. Part
Introduction

to Database
Environments

Part 1 provides a background for the subsequent detailed study of database design,
database application development, and database administration. The chapters in Part 1
present the principles of database management and the nature of the database
development process. Chapter 1 covers the basic concepts of database management
including database characteristics, features and architectures of database management
systems, the market for database management systems, and organizational impacts of
database technology. Chapter 2 introduces the context, objectives, phases, and tools of the
database development process.

Chapter 1. Introduction to Databases and Database Technology

Chapter 2. Introduction to Database Development

Chapter

Overview

Introduction to
Database Management

Learning Objectives

This chapter provides an introduction to database technology and the impact of this
technology on organizations. After this chapter the student should have acquired the
following knowledge and skills:

e Describe the characteristics of business databases and the features of database
management systems.

e Understand the importance of nonprocedural access for software productivity.

e Appreciate the advances in database technology and the contributions of database
technology to modern society.

e Understand the impact of database management system architectures on distributed
processing and software maintenance.

e Perceive career opportunities related to database application development and
database administration.

You may not be aware of it, but your life is dramatically affected by database technology.
Computerized databases are vital to the functioning of modern organizations. You come
into contact with databases on a daily basis through activities such as shopping at a super-
market, withdrawing cash using an automated teller machine, ordering a book online, and
registering for classes. The convenience of your daily life is partly due to proliferation of
computerized databases and supporting database technology.

Database technology is not only improving the daily operations of organizations but also
the quality of decisions that affect our lives. Databases contain a flood of data about many
aspects of our lives: consumer preferences, telecommunications usage, credit history, tele-
vision viewing habits, and so on. Database technology helps to summarize this mass of data
into useful information for decision making. Management uses information gleaned from
databases to make long-range decisions such as investing in plants and equipment, locating
stores, adding new items to inventory, and entering new businesses.

This first chapter provides a starting point for your exploration of database technol-
ogy. It surveys database characteristics, database management system features, system

3

4 Part One Introduction to Database Environments

architectures, and human roles in managing and using databases. The other chapter in
Part 1 (Chapter 2) provides a conceptual overview of the database development process.
This chapter provides a broad picture of database technology and shares the excitement
about the journey ahead.

1.1 Database Characteristics

database

a collection of persistent
data that can be shared
and interrelated.

Every day, businesses collect mountains of facts about persons, things, and events such as
credit card numbers, bank balances, and purchase amounts. Databases contain these sorts
of simple facts as well as nonconventional facts such as photographs, fingerprints, product
videos, and book abstracts. With the proliferation of the Internet and the means to capture
data in computerized form, a vast amount of data is available at the click of a mouse button.
Organizing these data for ease of retrieval and maintenance is paramount. Thus, managing
databases has become a vital task in most organizations.

Before learning about managing databases, you must first understand some important
properties of databases, as discussed in the following list:

» Persistent means that data reside on stable storage such as a magnetic disk. For exam-
ple, organizations need to retain data about customers, suppliers, and inventory on
stable storage because these data are repetitively used. A variable in a computer pro-
gram is not persistent because it resides in main memory and disappears after the
program terminates. Persistency does not mean that data lasts forever. When data are
no longer relevant (such as a supplier going out of business), they are removed or
archived.

Persistency depends on relevance of intended usage. For example, the mileage you
drive for work is important to maintain if you are self-employed. Likewise, the amount
of your medical expenses is important if you can itemize your deductions or you have a
medical savings account. Because storing and maintaining data is costly, only data likely
to be relevant to decisions should be stored.

» Shared means that a database can have multiple uses and users. A database provides a
common memory for multiple functions in an organization. For example, a personnel
database can support payroll calculations, performance evaluations, government report-
ing requirements, and so on. Many users can access a database at the same time. For
example, many customers can simultaneously make airline reservations. Unless two
users are trying to change the same part of the database at the same time, they can
proceed without waiting on each other.

 Interrelated means that data stored as separate units can be connected to provide a whole
picture. For example, a customer database relates customer data (name, address, . . .) to
order data (order number, order date, . . .) to facilitate order processing. Databases con-
tain both entities and relationships among entities. An entity is a cluster of data usually
about a single subject that can be accessed together. An entity can denote a person,
place, thing, or event. For example, a personnel database contains entities such as em-
ployees, departments, and skills as well as relationships showing employee assignments
to departments, skills possessed by employees, and salary history of employees. A
typical business database may have hundreds of entities and relationships.

