precedence relationship between tasks is by
a directed graph. Each task is represented by a vertex and there is a directed
edge from A to B if A must be completed before B can be begun. The graph
can be simplified (if desired) by eliminating an edge from A to B if there is a
different directed path from A to B. This simplification is not essential for the
way we are going to use the graph, but it makes it easier to understand. We
do not lose any precedence information this way since if we delete edge (A, B)
there must be an alternative directed path from A to B. The fact that A must
be completed before B is started is implied by the directed path.

The completion time for each task is written inside the circle for the vertex
representing that task. A graph of this sort is called an order requirements
digraph.

Example 2 Draw the order requirements digraph for the dinner party of
Example 1.

Solution: The digraph is drawn in Figure 1. O

CH PF CF
Figure 1. An order requirements digraph.

An important feature of an order requirements digraph is the critical path.

Definition 1 A critical path in an order requirements digraph is a directed
path such that the sum of the completion times for the vertices in the path is
the largest possible. O

190 Applications of Discrete Mathematics

It is possible that there may be more than one critical path in an order
requirements digraph. In that case all critical paths must have the same sum
of times for their vertices.

Since the tasks on a critical path must be done in the order they occur on
the path, the sum of the times for a critical path gives us a lower bound for the
completion time for the whole project. If the number of processors available
is unlimited, then the total time for the critical path is the shortest possible
completion time for the project.

To see this, note that the earliest starting time (where the start of the
project is time 0) for any task 7' is the largest sum of times on a directed path
to that task. Every precedent of T" will be on a directed path to T. Since
we look for the longest such directed path, all precedents of T will be finished
before we start 7.

If there are a limited number of processors, then this method of determining
the starting time of a task does not apply since it might be necessary to wait
until a processor is available.

Example 3 Find the critical path for the party digraph in Figure 1.
Solution: The critical path for the party digraph is:

GL—- M — PF —-CF — SF

with a total time of 230 minutes. A schedule which is completed within this
time limit is shown in Figure 2. Time is measured horizontally from left to

right. The shaded areas indicate times when the processor is idle. O
015 45 a0 215 230
Person1 |GL| M PF CF icdle:
Person 2 CH 5T idle SF
g0 95

Figure 2. A schedule for the dinner party preparation.

If there is a limited, perhaps small, number of processors, then we could
easily build up a backlog of tasks which have their predecessors completed but
can’t be begun because there is no free processor. When a processor does
become free, which of these ready tasks should be assigned to it?

We amend our definition of the critical path method to state that the ready
task which heads the directed path with the greatest sum of processing times
should be assigned to the next free processor. If there is more than one such
task, then any of them may be chosen at random. This criterion only applies
when the number of processors is limited. In the unlimited case, every task

Chapter 11 Scheduling Problems and Bin Packing 191

can be assigned to a processor immediately when its predecessors have been
completed.

Example 4 Our critical path method can yield a very bad schedule in some

cases. The example in Figure 3, due to Graham [3], using four processors, shows

the tasks (A—L), their times, and the order requirement digraph. Figure 4 shows

the critical path schedule and an optimal schedule for this example. O
H

o]

L]

o

OO0

o

Figure 3. A bad critical path scheduling problem.

1 4 7 10 13 23
A‘ H ‘ [‘ J K L
E B
F C idlle
G D
10 11 23

Critical Path Schedule

Al H E
E | F
o G
Dl K L
1 4 14

Optimal Schedule

Figure 4. Critical path and optimal schedules.

192 Applications of Discrete Mathematics

If we carry out the critical path method for the order requirement digraph
of Figure 3 assuming there are no limitations on the number of processors, then
we would obtain the schedule shown in Figure 5.

cl o idle

idle

1 3 10 14

Figure 5. An optimal schedule.

In this case we would use seven processors and still obtain an optimal
completion time of 14 time units.

