
23

Network Flows

Author: Arthur M. Hobbs, Department of Mathematics, Texas A&M Uni-
versity.

Prerequisites: The prerequisites for this chapter are graphs and trees. See
Sections 9.1 and 10.1 of Discrete Mathematics and Its Applications.

Introduction
In this chapter we solve three very different problems.

Example 1 Joe the plumber has made an interesting offer. He says he has
lots of short pieces of varying gauges of copper pipe; they are nearly worthless
to him, but for only 1/5 of the usual cost of installing a plumbing connection
under your house, he will use a bunch of T- and Y-joints he picked up at a
distress sale and these small pipes to build the network shown in Figure 1. He
claims that it will deliver three gallons per minute at maximum flow. He has
a good reputation, so you are sure the network he builds will not leak and will
cost what he promises, but he is no mathematician. Will the network really
deliver as much water per minute as he claims?

408

Chapter 23 Network Flows 409

Figure 1. A plumber’s nightmare.

Example 2 We want to block access to the sea from inland town s on
river R. We can do this by dropping mines in the river, but because the river
spreads out in a wide delta with several outlets, the number of mines required
depends on where we drop them. The number of mines required in a channel
ranges from a high of 20 mines in R to a low of 1 in some channels, as shown
in Figure 2. In that figure, each channel is shown with a number indicating
how many mines will block it. What is the smallest number of mines needed to
block off s’s access to the sea, and where should the mines be placed?

Figure 2. Delta system of river R and numbers of mines
needed to close channels.

Example 3 At Major University, Professor Johnson is asked to hire graders
for 100 sections spread among 30 different courses. Each grader may work for
one, two, or three sections, with the upper bound being the grader’s choice,
but the number actually assigned being Professor Johnson’s choice. Professor
Johnson contacts the potential graders, learns from each both his choice of
number of sections and which courses he is competent to grade, and makes a
table showing this information, together with the number of sections of each
course being offered. Because the real problem is too large to use as an example
here, Table 1 gives a smaller example. How should the assignment of graders
be made?

In this chapter, we begin with Example 1, solve Example 2 on the way to
solving Example 1, and then solve Example 3 by using the theory developed.
Many more kinds of problems are solved using the methods of this chapter in
the book Flows in Networks by Ford and Fulkerson [4].

410 Applications of Discrete Mathematics

Course Course Course Course Max # Sec.
1 2 3 4 Wanted

Student 1 yes yes no no 3
Student 2 yes no yes yes 2
Student 3 no yes yes yes 3

Sec. Needed 3 1 1 2

Table 1. Graders and courses.

Flow Graphs
In Example 1, we have a network of pipes that can be modeled by a graph
with weights on the edges. Here, the T- and Y-joints and the inlet and outlet
are represented by vertices, the pipes are represented by edges, and the weight
on each edge is the capacity of the corresponding pipe in gallons per minute.
Moreover, in this example we have water flowing from vertex s to vertex t
as labeled in Figure 1. For a general solution to the problem, let us use the
following terminology.

Definition 1 Let G be a graph in which there are two designated vertices,
one the source of all flow, and the other the sink, or recipient of all flow. At
every other vertex, the amount of flow into the vertex equals the amount of
flow out of the vertex. The flows are limited by weights, or capacities, on the
edges. The edges may be undirected or directed. We designate the capacity of
an edge e by c(e). We will call a graph with capacities on the edges, a source
s, and a sink t, a capacitated s, t-graph.

Because we are searching for flows, we will show the flow through each
edge of a capacitated s, t-graph as another number on the edge. To prevent
confusion, we will designate the capacity of an edge and the amount of flow in
it by a pair of numbers in parentheses on the edge, the capacity being the first
number of the pair.

Example 4 Find a flow in the graph of Figure 3.

Solution: The path p = s, b, a, t extends from s to t, and seen as a sequence
of pipes, the largest amount of flow that could travel along it is the minimum
of the capacities of the pipes comprising it. This minimum is 2, which is c(s, b)

Chapter 23 Network Flows 411

Figure 3. A small capacitated s,t-graph.

and also c(b, a). Thus we put number pairs on each of the edges, the second
entry being 2 for each edge in the path and 0 for the other two edges. The
result is shown in Figure 4.

Figure 4. Graph of Figure 3 with flow along path s,b,a,t.

There are two ways we can view a flow, and Example 4 illustrates them
both. One view is to trace out the path from the source to the sink of one
or more units of flow. In the example, path p is such a path. The other view
is to measure the total flow in each edge of the graph. This view is shown in
the example by our placing the amount of flow along each edge. Since there is
actually only one flow, namely the orderly procession of fluid from the source
to the sink through the network, these two views must be equivalent.

