CHAPTER 5 MEMBRANE STRUCTURE AND FUNCTION

Chapter Outline

5.1 Membrane Models

A. Early Observations

- 1. At turn of the century, researchers noted lipid-soluble molecules entered cells more rapidly than water-soluble molecules, suggesting lipids are component of plasma membrane.
- 2. Later chemical analysis revealed the membrane contained phospholipids.
- 3. Gorter and Grendel (1925) found the amount of phospholipid extracted from a red blood cell was just enough to form one bilayer; they also suggested the nonpolar tails were directed inward and polar heads outward.
- 4. To account for permeability of membrane to nonlipid substances, Danielli and Davson proposed **sandwich model** (later proved wrong) with phospholipid bilayer between layers of protein.
- 5. With an electron microscope available, Robertson proposed that proteins were embedded in an outer membrane and that all membranes in cells had similar compositions—the **unit membrane model.**
- 6. However, additional research showed a high diversity in membrane structure and function.

B. Fluid-Mosaic Model

- 1. In 1972, S. Singer and G. Nicolson introduced the currently accepted **fluid-mosaic model**.
- A plasma membrane is phospholipid bilayer in which protein molecules are partially or wholly embedded.
- 3. Embedded proteins are scattered throughout membrane in an irregular pattern; this varies among membranes.
- 4. Electron micrographs of freeze-fractured membrane support the fluid-mosaic model.

5.2 Plasma Membrane Structure and Function

- A. Separating the Internal and External Environment
 - 1. A membrane's structure has two components: lipids and proteins.
 - 2. Phospholipids are arranged in a bilayer.
 - 3. Plasma phospholipids spontaneously arrange themselves into a bilayer.
 - 4. This bilayer has a fluid consistency similar to light oil.
 - 5. Nonpolar tails are hydrophobic and directed inward.
 - 6. Polar heads are hydrophilic (water-loving) and are directed outward to face both extracellular and intracellular fluids.
 - 7. **Glycolipids** have a structure similar to phospholipids except the hydrophilic head is a variety of sugar; they are protective and assist in various functions.
 - 8. **Cholesterol** is a lipid found in animal plasma membranes; it stiffens and strengthens the membrane.
 - 9. **Glycoproteins** have an attached carbohydrate chain of sugar that projects externally.
 - 10. The plasma membrane is asymmetrical; glycolipids and proteins occur only on outside and cytoskeletal filaments attach to proteins only on the inside surface.

B. Carbohydrate Chains

- 1. In animal cells, the glycocalyx is a sugar coat of carbohydrate chains used in cell recognition.
- 2. Cells are unique in a "fingerprint" of highly varied carbohydrate chains.
- 3. The immune system recognizes foreign tissues that have strange carbohydrate chains.
- 4. Carbohydrate chains are the basis for A, B, and O blood groups in humans.

C. Fluidity of the Plasma Membrane

- 1. At body temperature, the phospholipid bilayer has consistency of olive oil.
- 2. The greater the concentration of unsaturated fatty acid residues, the more fluid the bilayer.
- 3. In each monolayer, the hydrocarbon tails wiggle, and entire phospholipid molecules can move sideways at a rate of about 2 □m—the length of a prokaryotic cell—per second.
- 4. Phospholipid molecules rarely flip-flop from one layer to the other.
- 5. Fluidity of the phospholipid bilayer allows cells to be pliable.
- 6. Some proteins are held in place by cytoskeletal filaments; most drift in fluid bilayer.

D. The Functions of the Proteins

- 1. Plasma membrane and organelle membranes have unique proteins; red blood cells (RBC) plasma membrane contains 50+ types of proteins.
- 2. Membrane proteins determine most of the membrane's functions.
- 3. **Channel proteins** allow a particular molecule to cross membrane freely (e.g., Cl⁻channels).
- 4. **Carrier proteins** selectively interact with a specific molecule so it can cross the plasma membrane (e.g., Na⁺-K⁺ pump).
- 5. **Cell recognition proteins** are glycoproteins that allow the body's immunie system to distinguish between foreign invaders and body cells.
- 6. Receptor proteins are shaped so a specific molecule (e.g., hormone or other molecule) can bind to it.
- 7. **Enzymatic proteins** carry out specific metabolic reactions.