Optimal Algorithms

Since optimal schedules are by definition the best possible, it is natural to ask
whether some efficient algorithm other than the critical path method would
always yield the optimal schedule for a job. We ask for an efficient algorithm
because it is always possible to find an optimal schedule by exhaustive search.
That is, we simply examine all possible schedules and select one that takes the
least time to complete. The problem with this approach is that if the number
of tasks is very large, generating all possible schedules takes an unacceptable
amount of time even using a computer.

Algorithm analysis is concerned with measuring how much time (or how
many steps) is necessary for execution of an algorithm, as a function of the size
of the problem. In the case of scheduling, the size might be measured by the
number of tasks. An algorithm is generally considered efficient if the number of
steps for its execution is bounded above by a polynomial function of the size of
the problem. Then we would say that there is a polynomial time algorithm for
the problem. For an exhaustive search to find an optimal schedule for n tasks
we would expect the number of steps to grow at a rate similar to that of n!.
Exhaustive search is thus highly inefficient.

Mathematicians have developed a term which describes algorithmic prob-
lems for which no polynomial time algorithm has been found, but which have

Chapter 11 Scheduling Problems and Bin Packing 193

a similar property. Specifically, a problem belongs to the class NP if having
somehow (even by guessing) obtained the correct solution, it is possible to check
it in polynomial time. Many difficult algorithmic problems have been shown
to belong to class NP. In fact, many such problems are what is known as NP
complete. This means that they belong to class NP and that if they have a
polynomial time solution algorithm, then so do all other problems in NP. It is
generally conjectured, but not yet proved, that NP-complete problems do not
have polynomial time solution algorithms. It has been proved that the general
problem of finding optimal schedules is NP-complete.

In view of this, we have little hope of finding efficient algorithms for the
general optimal scheduling problem. Therefore, it becomes interesting and im-
portant to find efficient algorithms which, while not always yielding optimal
schedules, do produce schedules which are close to optimal, or at least not too
far from optimal.

It can be shown that the ratio of the completion time of a critical path
schedule to that of an optimal schedule can never be greater than 2. That
is, critical path schedules can never take more than twice the time of optimal
schedules. In certain cases the critical path method does even better. If the
tasks are independent (that is, there are no precedence relations among the
tasks), then a critical path schedule never takes more than one third more time
than an optimal schedule. (See reference [3].)

Critical path schedules could easily not be optimal, but as a practical
matter we have seen that there is a limit to how bad they can be. Furthermore,
it may be relatively easy to modify a critical path schedule to get an optimal
one.

A special case in which good methods do exist for determining an optimal
schedule occurs when there are just two processors and all the tasks have equal
length. We describe two such methods here. Since all the tasks are assumed to
take the same amount of time to process, we will not mention the time for each
task explicitly.

Example 5 The Fujii-Kasami-Ninomiya method, developed in 1969, makes
use of the idea that two tasks A and B can be executed during the same
time interval only if they are incomparable, i.e. there is no directed path from
one to the other. Start with an order-requirement digraph. Create a second,
non-directed graph called the incomparability graph of the tasks by having a
vertex for each task and connecting two vertices by an edge if and only if the
corresponding tasks are incomparable. Figure 6 shows an order-requirement
digraph and its incomparability graph.

Now find in the incomparability graph the largest set of edges having no
two with a vertex in common. In Figure 6 the edges AB, CD, EF, GH, and IJ
form such a set of edges. These pairs of vertices then show the tasks to execute
simultaneously. The rest (if any) are executed one at a time.

194 Applications of Discrete Mathematics

i ——l
A F
H
Es E J
G O G

Incomparakiliy Graph

Figure 6. An order requirement digraph and incomparabil-
ity graph.

Sometimes this method does not yield pairs of tasks which can be executed
simultaneously. For example, instead of the edges we chose above suppose we
had picked AB, CG, EF, DH, and IJ. Then we cannot execute C and G
simultaneously and D and H simultaneously. In this and similar cases it is
necessary to exchange some vertices to obtain simultaneously executable pairs.
Here we would exchange G and D to get our original set. O

Good algorithms exist for finding the required maximal set of disjoint edges.