When solving the problem of finding maximum flows through the graph,
the second view is preferable for two reasons. If we are searching a very large
network by hand, it may well be impossible for us to find a best set of paths
from the source to the sink, especially after several paths for flow have already
been found. Searching for such paths is very like searching through a maze,
since flow in an edge limits, perhaps to 0, the additional flow that may pass
through that edge. For the second reason, we need only realize that problems of
this sort are likely to be programmed on a computer, and computers are much
better at examining local situations than global ones.

However, using the first view, we can detect rules that must be satisfied
by a flow described as in the second view. To state these rules easily, we need
to define several terms.

412 Applications of Discrete Mathematics

Let A be a subset of V in directed graph G = (V, E), and let B = V − A.
Let c(A, B) be the sum of the capacities of the edges directed in G from vertices
in A to vertices in B, and let c(B, A) be the sum of the capacities of the edges
directed in G from vertices in B to vertices in A. Similarly, let f(A, B) be the
amount of flow from A to B, i.e., the sum of the flows in the edges directed
from vertices in A to vertices in B. Let f(B, A) be the amount of flow from B
to A. Then the net flow F (A) from A is defined by

F (A) = f(A, B) − f(B, A).

For example, in Figure 4, if A = {s, b}, then f(A, B) = 2 and f(B, A) = 0.
Hence F (A) = 2. Similarly, F ({b}) = 2 − 2 = 0 and F ({s, t}) = 2 − 2 = 0,
while F ({b, t}) = 2 − 2 − 2 = −2.

Note that F ({s}) is the total number of units of flow moving from the
source to the sink in the graph. Our objective is to find a flow for which F ({s})
is maximum.

Since every unit of flow that enters a vertex other than the source or sink
must go out of that vertex, we have the following theorem.

Theorem1 Suppose G is a directed capacitated s, t-flow graph, and suppose
A ⊆ V (G).

1. If s ∈ A and t �∈ A, then F (A) = F ({s}).
2. If t ∈ A and s �∈ A, then F (A) = −F ({s}).
3. If A ∩ {s, t} = ∅ or if {s, t} ⊆ A, then F (A) = 0.

Proof: These facts are evident because all of the material flowing goes out of
the source, the material all goes into the sink, and none is lost or gained at any
other vertex.

Although the definitions and theorem are given for directed graphs only,
we can include undirected edges as follows. Although material can flow in either
direction along an undirected edge, as a practical matter it will flow in only one
direction (although we may not know in advance in which direction it will flow
in a particular edge). Thus each undirected edge e = {a, b} can be regarded as
a pair of directed edges (a, b) and (b, a) joining the ends of e. Since the flow
could go either way, we assign the capacity c(e) of the edge e to both directed
edges as c(a, b) and c(b, a). Further, using this device, we can designate the
flow on the edge by f(a, b) or f(b, a) without ambiguity.

If, in the midst of an analysis, we discover we show flow going in both
directions, it is clear that we can cancel the circulation in the two edges, leaving
only that part of the flow which is actually passing through the pair of edges.
For example, in Figure 5(a), we see a flow of 2 units from s to t, but f(a, b) = 4
while f(b, a) = 2. In Figure 5(b), the 2-unit circulation around the circuit a, b, a

Chapter 23 Network Flows 413

has been eliminated (the 2 units along edge (b, a) have canceled 2 of the units
along edge (a, b)) leaving the simpler, but equally accurate, picture of 2 units
flowing from s to t through the path s, a, b, t. In general, if both (a, b) and (b, a)
carry non-zero flow, we treat the combined flow by placing a flow of 0 on the
smaller flow edge and replacing the flow on the other one by |f(a, b)− f(b, a)|.

Figure 5. Flow graph illustrating cancellation of flow in a
pair of oppositely directed edges.

Increasing the Flow

Example 5 Increase the flow in the graph of Figure 4.

Solution: In Figure 4 it is easy to see that the flow shown is not the largest
possible. In fact, consider the path s, a, t. Since c(s, a) = 3 while f(s, a) = 0, we
could get three more units of flow to vertex a by using the edge (s, a). Then one
of those units could go on to t through (a, t) since c(a, t) = 3 while f(a, t) = 2,
or c(a, t) − f(a, t) = 1. Thus we can get min(3, 3 − 2) = 1 unit of flow through
s, a, t, producing the flow shown in Figure 6(a).

Figure 6. Steps in increasing flow.

In general, if we can find a sequence p = s, x1, x2, . . . , xn, t from the source s
to the sink t in which every directed edge is directed in the same direction as
the sequence (so that the sequence describes a path) and in which every edge
has capacity exceeding the flow already in the edge, then we can increase the
flow from s to t by simply adding flow to the path p. In such a case, the total
amount of flow that can be added cannot exceed the additional amount that

414 Applications of Discrete Mathematics

can be forced through any one of the edges in p, so the total flow increase by
using such a path p is

min
e∈E(p)

(c(e) − f(e)).

But what if no such sequence of vertices exists?

Example 6 Increase the flow in the graph of Figure 6(a).