5.3 Permeability of the Plasma Membrane

- A. Types of Membranes and Transport
 - 1. The plasma membrane is **differentially permeable**; only certain molecules can pass through freely.
 - 2. A **semipermeable membrane** allows some molecules to pass through.
 - a. Small non-charged lipid molecules (alcohol, oxygen) pass through the membrane freely.
 - 5. Small polar molecules (carbon dioxide, water) easily pass along a **concentration gradient**, from high to low concentration.
 - c. Ions and charged molecules have difficulty crossing the hydrophobic phase of the bilayer and usually combine with carrier proteins.
 - 3. Both passive and active mechanisms move molecules across membrane.
 - a. **Passive transport** moves molecules across membrane without expenditure of energy by cell; includes **diffusion** and **facilitated transport**.
 - b. Active transport requires a carrier protein and uses energy (ATP) to move molecules across a plasma membrane; includes active transport, exocytosis, endocytosis, and pinocytosis.

B. Diffusion and Osmosis

- 1. **Diffusion** moves molecules from higher to lower concentration (i.e., down their concentration gradient).
 - a. A solution contains a **solute**, usually a solid, and a **solvent**, usually a liquid.
 - b. In the case of a dye diffusing in water, dye is a solute and water is the solvent.
 - c. Once a solute is evenly distributed, random movement continues but with no net change.
 - d. Membrane chemical and physical properties allow only a few types of molecules to cross by diffusion.
 - e. Gases readily diffuse through the lipid bilayer; movement of oxygen from air sacs (alveoli) to the blood in lung capillaries depends on the concentration of oxygen in alveoli.
- 2. **Osmosis** is the diffusion of water across a differentially permeable membrane.
 - a. **Osmotic pressure** is illustrated by the thistle tube example:
 - 1) A differentially permeable membrane separates two solutions.
 - 2) The beaker has more water (lower percentage of solute) and the thistle tube has less water.
 - 3) The membrane does not permit passage of the solute; water enters but the solute does not exit.
 - 4) The membrane permits passage of water with a net movement of water from the beaker to the inside of the thistle tube.
 - b. **Osmotic pressure** is the pressure that develops in such a system due to osmosis.
 - c. Osmotic pressure results in water being absorbed by the kidneys and water being taken up from tissue fluid.
- 3. **Tonicity** is strength of a solution in relationship to osmosis.
 - a. **Isotonic solutions** occur where the relative solute concentrations of two solutions are **equal**; a 0.9% salt solution is used in injections because it is isotonic to red blood cells (RBCs).
 - b. A **hypotonic solution** has a solute concentration that is **less** than another solution; when a cell is placed in a hypotonic solution, water enters the cells and they may undergo **lysis** (burst).
 - c. Swelling of plant cell in hypotonic solution creates **turgor pressure**; how plants maintain erect position.
 - d. A **hypertonic** solution has a higher percentage of solute than a cell; as a result, water may leave the cells.
 - e. Solutions that cause cells to shrink are hypertonic solutions; red blood cells placed in salt solutions above 0.9% shrink and wrinkle, a condition called **crenation**.

f. Plasmolysis is shrinking of the cytoplasm due to osmosis in a hypertonic situation, often in a plant cell

C. Transport by Carrier Proteins

- The plasma membrane impedes passage of most substances but many molecules enter or leave at rapid rates.
- Carrier proteins are membrane proteins that combine with and transport only one type of molecule or ion; they are believed to undergo a change in shape to move the molecule across by active and facilitated transport.
- 3. **Facilitated transport** is passive transport of specific solutes down their concentration gradient, facilitated by a carrier protein; glucose and amino acids move although not lipid-soluble.
- 4. **Active transport** is transport of specific solutes across plasma membranes against the concentration gradient through use of cellular energy (ATP).
 - a. Iodine is concentrated in cells of thyroid gland, glucose is completely absorbed into lining of digestive tract, and sodium is mostly reabsorbed by kidney tubule lining.
 - b. Active transport requires both carrier proteins and ATP; therefore cells must have high number of mitochondria near membranes.
 - c. Proteins involved in active transport are often called "pumps"; the sodium-potassium pump is an important carrier system in nerve and muscle cells.
 - d. Salt (NaCl) crosses a plasma membrane because sodium ions are pumped across and the chloride ion is attracted to the sodium ion and simply diffuses across channels.