Example 6 The second method we present is the Coffman-Graham algo-
rithm. This algorithm works only with the order-requirement digraph. To
begin, remove all unnecessary directed edges from the order-requirement di-
graph. That is, if there is a directed edge from A to B and some other directed
path also from A to B, then remove the directed edge. This must be done as
much as possible.

Now choose a vertex with no outgoing directed edges, i.e. no successor
vertices, and assign it label 1. Continue numbering tasks with no successors
with 2, 3, etc., until all such tasks are numbered.

For each task which has all its successor vertices numbered, create a se-
quence of all its successors’ numbers in decreasing order and assign that se-
quence as a temporary label to the vertex. Once all possible temporary se-
quence labels have been assigned, determine the vertex whose sequence label

Chapter 11 Scheduling Problems and Bin Packing 195

comes first in dictionary order and assign that vertex the next available number
as a permanent label. Recall that in dictionary order (5,6,1) is smaller than
(6,2,1), (5,6,1,7), and (7). Repeat this process until all vertices have been
assigned permanent number labels. The optimal schedule is now obtained by
assigning to any free processor the highest numbered task not yet processed.
Figure 7 shows the digraph in Figure 6 with labels assigned.

& | E|F I

B|D|G|H

Schedule

Figure 7. Labeled order requirement digraph.

The idea behind this algorithm is to place earlier in the schedule tasks
which either head long directed paths or have many successors. This differs
from the critical path method which only considers whether a task heads a long
path. O

To describe the Coffman-Graham algorithm (Algorithm 1) in pseudocode,
let T'(v) be the temporary label of v, L(v) be the permanent label of v, and
let S(v) be the set of all successors of the vertex v, i.e. the set of all vertices w
such that there is a directed edge from v to w.

Bin Packing

Up to now we have been studying the problem of finding the shortest completion
time for a job when the number of processors is fixed in advance. Now we ask,
given a deadline time d, what is the minimum number of processors needed
to complete the job within the deadline? This sort of problem is known as a
bin packing problem. For bin packing we imagine a set of objects O1,...,0,
with weights wy,...,w,. The goal is to pack the objects into the minimum
number of identical bins, each having the same capacity of holding at most a
total weight of W. In the scheduling version the processors are the bins, the
tasks are the objects, and the weights are the times of the tasks. We try to
assign tasks to the fewest possible processors provided that no processor can be
assigned tasks whose total time exceeds the deadline time.

Bin packing problems are very common. For example, consider the prob-
lem of determining the minimum number of standard length boards needed to

196 Applications of Discrete Mathematics

ALGORITHM 1 Coffman-Graham Algorithm.

procedure Coffman-Graham(G: order requirement digraph)
{G has vertices vy, ...,v,}
for all pairs of vertices u,v of G
if (u,v) is a directed edge and there is a different directed
path from u to v then delete (u,v)
U := set of all vertices of G
{U is the set of unlabeled vertices}
for allv e U, L(r) :=
c:=1
{c is next available value for L}
fori:=1ton
if outdegree(v;) = 0 then
begin
L(v;) :=c¢
ci=c+1
end
{all vertices with no successors are labeled}
while U # ()
for all vertices v € U
begin
if L(w) # oo for all w € S(v) then T'(v) := the decreasing
sequence of L(w) for all w € S(v)
among all v with L(v) = co and T'(v) assigned, choose
v with minimal T'(v) in dictionary order
L(v):=c¢
{v has a permanent label}
ci=c+1
U:=U—-{v}
end
{assign the vertices to processors in decreasing order of L(v)}

produce a certain amount of boards of various non-standard lengths. In this
case the objects are the shorter boards and the bins are the standard length
boards. A more obvious example of bin packing is the problem of loading ob-
jects onto trucks for transportation. Each truck has a limit to the amount of
weight it can carry and we wish to use as few trucks as possible. Consider also
the problem of scheduling patients in an emergency room setting. Each doctor
can only provide a limited amount of service, we want to have each patient
taken care of as soon as possible with as few personnel as possible.