To depict these characteristics, let us consider a number of databases. We begin with a
simple university database (Figure 1.1) since you have some familiarity with the workings
of a university. A simplified university database contains data about students, faculty,
courses, course offerings, and enrollments. The database supports procedures such as reg-
istering for classes, assigning faculty to course offerings, recording grades, and scheduling

FIGURE 1.1
Depiction of a
Simplified University
Database

FIGURE 1.2
Depiction of a
Simplified Water
Utility Database

Chapter 1 Introduction to Database Management

Grade
recording

Registration——

<
S

Entities:
students, faculty, courses,
offerings, enroliments

Relationships:
faculty teach offerings,
students enroll in
offerings, offerings made
of courses, ...

-

University Database

Faculty
assignment

Course
scheduling

Note: Words surrounding the database denote procedures that use the database.

Billing

Meter
reading

—
R
Entities:
customers, meters, bills,
payments, meter readings

Relationships:
bills sent to customers,
customers make payments,
customers use meters, ...

v
Water Utility Database

Payment
processing

Service
start/stop

5

course offerings. Relationships in the university database support answers to questions

such as

* What offerings are available for a course in a given academic period?

* Who is the instructor for an offering of a course?

* What students are enrolled in an offering of a course?

Next, let us consider a water utility database as depicted in Figure 1.2. The primary func-
tion of a water utility database is billing customers for water usage. Periodically, a customer’s
water consumption is measured from a meter and a bill is prepared. Many aspects can influ-
ence the preparation of a bill such as a customer’s payment history, meter characteristics, type
of customer (low income, renter, homeowner, small business, large business, etc.), and bil-

ling cycle. Relationships in the water utility database support answers to questions such as

« What is the date of the last bill sent to a customer?

* How much water usage was recorded when a customer’s meter was last read?

* When did a customer make his/her last payment?

Finally, let us consider a hospital database as depicted in Figure 1.3. The hospital data-
base supports treatment of patients by physicians. Physicians make diagnoses and prescribe
treatments based on symptoms. Many different health providers read and contribute to a
patient’s medical record. Nurses are responsible for monitoring symptoms and providing

6 Part One Introduction to Database Environments

FIGURE 1.3
Depiction of a
Simplified Hospital
Database

—

v
Treatment Entities: — Symptqm
patients, providers, treatments, monitoring
diagnoses, symptoms
Relationships:
patients have symptoms, i
Diagnosis providers prescribe treatments, Patient
providers make diagnoses, ... care

-

Hospital Database

medication. Food staff prepare meals according to a dietary plan. Physicians prescribe new
treatments based on the results of previous treatments and patient symptoms. Relationships
in the database support answers to questions such as

* What are the most recent symptoms of a patient?
* Who prescribed a given treatment of a patient?
* What diagnosis did a doctor make for a patient?

These simplified databases lack many kinds of data found in real databases. For exam-
ple, the simplified university database does not contain data about course prerequisites and
classroom capacities and locations. Real versions of these databases would have many
more entities, relationships, and additional uses. Nevertheless, these simple databases have
the essential characteristics of business databases: persistent data, multiple users and uses,
and multiple entities connected by relationships.

1.2 Features of Database Management Systems

database
management
system (DBMS)
a collection of
components that
support data
acquisition,
dissemination,
maintenance,
retrieval, and
formatting.

table

a named, two-
dimensional arrange-
ment of data. A table
consists of a heading
part and a body part.

A database management system (DBMS) is a collection of components that supports
the creation, use, and maintenance of databases. Initially, DBMSs provided efficient stor-
age and retrieval of data. Due to marketplace demands and product innovation, DBMSs
have evolved to provide a broad range of features for data acquisition, storage, dissemina-
tion, maintenance, retrieval, and formatting. The evolution of these features has made
DBMSs rather complex. It can take years of study and use to master a particular DBMS.
Because DBMSs continue to evolve, you must continually update your knowledge.

To provide insight about features that you will encounter in commercial DBMSs,
Table 1.1 summarizes a common set of features. The remainder of this section presents ex-
amples of these features. Some examples are drawn from Microsoft Access, a popular
desktop DBMS. Later chapters expand upon the introduction provided here.