5. Membrane-Assisted Transport

- a. In **exocytosis**, a vesicle often formed by Golgi apparatus fuses with the plasma membrane as secretion occurs; insulin leaves insulin-secreting cells by this method.
- b. During **endocytosis**, cells take in substances by vesicle formation as plasma membrane pinches off by either phagocytosis, pinocytosis, or receptor-mediated endocytosis.
- c. In **phagocytosis**, cells engulf large particles forming an endocytic vesicle.
 - 1) Phagocytosis is commonly performed by ameboid-type cells (e.g., amoebas and macrophages).
 - 2) When the endocytic vesicle fuses with a lysosome, digestion occurs.
- d. **Pinocytosis** occurs when vesicles form around a liquid or very small particles; this is only visible with electron microscopy.
- e. **Receptor-mediated endocytosis** occurs when specific macromolecules bind to plasma membrane receptors.
 - 1) The receptor proteins are shaped to fit with specific vitamin, hormone, or lipoprotein molecules and are found at one location in the plasma membrane.
 - 2) This location is a coated pit with a layer of fibrous protein on cytoplasmic side; when the vesicle is uncoated, it may fuse with a lysosome.
 - 3) Pits are associated with exchange of substances between cells (e.g., maternal and fetal blood).
 - This system is selective and more efficient; it is important in moving substances from maternal to fetal blood.
 - 5) When cholesterol enters a cell from the bloodstream via coated pits; in familial hypocholesterolemia, the LDL receptor cannot bind to the coated pit and the excess cholesterol accumulates in the circulatory system.

5.3 Modification of Cell Surfaces

A. Plasma Membrane

- 1. Many cells have an extracellular component formed outside of membrane.
- 2. Plant, fungi, algae, and prokarvotes form a rigid cell wall.
- 3. Animal cells have a varied extracellular anatomy depending on tissue type.

B. Cell Surfaces in Animals

- 1. **Cell junctions** are points of contact that physically link neighboring cells or provide functional links; animal cells have three types: adhesion junctions, tight junctions, and gap junctions.
- 2. In **adhesion junctions (desmosomes)**, internal cytoplasmic plaques firmly attached to cytoskeleton within each cell are joined by intercellular filaments; they hold cells together where tissues stretch (e.g., in heart, stomach, bladder).
- 3. In **tight junctions**, plasma membrane proteins attach in zipper-like fastenings; they hold cells together so tightly that the tissues (e.g., epithelial lining of stomach, kidney tubules) are barriers.

- 4. A gap junction allows cells to communicate.
 - a. They are formed by the joining of two identical plasma membrane channels; the channel of each cell is lined by six plasma proteins.
 - b. They provide strength to the cells involved and allow the movement of small molecules and ions from the cytoplasm of one cell to the cytoplasm of the other cell.
 - c. Gap junctions permit flow of ions for heart muscle and smooth muscle cells to contract.
- 5. The extracellular matrix is a meshwork of polysaccharides and proteins produced by animal cells.
- 6. Collagen gives the matrix strength and elastin gives it resilience.
- 7. **Fibronectins** and **laminins** bind to membrane receptors and permit communication between matrix and cytoplasm.
- 8. **Fibronectins** and **laminins** also form "highways" that direct the migration of cells during development.
- 9. **Proteoglycans** are glycoproteins that provide a packing gel that joins the various proteins in matrix and most likely regulate signaling proteins that bind to receptors in the plasma protein.

C. Plant Cell Walls

- 1. Plant cells are surrounded by a porous cell wall; it varies in thickness, depending on function of cell.
- 2. Plant cells have a primary cell wall composed of cellulose polymers united into threadlike microfibrils that form fibrils.
- 3. Cellulose fibrils form a framework whose spaces are filled by non-cellulose molecules:
 - a. **Pectins** allow cell wall to stretch and are abundant in the middle lamella that holds cells together.
 - b. **Non-cellulose** polysaccharides harden the wall of mature cells.
- 4. **Lignin** adds strength and is a common ingredient of secondary cell walls in woody plants.
- 5. **Plasmodesmata** are narrow membrane-lined channels that pass through cell walls of neighboring cells and connect their cytoplasms, allowing direct exchange of molecules and ions between neighboring plant cells.