Chapter 11 Scheduling Problems and Bin Packing 197

Analogous situations occur whenever some commodity is supplied in stan-
dard amounts and must be subdivided into given smaller amounts. In the
context of scheduling theory we shall consider only the case where there are no
precedence relations among the tasks, i.e., the tasks are independent. Even in
this simplified situation no good algorithm is known which produces optimal
solutions in every case. The only known algorithm which always produces op-
timal solutions is exhaustive search: examine all possible packings and choose
the best one. This method is so inefficient that even moderate size problems
would require more computing capacity than currently exists in the world.

Again we are forced to try for algorithms which will not produce packings
that are too bad. One approach is known as list processing. The objects to
be packed are arranged in a list according to one of many possible algorithms
and then processed in the order of the list. For example, consider the first-fit
algorithm. The weights are arranged arbitrarily in a list (w1, ws,...,w,). We
then pack the objects in the order of the list, putting an object in the first
bin it will fit into and opening a new bin when the current weight will not fit
in any previously opened bin. Let FF(L) be the number of bins required for
the list L according to the first-fit algorithm and let OPT'(L) be the smallest
possible number of bins for L. In 1973, Jeffrey Ullman showed that

1
FF(L) < 1—SOPT(L) +2
for any list of weights L.
Algorithm 2 gives the pseudocode description of the first-fit algorithm.

ALGORITHM 2 First-fit Algorithm.

procedure FF(W: an arbitrary list wy, ..., w,)

{b1,... is the list of bins; object O; has weight w;; L(b;) =
total weight placed in b;}

k=1

{k is number of bins opened}

fori:=1ton

begin
{find first available bin}
7j:=1
while O; not packed and j < k
begin
if L(b;) + w; < d then pack O; in b;
Jgi=j+1
end

if j=k+1 then open b; and pack O; in by11
end

198 Applications of Discrete Mathematics

One of the reasons FF(L) might be large is the arbitrary order of the
weights in L. The large weights might come at the end of the list. Perhaps a
more efficient packing could be accomplished if the weights were first sorted
into decreasing order. This method is known as first-fit-decreasing, and the
number of bins it requires is FFD(L). It has been shown that

FFD(L) < 1—910PT(L) +4.

For lists requiring a large number of bins, the 4 is relatively insignificant and
FFD is much more efficient than FF.

Example 7 Use the first-fit algorithm to pack the following weights in bins
of capacity 100:

To7 7 7 7 12 12 12 12 12 15 15 15

36 36 36 36 36 52 52 52 52 52 52 52

Solution: The first-fit algorithm yields the following bin packing:
bin 1. 7 7 7 7 7 12 12 12 12 12

bin 2 15 15 15 36 bin 3: 36 36
bin 4: 36 36 bin 5: 52
bin 6: 52 bin 7: 52
bin 8: 52 bin 9: 52
bin 10: 52 bin 11: 52.

However, an optimal packing uses only 7 bins:

bin 1: 52 36 12

bin 2: 52 36 12

bin 3: 52 36 12

bin 4: 52 36 12

bin 5: 52 36 12

bin 6: 52 15 15 15
bin 7: 52 7T 7T 7T T T

This packing is optimal because the total weight to be packed is 684, so it
cannot be packed in 6 bins of capacity 100. O

Though FFD is more efficient, FF has at least one advantage. FF can be
used when the list of weights is not completely available while the packing is
being done. This could easily occur in a factory where trucks are loaded as
objects are produced.

The scheduling and bin packing problems presented here are typical. Per-
haps the reader can think of many more; indeed they are ubiquitous in modern
life. Furthermore, as is the case with many difficult algorithmic problems, it

Chapter 11 Scheduling Problems and Bin Packing 199

is most likely impossible to find efficient optimal algorithms. Thus research is
focussed on finding algorithms which yield good solutions or ones that are not
too far from optimal. This topic is the subject of much current research. The
reader interested in additional results, more technical details, and additional
technical references is urged to consult the references below.