1.2.1 Database Definition

To define a database, the entities and relationships must be specified. In most commercial
DBMSs, tables store collections of entities. A table (Figure 1.4) has a heading row (first
row) showing the column names and a body (other rows) showing the contents of the
table. Relationships indicate connections among tables. For example, the relationship con-
necting the student table to the enrollment table shows the course offerings taken by each
student.

TABLE 1.1
Summary of
Common Features
of DBMSs

Chapter 1 Introduction to Database Management

7

Feature

Database definition

Nonprocedural access

Application development

Procedural language interface

Transaction processing

Database tuning

Description

Language and graphical tools to define entities, relationships,
integrity constraints, and authorization rights

Language and graphical tools to access data without
complicated coding

Graphical tools to develop menus, data entry forms, and
reports; data requirements for forms and reports are specified
using nonprocedural access

Language that combines nonprocedural access with full
capabilities of a programming language

Control mechanisms to prevent interference from
simultaneous users and recover lost data after a failure

Tools to monitor and improve database performance

FIGURE 1.4 Display of Student Table in Microsoft Access

StdFirstName | StdLastName | StdCity StdState | StdZip StdMajor | StdClass | StdGPA
HOMER WELLS SEATTLE WA 98121-1111 IS FR 3.00
BOB NORBERT BOTHELL WA 98011-2121 FIN JR 2.70
CANDY KENDALL TACOMA WA 99042-3321 | ACCT JR 3.50
WALLY KENDALL SEATTLE WA 98123-1141 IS SR 2.80
JOE ESTRADA SEATTLE WA 98121-2333 | FIN SR 3.20
MARIAH DODGE SEATTLE WA 98114-0021 IS JR 3.60
TESS DODGE REDMOND | WA 98116-2344 | ACCT SO 3.30
FIGURE 1.5 8 Student : Table 9 [=] 3
Table Definition e L Leo2aiien
Window in Microsoft StdFirstiame Text
StdLasthame Text
Access stdcity Text
StdState Text
StdMajor Text
StdClass Text
StdGPA Number
StdZip Text LI
Field Properties
General l Lookup |
Field Size 9
Format
Inpulf Hask 0001 00,0000;;2 . A field name can
ot v Properties of | {§SERIEES
Validation Rule Std SS N column including spacegl.
Ualida.tinn Text / Press F1 for help
Required YVes / on field names.
Allow Zero Length Mo
Indexed ‘Yes (Mo DuplicStes)
Unicode Compression Ves
Most DBMSs provide several tools to define databases. The Structured Query Language
sQL (SQL) is an industry standard language supported by most DBMSs. SQL can be used to de-

an industry standard
database language that
includes statements for
database definition,
database manipulation,
and database control.

fine tables, relationships among tables, integrity constraints (rules that define allowable
data), and authorization rights (rules that restrict access to data). Chapter 3 describes SQL
statements to define tables and relationships.

In addition to SQL, many DBMSs provide graphical, window-oriented tools. Fig-
ures 1.5 and 1.6 depict graphical tools for defining tables and relationships. Using the Table
Definition window in Figure 1.5, the user can define properties of columns such as the data

8 Part One Introduction to Database Environments

FIGURE 1.6
Relationship
Definition Window in
Microsoft Access

nonprocedural
database language
alanguage such as SQL
that allows you to spec-
ify the parts of a data-
base to access rather than
to code a complex proce-
dure. Nonprocedural
languages do not include
looping statements.

= = Relationships _ O] x|

student

SedSSN

StdFirstName

StdLastMame

StdCity

StdState

St
StdClass °: OfferNo
Sth_PA CourseNo
Stdzip OffTerm

OffYear
OffLocation
OffTime
FacSSh
OffDays

Tables [[Couseho
CrsDesc

CrsUnits

type and field size. Using the Relationship Definition window in Figure 1.6, relationships
among tables can be defined. After defining the structure, a database can be populated. The
data in Figure 1.4 should be added after the Table Definition window and Relationship
Definition window are complete.

1.2.2 Nonprocedural Access

The most important feature of a DBMS is the ability to answer queries. A query is a request
for data to answer a question. For example, the user may want to know customers having
large balances or products with strong sales in a particular region. Nonprocedural access al-
lows users with limited computing skills to submit queries. The user specifies the parts of
a database to retrieve, not implementation details of how retrieval occurs. Implementation
details involve coding complex procedures with loops. Nonprocedural languages do not
have looping statements (for, while, and so on) because only the parts of a database to
retrieve are specified.