Solution: It is not obvious that the flow in this graph can be increased.
However, we note that we could get c(s, a)−f(s, a) = 2 more units of flow from
s to a, and if we had 2 more available at b, we could move them on through
(b, t) to t. But let us rearrange the flow. If we erase the two units of flow in
edge (b, a), then the two flowing through (s, b) become available at b to go out
through (b, t). Further, the two additional units available at a can replace the
two that used to go through (b, a) to a, thus allowing the flow of 2 units through
(a, t) to continue. Thus we arrive at the flow shown in Figure 6(c).

An intermediate step can be interposed between Figures 6(a) and 6(c). This
step is shown in Figure 6(b), where the flow is the same as that in Figure 6(a).
What is different is a record at each vertex of a possibility of increasing flow.
We may suppose that an infinite supply is always available at s, so we have
labeled s with (−,∞), where the “−” indicates only that all flow begins at s.
At vertex a, we see the label (+s, 2), which signifies that two units of flow could
come through edge (s, a) because c(s, a) − f(s, a) = 2. At vertex b is the label
(−a, 2), showing that 2 units of flow could come to b by canceling the flow on
edge (b, a). The operation of cancellation is shown by the “−” attached to a
in the label. Finally, t has the label (+b, 2), showing that 2 units of flow are
available at t, coming from b.

Let us look at the rearrangement of Example 6 another way. Consider the
“path” s, a, b, t in Figure 6(b). We increased the flow on edges (s, a) and (b, t)
by two units, and we decreased the flow on edge (b, a) by the same two units.
These operations are signaled by the signs attached to the first label on each
vertex as described in the example. The result was the increase of flow in the
graph by two units.

Since s, a, b, t is not a path in Figure 6(a) (the edge (b, a) is directed against
the order of the sequence), let us give such a sequence a name of its own.

Definition 2 A chain from x0 to xn in a directed graph G is a subgraph P
of G whose vertices can be placed in a sequence x0, x1, . . . , xn such that, for
each i ∈ {0, 1, . . . , n − 1}, either (xi, xi+1) ∈ E(P) or (xi+1, xi) ∈ E(P) and no
other edges are in E(P).

Figure 7 shows an example of a chain from x0 to x5.

Chapter 23 Network Flows 415

Figure 7. A chain from x0 to x5.

Example 6 illustrates the following general principle.

Theorem 2 Suppose P with vertex sequence x0, x1, . . . , xn is a chain from
the source s = x0 to the sink t = xn in a capacitated s, t-graph G, and sup-
pose, for each i, either (xi, xi+1) ∈ E(P) and c(xi, xi+1) − f(xi, xi+1) > 0, or
(xi+1, xi) ∈ E(P) and f(xi+1, xi) > 0. Let x be the smallest among the values
c(xi, xi+1) − f(xi, xi+1) on edges (xi, xi+1) ∈ E(P) and f(xi+1, xi) on edges
(xi+1, xi) ∈ E(P). Then increasing the flow by x on the edges (xi, xi+1) and
decreasing it by x on the edges (xi+1, xi) of P increases F ({s}) by x.

We call a chain like that described in Theorem 2 an augmenting chain
in the capacitated s, t-flow graph.

The labels on the vertices are used to find augmenting chains. Let us
visualize ourselves as exploring the graph, starting at vertex s with infinitely
many units of flow available to us. As we move through the graph, searching
for t, we keep a record of the amounts of new flow that can reach each vertex.
This record is the set of vertex labels we show in Figure 6(b).

The labels are governed by two considerations.

1. If x units of flow can reach vertex m, and if edge (m, n) exists,
and if c(m, n)− f(m, n) > 0, then y = min(x, c(m, n)− f(m, n)) units
can be gotten to n by following the chain from s to m already found
and then pushing as much flow as possible through (m, n). (This
amount of flow is the smaller of the amount available and the amount
that can go through the edge.) This is signaled by placing the label
(+m, y) at vertex n.

2. If x units of flow can reach vertex m, if edge (n, m) exists,
and if f(n, m) > 0, then y′ = min(x, f(n, m)) units become available
at n by canceling y′ units of flow from edge (n, m). The effect of the
cancellation is to feed the y′ ≤ x units of flow needed at m after the
cancellation by using y′ of the x units of new flow available at m, while
using the y′ units that were flowing through (n, m) as the source of
the new y′ units available at n.

When we label vertex n by using a label on vertex m and either edge (m, n)
or edge (n, m), we say we label n from m and that we are labeling across
edge (m, n) or (n, m).

We interpret the labels backwards to describe the augmenting chain. The
first label on each vertex names the vertex preceding it on the chain from s
found during the labeling process. For example, consider the labels on the flow

416 Applications of Discrete Mathematics

graph shown in Figure 8(a). There (ignoring signs) the first label on t is a,
so the augmenting chain vertex sequence ends with a, t. The first label on a
is b, so the augmenting chain vertex sequence ends with b, a, t. Finally, the first
label on b is s, so the augmenting chain vertex sequence is s, b, a, t.

