GUIDED TOUR

CHAPTER EXAMPLES AND EXERCISES Users

 of this book have numerous ways to reinforce the concepts they've learned. The end-ofchapter problems, in-chapter examples, extended exercises, case studies, and FE(Fundamentals of Engineering) review problems offer students the opportunity to learn economic analysis in a variety of ways. The various exercises range from working relatively simple, one-step review problems to answering a series of comprehensive, in-depth questions based on real-world cases. In-chapter examples are also helpful in reinforcing concepts learned.

\uparrow CASE STUDIES All the case studies present real-world, in-depth treatments and exercises that cover the wide spectrum of economic analysis in the engineering profession.

USE OF SPREADSHEETS The text integrates spreadsheets and shows both how easy they are to use in solving virtually any type of engineering economic analysis problem and how powerful they can be for altering estimates to achieve a better understanding of sensitivity and economic consequences of the uncertainties inherent in all forecasts. Beginning in Chapter 1, Blank and Tarquin illustrate their spreadsheet discussions with screenshots from Microsoft Excel ${ }^{\mathrm{TM} *}$.

When a single-cell, built-in Excel function may be used to solve a problem, a checkered flag icon labeled
Q-Solv (for quick solution) appears in the margin.
The thunderbolt E-Solve icon indicates that a more complex, sophisticated spreadsheet is developed to solve the problem. The spreadsheet will contain data and several functions and possibly an Excel chart or graph to illustrate the answer and sensitivity analysis of the solution to changing data.

For both Q-Solv and E-Solve examples, the authors have included cells that show the exact Excel function needed to obtain the value in a specific cell. The E-Solve icon is also used throughout chapters to point out descriptions of how to best use the computer to address the engineering economy topic under discussion.

\leftarrow CROSS-REFERENCING Blank

 and Tarquin reinforce the engineering concepts presented throughout the book by making them easily accessible from other sections of the book. Cross-reference icons in the margins refer the reader to additional section numbers, specific examples, or entire chapters that contain either foundational (backward) or more advanced (forward) information that is relevant to that in the paragraph next to the icon.

$$
\begin{aligned}
& \text { CFAT evaluation: As shown in the cell tag, CFAT estimates (column K) are cal- } \\
& \text { culated as GI }-E-P-\text { taxes, Equation [17.8]. The AW of CFAT (cell K21) again } \\
& \text { concludes that plan B is better and that plan A does not return the after-tax MARR } \\
& \text { of } 12 \% \text { (K10). } \\
& \text { (b) What is the fundamental difference between the EVA and CFAT series in columns J } \\
& \text { and K? They are clearly equivalent from the time value of money perspective since } \\
& \text { the AW values are numerically the same. To answer the question, consider plan A, } \\
& \text { which has a constant CFAT estimate of } \$ 152,000 \text { per year. To obtain the AW of EVA } \\
& \text { estimate of } \$-12,617 \text { for years } 1 \text { through } 4 \text {, the initial investment of } \$ 500,000 \text { is } \\
& \text { distributed over the 4-year life using the } A / P \text { factor at } 12 \% \text {. That is, an equivalent } \\
& \text { amount of } \$ 500,000(A / P, 12 \%, 4)=\$ 164,617 \text { is "charged" against the cash inflows } \\
& \text { in each of years } 1 \text { through } 4 \text {. In effect, the yearly CFAT is reduced by this charge. } \\
& \text { CFAT - (initial investment) }(A / P, 12 \%, 4)=\$ 152,000-500,000(A / P, 12 \%, 4) \\
& 152,000-164,617=\$-12,617 \\
& =\text { AW of EVA }
\end{aligned}
$$

This is the AW value for both series, demonstrating that the two methods are economically equivalent. However, the EVA method indicates an alternative's yearly estimated contribution to the value of the corporation, whereas the CFAT method estimates the actual cash flows to the corporation. This is why the EVA method is often more popular than the cash flow method with corporate executives.

INTERNATIONAL APPEAL

Comment

The calculation $P(A / P, i, n)=\$ 500,000(A / P, 12 \%, 4)$ is exactly the same as the capital ecovery in Equation [6.3], assuming an estimated salvage value of zero. Thus, the cost invested capital for EVA is the same as the capital recovery discussed in Chapter 6 . evaluation.
 book are more apparent throughout the sixth edition. Examples and new sections on international corporate depreciation and taxation considerations and international forms of contracts, such as the BOT method of subcontracting, are included. The impact of hyperinflation and deflationary cycles are discussed from an international perspective.

17.9 AFTER-TAX ANALYSIS FOR INTERNATIONAL PROJECTS

Primary questions to be answered prior to performing a corporate-based aftertax analysis for international settings revolve on tax-deductible allowancesdepreciation, business expenses, capital asset evaluation-and the effective tax rate needed for Equation [17.6], taxes $=\mathrm{TI}\left(T_{e}\right)$. As discussed in Chapter 16, most governments of the world recognize and use the straight line (SL) and declining balance (DB) methods of depreciation with some variations to determine the annual tax-deductible allowance. Expense deductions vary widely from country to country. By way of example, some of these are summarized here.

Canada

Depreciation: This is deductible and is normally based on DB calculations, although SL may be used. An equivalent of the half-year convention is applied in the first year of ownership. The annual tax-deductible allowance is termed capital cost allowance (CCA). As in the U.S. system,

To obtain an instructor login to the Online Learning Centers, ask your local sales representative. If you're an instructor thinking about adopting this textbook, request a free copy for review.

\uparrow

SUPPLEMENTS The sixth edition of Blank and Tarquin features an Online Learning Center (OLC) available to students and professors who use the text. The URL for the site is http://www.mhhe.com/blank6.

The OLC will house the solutions to end-of-chapter problems, FE (Fundamentals of Engineering) exam prep quiz, spreadsheet exercises, matching and true/false quizzes, links to important websites, chapter objectives, lecture slides, end-of chapter summaries and more!

New to this edition is McGraw-Hill's new database management tool, Complete Online Solutions Manual Organization System (C.O.S.M.O.S.). C.O.S.M.O.S. is delivered via CD-ROM and helps instructors to organize solutions and distribute and track problem sets as they are assigned to students in the course. This helps instructors to quickly find solutions and keep a record of problems assigned, to avoid duplication of tests and quizzes in subsequent semesters.
The ISBN for the Engineering Economy C.O.S.M.O.S. CD-ROM is 0-07-298450-3. Contact your McGraw-Hill representative to get a copy.