Nonprocedural access can reduce the number of lines of code by a factor of 100 as com-
pared to procedural access. Because a large part of business software involves data access,
nonprocedural access can provide a dramatic improvement in software productivity.

To appreciate the significance of nonprocedural access, consider an analogy to planning
a vacation. You specify your destination, travel budget, length of stay, and departure date.
These facts indicate the “what” of your trip. To specify the “how” of your trip, you need to
indicate many more details such as the best route to your destination, the most desirable
hotel, ground transportation, and so on. Your planning process is much easier if you have a
professional to help with these additional details. Like a planning professional, a DBMS
performs the detailed planning process to answer queries expressed in a nonprocedural
language.

Most DBMSs provide more than one tool for nonprocedural access. The SELECT state-
ment of SQL, described in Chapter 4, provides a nonprocedural way to access a database.
Most DBMSs also provide graphical tools to access databases. Figure 1.7 depicts a graph-
ical tool available in Microsoft Access. To pose a query to the database, a user only has to
indicate the required tables, relationships, and columns. Access is responsible for generat-
ing the plan to retrieve the requested data. Figure 1.8 shows the result of executing the
query in Figure 1.7.

FIGURE 1.7

Query Design
Window in Microsoft
Access

FIGURE 1.8
Result of Executing
Query in Figure 1.7

procedural
language interface
a method to combine a
nonprocedural language
such as SQL with a pro-
gramming language
such as COBOL or
Visual Basic.

Chapter 1 Introduction to Database Management 9

gzt Chpt1-Figure? : Select Query = [=] B3
-~

StdFirstName
StdLastName

StdCity = Column

Relationship l

Field: |StdFirsthiame | StdLasthame | StdCity z|EnrGrade =
Table: (student student student enrollment enrollment
Sort:
Show:
Criteria: >3.5
or: >
< | »

StdFirstName StdLastName StdCity OfferNo EnrGrade
MARIAH DODGE SEATTLE 1234 3.8

BOB NORBERT BOTHELL 5679 3.7
ROBERTO MORALES SEATTLE 5679 3.8
MARIAH DODGE SEATTLE 6666 3.6

LUKE BRAZZI SEATTLE 7777 3.7
WILLIAM PILGRIM BOTHELL 9876 4

1.2.3 Application Development and Procedural
Language Interface

Most DBMSs go well beyond simply accessing data. Graphical tools are provided for build-
ing complete applications using forms and reports. Data entry forms provide a convenient
tool to enter and edit data, while reports enhance the appearance of data that is displayed or
printed. The form in Figure 1.9 can be used to add new course assignments for a professor
and to change existing assignments. The report in Figure 1.10 uses indentation to show
courses taught by faculty in various departments. The indentation style can be easier to view
than the tabular style shown in Figure 1.8. Many forms and reports can be developed with a
graphical tool without detailed coding. For example, Figures 1.9 and 1.10 were developed
without coding. Chapter 10 describes concepts underlying form and report development.

Nonprocedural access makes form and report creation possible without extensive cod-
ing. As part of creating a form or report, the user indicates the data requirements using a
nonprocedural language (SQL) or graphical tool. To complete a form or report definition,
the user indicates formatting of data, user interaction, and other details.

In addition to application development tools, a procedural language interface adds the
full capabilities of a computer programming language. Nonprocedural access and applica-
tion development tools, though convenient and powerful, are sometimes not efficient
enough or do not provide the level of control necessary for application development. When
these tools are not adequate, DBMSs provide the full capabilities of a programming
language. For example, Visual Basic for Applications (VBA) is a programming language

10 Part One Introduction to Database Environments

FIGURE 1.9
Microsoft Access
Form for Assigning
Courses to Faculty

FIGURE 1.10
Microsoft Access
Report of Faculty
‘Workload

transaction
processing

reliable and efficient
processing of large vol-
umes of repetitive work.
DBMSs ensure that si-
multaneous users do not
interfere with each other
and that failures do not
cause lost work.