Figure 8. Showing an augmenting chain being found using
labels and being used to increase flow.

When a vertex n is labeled from vertex m, the second label is always the
minimum of the second label on m and the amount c(m, n)−f(m, n) or f(n, m)
which can be gotten to n from m through the edge. Since the second label on s
is ∞, the result is that the second label always gives the largest amount that
can get to the vertex labeled. Thus when t is labeled, the second label of t states
the increase of flow given by the augmenting chain specified by the labels. For
example, in Figure 8(a) the augmenting chain has vertex sequence s, b, a, t, and
the amounts of flow that can be forced through the edges of the chain are 4, 3,
and 2, successively, with a minimum of 2. Because of the way second labels are
chosen, the second label on t is this amount 2.

Example 7 Find an augmenting chain in the graph shown in Figure 8(a),
in which there is a preexisting flow of 3 units.

Solution: We label s with (−,∞), and from there we label b with (+s, 4).
From b we can label a by canceling flow in (a, b), so a receives the label (−b, 3).
From a we can label t with label (+a, 2). These labels are shown in Figure 8(a).
Reading first labels backwards, we find the augmenting chain is s, b, a, t as
discussed before, and the chain will increase the flow by 2 as the second label
on t shows. The resulting flow is shown in Figure 8(b), where 3 units of flow go
out of s to a and split there into 2 units that flow directly to t and one that goes
to t through b. In addition, 2 units of flow go from s through b to t, making a
total of 5 units of flow shown in Figure 8(b).

While we are labeling we can keep track of what is possible, without con-
cerning ourselves whether there is actually a chain available from s to t along

Chapter 23 Network Flows 417

which new flow can go. If we can label t, then the flow can be increased; we
will show that if we cannot label t, then the flow cannot be increased.

We are also under no obligation to watch for a chain of labels. Since we
always label an unlabeled vertex from a labeled vertex, s being always labeled
with (−,∞), we automatically form a tree (disregarding the directions of edges).
Thus for each labeled vertex x, our labels describe a unique chain from s to x.
An example of such a tree is shown by boldface edges in Figure 8(a). As shown
in that figure, if we mark on the graph the edges used in labeling vertices, we find
the augmenting chain with vertices s, b, a, t shown in bold lines in Figure 8(a).

Example 8 Find a flow in the graph of Figure 1.

Figure 9. (a) Figure 1 converted to a directed capacitated
s,t-graph. (b) The first labeling and the associated tree for
Example 1.

418 Applications of Discrete Mathematics

Solution: In Figure 9(a), the graph of Figure 1 is reproduced, except that
each undirected edge has been replaced by two directed edges, one in each
direction, each with the same capacity as the undirected edge. Also, the ca-
pacities have been written as the first entries of number pairs, with 0 for flow
as the second number.* Starting with the label (−,∞) at s, we label across
edges as described above. First a is labeled with (+s, 4), and working from a
we label b with (+a, min(4, 3)) = (+a, 3) and d with (+a, min(4, 2)) = (+a, 2),
but we do not label s from a because s already has a label. Labeling from b,
we do not need to label a, but we label c with (+b, min(3, 2)) = (+b, 2) and g
with (+b, min(3, 1)) = (+b, 1). Then we label from c, placing (+c, min(2, 2)) =
(+c, 2) on vertex e, but we place no label on d from c, since d already has a
label. Next we label from d, placing label (+d, min(2, 1)) = (+d, 1) on ver-
tex f . As before, we do not label a from d. Going on to vertex e, we label
nothing from there, since all of its neighbors are already labeled. Next we
label from f , placing label (+f, min(1, 2)) = (+f, 1) on vertex h. Since all
neighbors of g are already labeled, we go on to h, from which we label t with
(+h, min(1, 3)) = (+h, 1). Since t is labeled, we are done.

We use the labels to determine the chain from s to t that was found, along
which a single unit of flow can flow (because the second label on t is 1). The
first label on t is +h, showing that edge (h, t) is the last edge of the chain from s
to t. The first label on h is +f , showing the next-to-the-last edge of the chain
is (f, h). We continue reading backwards, using the first labels, obtaining the
sequence “t, h, f, d, a, s” which reverses to give the chain s, a, d, f, h, t from s
to t along which one unit of flow is added. The tree of edges used in our labeling
is shown by bold lines in Figure 9(b), and Figure 10(a) shows the network with
the flow we found.

To describe a procedure that can be programmed, we need a rule for de-
ciding which edge to label across next. Many such rules are possible; the one
we have adopted here and used in Example 8 is straightforward: Label from
the alphabetically earliest vertex x which has a label and which meets an edge
that has not yet been considered from vertex x, and label all possible vertices
from x before going on to the next vertex. This rule is called the lexicographic
ordering rule.