Suggested Readings

1. M. Garey and D. Johnson, Computers and Intractability. A Guide to the
Theory of NP-Completeness, W. H. Freeman, New York, 1979.

2. M. Garey, R. Graham, and D. Johnson, “Performance guarantees for sched-
uling algorithms”, Operations Research, Vol. 26, 1978, pp. 3-21.

3. R. Graham, “Combinatorial Scheduling Theory”, Mathematics Today, ed.
L. Steen, Springer-Verlag, 1978.

Exercises

1. A researcher plans a survey consisting of the following tasks:

Task Precedences Time (days)
Design of questionnaire (A) none 5
Sample design (B) none 12
Testing of questionnaire (C) A 5
Recruit interviewers (D) B 3
Train interviewers (E) D, A 2
Assign areas to interviewers (F) B 5
Conduct interviews (G) C,E,F 14
Evaluate results (H) G 20

Construct the order requirement digraph for this project.

2. A construction company assembles prefabricated houses in its factory and
transports them to the site where they are attached to the foundations.
The job consists of the following tasks:

200 Applications of Discrete Mathematics

Task Precedences Time (days)

Inspect site and prepare plans (A) none 3

Level site and build foundation (B) A 4
Construct wall panels, floors

roof, and assembly (C) A 5
Transportation to site and

positioning on foundation (D) C 1
Attach to foundation and make

final installation (E) B,D 4

Construct the order requirement digraph for this project.

3. A publisher wishes to put out a new book. What is the earliest date that
the book can be ready? The following tasks and times are involved. Assume
unlimited processors. Find the optimal schedule.

Task Precedences Time (weeks)
Appraisal of book by reviewers (A) none 8
Initial pricing (B) none 2
Market assessment (C) Ab 2
Revision by author (D) A 6
Editing of final draft (E) C,D 4
Typesetting (F') E 3
Preparation of plates (G) E 4
Design of jacket (H) C,D 6
Printing and binding (1) FG 8
Inspection and final assembly (J) I.H 1

4. Find the critical path schedule for the job with the following order require-
ment digraph.

a) With unlimited processors.
b) With only two processors.

5. Consider the following order requirement digraph.
a) Assuming only two processors, find the critical path schedule.
b) What is the optimal schedule for two processors?
¢) What about unlimited processors?

Chapter 11 Scheduling Problems and Bin Packing 201
ON
® TS
)

A

B

6. Apply the Fujii-Kasami-Ninomiya method to the following order require-
ment digraph.

7. Apply the Coffman-Graham algorithm to the following order requirement
digraph.

8. A certain type of carton can hold a maximum of 140 pounds. Objects
weighing 85, 95, 135, 55, 65, 25, 95, 35, 35, and 40 pounds are to be packed
in these cartons.

a) Use first-fit on the list as given to determine how many cartons are
required.

b) Use first-fit decreasing to determine how many cartons are required.

¢) What is the optimal number of cartons for these weights?

9. A shelf system is to be constructed. It requires boards of lengths 7, 7, 6, 6,
6,5,5,5,5,3,3,3,3,4,4,8,8,6,6,9,9, 5, 5, and 6 feet. The lumber
yard only sells boards with length 9 feet.

a) Determine how many boards must be bought using FF.

202 Applications of Discrete Mathematics
b) Determine how many boards must be bought using FFD.
¢) What happens if the boards at the lumber yard are 10 feet long?

10. Make up a list processing method different from FF and FFD. Are there
cases where your method might be preferable to FF and FFD?

Computer Projects

1. Implement the FF algorithm for bin packing.
2. Implement the FFD algorithm for bin packing.

3. Carry out an empirical investigation of the relative efficiency of FF and
FFD by generating lists of weights at random and bin sizes at random,
running both algorithms on the same weights many times, and repeating
this many times.

4. Implement the Coffman-Graham algorithm.