BE| Faculty Assignment Form) (=l
¥ socseehs Inga-?5-5432

First Narme ILEONARD Last Marne: WINCE

Department IMS

Assionments
Offer No. | Course Mo, | Units | Term | Year | Location | StartTime =
k| 123415320 4 FALL 2005 BLM302 10:30 AN
L 3333 18320 4 SPRING 2006 BLMZ14 8:30 AM
L 432115320 4 FALL 2005 BLM214 330 PM_I
. I =
Record: I1| 4 ” 4 F | 4] |H€| af 4

Record: I4| 4 || 1k |>||H€| of &

Faculty Workload Report for the 2005—-2006 Academic Year

Department Nuame Term ffer Units Limit Enrollment Percent Low
Number Fuii Enrofintent
FIN
JULTA MILLS
WINTER 5E78 4 20 1 500% I
Swrmmary for tern'= WINTER [T detail record)
Sum 4 1
Avg 5.00%
Suramary for JULEA MILLS
Sum 4 1
Avg 5.00%

Summary for ‘department' = FIN (1 detail record)

that is integrated with Microsoft Access. VBA allows full customization of database access,
form processing, and report generation. Most commercial DBMSs have a procedural lan-
guage interface comparable to VBA. For example, Oracle has the language PL/SQL and
Microsoft SQL Server has the language Transact-SQL. Chapter 11 describes procedural
language interfaces and the PL/SQL language.

1.2.4 Features to Support Database Operations

Transaction processing enables a DBMS to process large volumes of repetitive work. A

transaction is a unit of work that should be processed reliably without interference from

other users and without loss of data due to failures. Examples of transactions are with-
drawing cash at an ATM, making an airline reservation, and registering for a course. A
DBMS ensures that transactions are free of interference from other users, parts of a trans-
action are not lost due to a failure, and transactions do not make the database inconsistent.
Transaction processing is largely a “behind the scenes” affair. The user does not know the
details about transaction processing other than the assurances about reliability.

Database tuning includes a number of monitors and utility programs to improve perfor-
mance. Some DBMSs can monitor how a database is used, the distribution of various parts

FIGURE 1.11
Entity Relationship
Diagram (ERD) for
the University
Database

Chapter 1

Introduction to Database Management

11

Student Offering Faculty
StdSSN OfferNo FacSSN
StdClass OffLocation PO----Teaches O+ FacSalary {O-
StdMajor OffTime FacRank
StdGPA PO Has FacHireDate |
r—:': g ~~~~~~ Supervises
Accepts :
Registers %i _
Lo< Enroliment Course
EnrGrade CourseNo
CrsDesc
CrsUnits

of a database, and the growth of the database. Utility programs can be provided to reorga-
nize a database, select physical structures for better performance, and repair damaged parts
of a database.

Transaction processing and database tuning are most prominent on DBMSs that support
large databases with many simultaneous users. These DBMSs are known as enterprise
DBMSs because the databases they support databases are often critical to the functioning
of an organization. Enterprise DBMSs usually run on powerful servers and have a high
cost. In contrast, desktop DBMSs running on personal computers and small servers support
limited transaction processing features but have a much lower cost. Desktop DBMSs sup-
port databases used by work teams and small businesses. Embedded DBMSs are an emerg-
ing category of database software. As its name implies, an embedded DBMS resides in a
larger system, either an application or a device such as a personal digital assistant (PDA) or
a smart card. Embedded DBMSs provide limited transaction processing features but have
low memory, processing, and storage requirements.

1.2.5 Third-Party Features

In addition to features provided directly by vendors of DBMSs, third-party software is also
available for many DBMSs. In most cases, third-party software extends the features avail-
able with the database software. For example, many third-party vendors provide advanced
database design tools that extend the database definition and tuning capabilities pro-
vided by DBMS:s. Figure 1.11 shows a database diagram (an entity relationship diagram)
created with Visio Professional, a tool for database design. The ERD in Figure 1.11 can be
converted into the tables supported by most commercial DBMSs. In some cases, third-
party software competes directly with the database product. For example, third-party
vendors provide application development tools that can be used in place of the ones
provided with the database product.

1.3 Development of Database Technology and Market Structure

The previous section provided a quick tour of the features found in typical DBMSs. The
features in today’s products are a significant improvement over just a few years ago. Data-
base management, like many other areas of computing, has undergone tremendous techno-
logical growth. To provide you a context to appreciate today’s DBMSs, this section reviews

12 Part One Introduction to Database Environments

TABLE 1.2
Brief Evolution of
Database Technology

Era Generation Orientation Major Features

1960s 1st generation File File structures and proprietary
program interfaces

1970s 2nd generation Network navigation Networks and hierarchies of

related records, standard
program interfaces

1980s 3rd generation Relational Nonprocedural languages,
optimization, transaction
processing

1990s to 2000s 4th generation Object Multimedia, active, distributed

processing, more powerful
operators, data warehouse
processing, XML enabled

past changes in technology and suggests future trends. After this review, the current market
for database software is presented.