Once we have increased the flow, the labels we placed on the vertices other
than s are wrong for the new combination of graph and flow, so we erase the
vertex labels and start again from s. Again we explore the graph, searching for
a chain from s to t along which we can increase the flow.

* In Figures 9(b) through 12, to simplify the figures we have shown only the di-

rected edges that contain flow when flow is present and the undirected edges when it

is not.

Chapter 23 Network Flows 419

Figure 10. (a) Second labeling, associated tree, and first
flow for Example 1. (b) Third labeling, associated tree,
and second flow for Example 1.

Example 9 Increase the flow found in Example 8 as much as possible.

Solution: Labeling as before in the graph of Figure 10(a), we obtain the vertex
labels shown in that figure. (Again the associated spanning tree is shown with
bold lines.) Notice there that vertex f could not be labeled from d because
c(d, f) − f(d, f) = 1 − 1 = 0. Hence f was labeled from e.

This time the augmenting chain is s, a, b, c, e, f, h, t, with one more unit of
flow available. The resulting flow is shown in Figure 10(b). Again the labels
are erased and new ones found. This time, since both c(d, f)− f(d, f) = 0 and
c(e, f)− f(e, f) = 1− 1 = 0, f has no label when labeling from e is completed.
Hence we do not try then to label from f , but rather label from g. Later f

420 Applications of Discrete Mathematics

does receive a label; indeed, its label shows that flow should be canceled to
reach f . In a more complex graph, it would then be reasonable to label from f .
In this graph, however, we reach t without using f again. The tree of edges
used is shown in Figure 10(b) with bold edges, and the augmenting chain is
s, a, b, g, h, t.

The resulting flow is shown in Figure 11. We label again, as shown in
Figure 11, and we obtain the tree of edges used, again shown there. However,
the tree does not contain t, so we have not found an augmenting chain. Does
this mean there is no augmenting chain?

Figure 11. Fourth labeling, associated tree, and a minimum
cut.

For the answer to that question, we must bring up machinery appropriate
to Example 2.

Definition 3 Given a directed graph G with capacities on the edges, and
given a nonempty subset A of its vertices such that V (G)−A is also nonempty,
the set of all edges of G directed from vertices in A toward vertices in V (G)−A
is called the cut (A, V (G)−A). The capacity c(A, V (G)−A) of this cut is the
sum of the capacities of the edges in it. If s ∈ A and t ∈ V (G) − A, then we
call the cut an s, t-cut.

Our objective in Example 2 is to find a cut (A, V (G) − A) such that
c(A, V (G) − A) is minimum. In Theorem 3, we begin to tie the maximum
flow and the minimum cut together, and in Theorem 4 we will complete the
connection.

Chapter 23 Network Flows 421

Example 10 Discuss the cuts in the graph of Figure 11.

Solution: In Figure 11, the set of vertices in the tree is A = {s, a, b, c, d, e, g}.
The set of edges directed from A to V (G)−A = {f, h, t} is the cut {(d, f), (e, f),
(g, h)}. Notice that on each of these edges the flow equals the capacity and that
on the return edges (f, d), (f, e), (h, g) in (V (G) − A, A) the flow is zero. The
capacity of the cut is c(d, f)+ c(e, f)+ c(g, h) = 1 + 1 + 1 = 3. Notice also that
this cut is an s, t-cut, and that the capacity of the cut is exactly the same as
the total flow F (A) = F ({s}) = 3.

Theorem 3 The maximum flow from vertex s to vertex t �= s in a directed
graph G with capacities on its edges is less than or equal to the capacity of any
cut (A, V (G) − A) having s ∈ A and t �∈ A.

Proof: Consider any s, t-cut (A, V (G)−A) of graph G. Since any units of flow
from s to t must pass through an edge of this cut, it follows immediately that
F ({s}) ≤ c(A, V (G) − A).

In Example 10, several facts are evident. First, since s has a label and t
does not, any flow from s to t must pass through one or another of the three
edges in the cut (A, V (G)−A). Second, since the return edges in (V (G)−A, A)
are empty, any flow passing through the three edges directed away from A must
continue on toward t. Third, with the edges directed away from A full and the
edge directed toward A empty, there is no conceivable way that the flow we
have found could be increased. In other words, we have found a maximum flow
in this graph from s to t, and its amount is equal to the sum of the capacities
of the edges in this cut separating s from t.

Returning to the graph shown in Figure 6(c), we see another example of
this situation. Vertex s is labeled (−,∞) as usual. Since f(s, a) = c(s, a)
and f(s, b) = c(s, b), the tree of labeled vertices includes only vertex s, so
F ({s}) = c({s}, {a, b, t}) = 5.