1.3.1 Evolution of Database Technology

Table 1.2 depicts a brief history of database technology through four generations' of sys-
tems. The first generation supported sequential and random searching, but the user was re-
quired to write a computer program to obtain access. For example, a program could be
written to retrieve all customer records or to just find the customer record with a specified
customer number. Because first-generation systems did not offer much support for relating
data, they are usually regarded as file processing systems rather than DBMSs. File pro-
cessing systems can manage only one entity rather than many entities and relationships
managed by a DBMS.

The second-generation products were the first true DBMSs as they could manage mul-
tiple entity types and relationships. However, to obtain access to data, a computer program
still had to be written. Second-generation systems are referred to as “navigational” because
the programmer had to write code to navigate among a network of linked records. Some of
the second-generation products adhered to a standard database definition and manipulation
language developed by the Committee on Data Systems Languages (CODASYL), a stan-
dards organization. The CODASYL standard had only limited market acceptance partly be-
cause IBM, the dominant computer company during this time, ignored the standard. IBM
supported a different approach known as the hierarchical data model.

Rather than focusing on the second-generation standard, research labs at IBM and
academic institutions developed the foundations for a new generation of DBMSs. The
most important development involved nonprocedural languages for database access. Third-
generation systems are known as relational DBMSs because of the foundation based on
mathematical relations and associated operators. Optimization technology was developed
so that access using nonprocedural languages would be efficient. Because nonprocedural
access provided such an improvement over navigational access, third-generation systems
supplanted the second generation. Since the technology was so different, most of the new
systems were founded by start-up companies rather than by vendors of previous generation
products. IBM was the major exception. It was IBM’s weight that led to the adoption of
SQL as a widely accepted standard.

' The generations of DBMSs should not be confused with the generations of programming
languages. In particular, fourth-generation language refers to programming language features, not
DBMS features.

TABLE 1.3

2003 Market Shares
by Revenue of
Enterprise Database
Software?

Chapter 1 Introduction to Database Management 13

Fourth-generation DBMSs are extending the boundaries of database technology to un-
conventional data, the Internet, and data warchouse processing. Fourth-generation systems
can store and manipulate unconventional data types such as images, videos, maps, sounds,
and animations. Because these systems view any kind of data as an object to manage,
fourth-generation systems are sometimes called “object-oriented” or “object-relational.”
Chapter 18 presents details about object features in DBMSs. In addition to the emphasis on
objects, the Internet is pushing DBMSs to develop new forms of distributed processing.
Most DBMSs now feature convenient ways to publish static and dynamic data on the In-
ternet using the eXtensible Markup Language (XML) as a publishing standard. Chapter 17
presents details about client—server processing features in DBMSs to support Web access
to databases.

A recent development in fourth-generation DBMSs is support for data warehouse pro-
cessing. A data warehouse is a database that supports mid-range and long-range decision
making in organizations. The retrieval of summarized data dominate data warehouse pro-
cessing, whereas a mixture of updating and retrieving data occur for databases that support
the daily operations of an organization. Chapter 16 presents details about DBMS features
to support data warehouse processing.

The market for fourth-generation systems is a battle between vendors of third-generation
systems who are upgrading their products against a new group of systems developed as open-
source software. So far, the existing companies seem to have the upper hand.

1.3.2 Current Market for Database Software

According to the International Data Corporation (IDC), sales (license and maintenance) of
enterprise database software reached $13.6 billion in 2003, a 7.6 percent increase since
2002. Enterprise DBMSs use mainframe servers running IBM’s MVS operating system
and mid-range servers running Unix (Linux, Solaris, AIX, and other variations) and
Microsoft Windows Server operating systems. Sales of enterprise database software have
followed economic conditions with large increases during the Internet boom years followed
by slow growth during the dot-com and telecom slowdowns. For future sales, IDC projects
sales of enterprise DBMSs to reach $20 billion by 2008.

According to IDC, three products dominate the market for enterprise database software
as shown in Table 1.3. The IDC rankings include both license and maintenance revenues.
When considering only license costs, the Gartner Group ranks IBM with the largest market
share at 35.7 percent, followed by Oracle at 33.4 percent, and Microsoft at 17.7 percent.
The overall market is very competitive with the major companies and smaller companies
introducing many new features with each release.