Notice that there are no edges directed toward {s}, and both of the edges
directed out of {s} in Figure 6(c) are full. Thus, it is clear that the flow to
vertex t cannot be increased from its value of 5 units shown in Figure 6(c), and
the maximum flow is equal to the sum of the capacities of the edges in the set
{(s, a), (s, b)}. (We will generalize these observations in Theorem 4, following
Algorithm 1.)

The observations made in considering Examples 9 and 10 motivate Algo-
rithm 1.

422 Applications of Discrete Mathematics

ALGORITHM 1 Max-flow min-cut algorithm.

procedure Max-flow min-cut(G := directed graph with source
s, sink t, and capacities on all edges)

label s with (−,∞)
stop := 0
while stop = 0
begin

while t has no label
begin

m := labeled vertex not previously examined, chosen by
using an ordering rule

x := the second label on m
e := edge incident with m and not previously examined

while at m
if e = (m, n) and if n is not labeled and if c(e)−f(e) > 0

then label n with (+m, y) where y = min(c(e)−f(e), x)
if e = (n, m) and if n is not labeled and if f(e) > 0 then

label n with (−m, y′) where y′ = min(f(e), x)
if no such vertex m and edge e exist then stop := 1

end {vertex t has been labeled}
if stop = 0 then p := x0, x1, . . . , xn, an augmenting chain

with s = x0 and xn = t
{p is found using the labels as described in the text}
if stop = 0 then v := the value of the second label on t
i := 0
while i < n and stop = 0
begin

if the first label on xi+1 is +xi then replace the second
label r on edge (xi, xi+1) with r + v

if the first label on xi+1 is −xi then replace the second
label r′ on edge (xi+1, xi) with r′ − v

{r′ ≥ v by the use of minimum as we progress toward t}
i := i + 1

end
erase all vertex labels except the one on s

end {No more labeling is possible. By Theorem 4, the cut
from the set of labeled vertices to the set of unlabeled vertices
is a minimum cut and the flow F ({s}) is a maximum flow.}

Chapter 23 Network Flows 423

Example 11 Solve the problem of Example 2.

Solution: Represent the river system as a graph by assigning a vertex to the
town s, to the ocean t, and to each of the intersections of the channels. Join
two vertices with an undirected edge if a river channel joins the corresponding
points in the river system, and give the edge a capacity equal to the number
of mines it takes to block the corresponding channel. The resulting graph is
shown in Figure 12. Applying Algorithm 1 with the lexicographic ordering (see
Exercise 7), we obtain a maximum flow of 7 with a minimum cut consisting of
edges (d, g), (e, g), (e, h), (f, h), and (f, l). Thus the solution to the problem
of Example 2 is to mine the channels corresponding to these five edges with a
total of 7 mines.

Figure 12. The river delta of Example 2 converted to a ca-
pacitated s,t-graph.

Examples 9 and 11 point the way to the following theorem, which shows
that Algorithm 1 solves our problem.

Theorem 4 The Max-flow Min-cut Theorem The maximum s, t-flow in
a capacitated s, t-graph is equal to the capacity of a minimum s, t-cut. Further,
Algorithm 1 finds such a maximum flow and minimum cut.

Proof: We already know from Theorem 3 that the maximum flow amount

F ({s}) ≤ c(A′, V (G) − A′)

for any minimum capacity s, t-cut (A′, V (G) − A′). It will therefore suffice to
find a flow f and an s, t-cut (A, V (G) − A) such that F (A) = c(A, V (G) − A)
for the flow f .

Let Algorithm 1 run to completion, producing a flow f . Let A be the set
of vertices labeled in the last pass through the algorithm. Since s always has
a label, and since t could not be labeled on the last pass, (A, V (G) − A) is an
s, t-cut, and F (A) is the amount of flow going from s to t as described by f .

424 Applications of Discrete Mathematics

Consider an edge (a, b) with a ∈ A and b ∈ V (G) − A. Since a is labeled
and b is not, we must have f(a, b) = c(a, b) by the algorithm. Next, consider
an edge (b′, a′) with a′ ∈ A and b′ ∈ V (G) − A. Again, we note that a′ has a
label and b′ does not; hence by the algorithm, f(b′, a′) = 0. Thus

F (A) = c(A, V (G) − A). (1)

Since the maximum flow cannot be larger than c(A, V (G) − A), F (A) must be
a maximum flow. The equality in (1) completes the proof of this theorem.

Complexity
Given a capacitated s, t-graph G, let a be the largest edge capacity, let e be
the number of edges of G, and let v be the number of vertices of G. In each
search for an augmenting chain in the first half of Algorithm 1, we may have to
examine nearly all of the edges, each from both ends, so each pass through that
half of the algorithm takes O(e) steps. Since each augmenting chain increases
the flow by at least one unit, there can be no more than a + 1 searches for an
augmenting chain. The second half of Algorithm 1 requires only O(p) steps,
where p is the number of edges in the augmenting chain. Thus the complexity
of Algorithm is governed by the first half of the algorithm and is O(ae).

Sometimes the capacity a is many orders of magnitude larger than the
number e of edges or the number v of vertices. In such a case, we would
like a measure of the complexity of the algorithm that does not depend on a.
Edmonds and Karp [2] have shown that, if vertices are scanned in the same
order in which they receive labels, instead of using the lexicographic ordering,
then the complexity is O(v5).

Assignment of Graders

Example 12 Set up Example 3 as a flow graph problem.

Solution: Referring to the table given in Example 3, represent Students 1, 2,
and 3 by vertices S1, S2, and S3, and represent Courses 1, 2, 3, and 4 by vertices
C1, C2, C3, and C4, respectively. Let s and t be two additional vertices. Join
vertex s to S1, S2, and S3 by directed edges, and assign capacity c(s, Si) equal
to the number of sections Student i is willing to grade. Join each of vertices
C1, C2, C3, and C4 to vertex t by directed edges, and assign capacity c(Ci, t)
equal to the number of sections of Course i being offered. For each i and j,
add edge (Si, Cj) if Student i is qualified to grade for Course j (i.e., if a “yes”
appears in the row for Student i and the column for Course j of Table 1). For

Chapter 23 Network Flows 425

each such edge, let c(Si, Cj) = ∞. The problem then becomes one of finding a
maximum flow in the graph of Figure 13.

Figure 13. The flow graph for the grader assignment prob-
lem (Example 3).

By Theorem 4, the maximum flow in Figure 13 equals the capacity of the
minimum cut. Let us look at a maximum flow as perceived under View 1
discussed early in this chapter. Each unit of flow passes from s to a vertex
Si, thence to a vertex Cj , and finally to vertex t. We may regard the unit as
specifying an assignment of Student i to a section of Course j. For a fixed value
of i, the number of units of flow passing through Si cannot exceed c(s, Si),
which is the maximum number of sections for which Student i wants to grade,
so the assignment view of the units of flow cannot assign a student to more
sections than he desires. Similarly, for a fixed value of j, the number of units
passing through Cj cannot exceed c(Cj , t), which is the number of sections
needing graders. Thus no course will be assigned too many graders. Ideally,
(V (G) − {t}, {t}) will turn out to be a minimum cut. Then by Theorem 4, the
maximum flow will equal to capacity of that cut, and every section of every
course will be assigned a grader.

Example 13 Solve Example 3.

Solution: Applying Algorithm 1 with lexicographic ordering to the graph of
Figure 13, we find the flow shown in Figure 14, where the last labels and the
associated tree (in bold edges) are also shown. From Figure 14, we see that
F ({s}) = c(V (G) − {t}, {t}) as we hoped, so every section will get a grader.
Further, interpreting the flow, we are told to assign Student 1 to all three

426 Applications of Discrete Mathematics

sections of Course 1, Student 2 to the one section of Course 3 and one of the
sections of Course 4, and Student 3 to the one section of Course 2 and to the
other section of Course 4.

Figure 14. Maximum flow, associated tree, and cut for the
grader assignment problem (Example 3).

The generalization of Examples 3, 12, and 13 to other assignments is
straightforward. The possibilities in such assignments are that the students
become fully assigned without finding graders for every section, or that, as in
the case of Example 3, the sections receive enough graders but some students
do not work as much as they want, or that every student gets enough work and
every section receives a grader, or that some students do not get enough work
while some sections are not graded. The last case is illustrated in one of the
examples of Exercise 8. In every case, a maximum flow obtained by using Al-
gorithm 1 will determine an assignment of as many graders to as many sections
as possible.

Historical Note
The 1950s were exciting years at the RAND Corporation, which had been set
up after World War II to provide the government with well-founded scientific
advice. Among the workers there were Lester Ford, Jr. and Ray Fulkerson,
developers of the theory presented in this chapter, George Dantzig [1], one
of the most important developers of linear programming, and Merrill Flood

Chapter 23 Network Flows 427

and Selmer Johnson, who worked with Fulkerson and Dantzig on the traveling
salesman problem (see the “Traveling Salesman Problem” chapter in this book).

The problems which led to the theory that has been presented in this chap-
ter were posed by the Air Force to Ford and Fulkerson in 1955 [4] as a problem
in railway traffic flow. Their first work on it involved linear programming, but
as they refined their understanding of the problem and available methods, they
hit on the flow algorithm and labeling scheme we have presented here. Their
development of the work was so fast that the entire theory of this chapter was
published by 1957 [3].

Suggested Readings

1. G. Dantzig, Linear Programming and Extensions, Princeton University
Press, Princeton, N. J., 1998.

2. J. Edmonds and R. Karp, “Theoretical improvements in algorithmic effi-
ciency for network flow problems”, J. ACM , Vol. 19, 1972, pp. 248–264.

3. L. Ford, Jr. and D. Fulkerson, “A simple algorithm for finding maximal
network flows and an application to the Hitchcock problem”, Canadian J.
Math., Vol. 9, 1957, pp. 210–218.

4. L. Ford, Jr., and D. Fulkerson, Flows in Networks, Princeton University
Press, Princeton, N. J., 1962.

Exercises

In Exercises 1 and 2, one unit of flow is shown in the graph. Starting with
that flow, use Algorithm 1 with the lexicographic ordering to find a maximum
flow and a minimum cut in the graph.

1.

428 Applications of Discrete Mathematics

2.

3. Using the graph and capacities of Exercise 1, find a maximum flow and
minimum cut using Algorithm 1, but this time use the Edmonds and Karp
ordering in which vertices are scanned in the same order in which they
receive labels, instead of using the lexicographic ordering.

4. Using the graph and capacities of Exercise 2, find a maximum flow and
minimum cut using Algorithm 1, but this time use the Edmonds and Karp
ordering in which vertices are scanned in the same order in which they
receive labels, instead of using the lexicographic ordering.

In Exercises 5 and 6, find a maximum flow and a minimum cut in the undi-
rected graph by using Algorithm 1 with the lexicographic ordering.

5.

6.

7. Apply Algorithm 1 with the lexicographic ordering to the graph shown in
Figure 12.

8. For each of the following tables, find a maximal assignment of graders to
sections of courses, as in Example 3.

Chapter 23 Network Flows 429

(a)

Course Course Course Max. # Sec.
1 2 3 Wanted

Student 1 yes no no 1
Student 2 yes yes no 1
Student 3 no yes yes 3
Student 4 yes no yes 1

Sec. Needed 4 1 1

(b)

Course Course Course Course Max. # Sec.
1 2 3 4 Wanted

Student 1 yes yes yes yes 1
Student 2 yes yes no no 2
Student 3 no yes yes no 1
Student 4 no yes yes yes 3

Sec. Needed 2 2 2 1

��9. An undirected graph G is bipartite if V (G) is the disjoint union of two
nonempty sets V1 and V2 such that every edge of G joins a vertex of V1

with a vertex of V2. A matching in graph G is a set M of edges of G such
that no two of the edges in M meet the same vertex of G. A covering of
graph G is a set C of vertices of G such that every edge of G has at least one
end in C. Prove König’s Theorem: If G is an undirected bipartite graph,
then the maximum number of edges possible in a matching in G equals the
minimum number of vertices possible in a covering of G. Hint: use a source
and sink connected to different subsets of V (G) by edges of capacity 1.

��10. (This problem requires information from the beginning of the chapter “Net-
work Survivability”.) Recall from that chapter that a block is a graph with-
out cut vertices and that a graph is 2-connected if it is a block with at least
two edges. Show that an undirected graph G with at least three vertices is
2-connected if and only if, for any two distinct vertices v and w of G, there
are two simple paths joining v and w which have only the vertices v and
w in common. Note: This is the 2- connected case of Menger’s theorem.
Hint: Replace each vertex x of G other than v and w by two new ver-
tices x1 and x2 and a directed edge (x1, x2). For each edge {x, y} of G, add
edges (x2, y1) and (y2, x1), treating v and w suitably. Assign appropriate
capacities and use Algorithm 1 and Theorem 4.

430 Applications of Discrete Mathematics

11. In the new factory of the Sampson Manufacturing Company, the workers
are to be assigned to machines. One worker will use just one machine on the
job. Each worker has stated in his job application which types of machines
he is competent to operate, and the company knows how many of each type
of machine they have to be manned. Describe how the problem of making
the assignments can be solved by using a flow graph.

12. The Computer Information Company (CIC) sells information to computer
owners who call in by modem. Due to the quality of their service, their
telephone lines are very busy. But it turns out that their customers are not
always able to get through to them, even when the company has idle lines
coming in. It is obvious that the problem lies with the telephone network,
but where is the bottleneck? Investigating the problem, the company finds
that any call coming out of a switching center owned by the telephone
company can reach the next switching center; the problem seems to be
that some switching centers do not have enough capacity to handle all of
the calls for CIC that come to them. Data from the telephone company
tells CIC how many calls are coming into each switching center from local
users of CIC and what the pass-through capacity of each switching center
is. Many calls pass through several switching centers on their way to the
CIC office. How can CIC determine which switching centers are blocking
their calls (thus helping CIC management decide where they might build a
subsidiary CIC station to reduce the pass-through load on the inadequate
switches)? Hint: Try a flow from CIC to the users, connect a single sink
to the switches with edges whose capacities are the number of local users
attached to the switches, and replace switches in the telephone network by
weighted directed edges.

Computer Projects

1. Write a computer program to find a maximum flow and a minimum cut in
a directed capacitated s, t-graph.

2. Write a computer program to find a maximum matching in a bipartite
graph. (See Exercise 9 and its solution for the necessary ideas and defini-
tions.)