Product Total Market Share Comments

Oracle 9i, 10g 39.9% Dominates the Unix environment; strong
performance in the Windows market also

IBM DB2, Informix 31.3% Dominates the MVS and AS/400

environments; acquired Informix in 2001;
25% share of the Unix market

Microsoft SQL Server 12.1% Dominate share of the Windows market; no
presence in other environments
Other 16.7% Includes Sybase, NCR Terradata, Progress

Software, MySQL, PostgreSQL, open source
Ingres, Firebird, and others

2 Market shares according to a 2004 study by the International Data Corporation.

14 Part One Introduction to Database Environments

Open source DBMS products have begun to challenge the commercial DBMS products
at the low end of the enterprise DBMS market. Although source code for open source
DBMS products is available without charge, most organizations purchase support contracts
so the open source products are not free. Still, many organizations have reported cost sav-
ings using open source DBMS products, mostly for non-mission-critical systems. MySQL,
first introduced in 1995, is the leader in the open source DBMS market. PostgreSQL and
open source Ingres are mature open source DBMS products. Firebird is a new open source
product that is gaining usage.

In the market for desktop database software, Microsoft Access dominates at least in part
because of the dominance of Microsoft Office. Desktop database software is primarily sold
as part of office productivity software. With Microsoft Office holding about 90 percent of
the office productivity market, Access holds a comparable share of the desktop database
software market. Other significant products in the desktop database software market are
Paradox, Approach, FoxPro, and FileMaker Pro.

To provide coverage of both enterprise and desktop database software, this book pro-
vides significant coverage of Oracle and Microsoft Access. In addition, the emphasis on the
SQL standard in Parts 2 and 5 provides database language coverage for the other major
products.

Because of the potential growth of personal computing devices, most major DBMS ven-
dors have now entered the embedded DBMS market. The embedded DBMS market is now
shared by smaller software companies such as iAnywhere Solutions and Solid Information
Technology along with enterprise DBMS vendors Oracle and IBM.

1.4 Architectures of Database Management Systems

To provide insight about the internal organization of DBMSs, this section describes two ar-
chitectures or organizing frameworks. The first architecture describes an organization of
database definitions to reduce the cost of software maintenance. The second architecture
describes an organization of data and software to support remote access. These architec-
tures promote a conceptual understanding rather than indicate how an actual DBMS is
organized.

1.4.1 Data Independence and the Three Schema Architecture

In early DBMSs, there was a close connection between a database and computer programs
that accessed the database. Essentially, the DBMS was considered part of a programming
language. As a result, the database definition was part of the computer programs that ac-
cessed the database. In addition, the conceptual meaning of a database was not separate
from its physical implementation on magnetic disk. The definitions about the structure of a
database and its physical implementation were mixed inside computer programs.

The close association between a database and related programs led to problems in soft-
ware maintenance. Software maintenance encompassing requirement changes, corrections,
and enhancements can consume a large fraction of software development budgets. In early
DBMSs, most changes to the database definition caused changes to computer programs. In
many cases, changes to computer programs involved detailed inspection of the code, a
labor-intensive process. This code inspection work is similar to year 2000 compliance
where date formats were changed to four digits. Performance tuning of a database was dif-
ficult because sometimes hundreds of computer programs had to be recompiled for every
change. Because database definition changes are common, a large fraction of software
maintenance resources were devoted to database changes. Some studies have estimated the
percentage as high as 50 percent of software maintenance resources.

FIGURE 1.12
Three Schema
Architecture

data independence
a database should have
an identity separate
from the applications
(computer programs,
forms, and reports) that
use it. The separate
identity allows the data-
base definition to be
changed without affect-
ing related applications.

three schema
architecture

an architecture for com-
partmentalizing data-
base descriptions. The
Three Schema Architec-
ture was proposed as a
way to achieve data
independence.

Chapter 1 Introduction to Database Management 15

View 1 View 2 View n E’im'la'
External to
conceptual | |
mappings Conceptual Conceptual
schema level
Conceptual
to internal
mappings
Internal Internal
schema level

The concept of data independence emerged to alleviate problems with program mainte-
nance. Data independence means that a database should have an identity separate from the
applications (computer programs, forms, and reports) that use it. The separate identity al-
lows the database definition to be changed without affecting related applications. For ex-
ample, if a new column is added to a table, applications not using the new column should
not be affected. Likewise if a new table is added, only applications that need the new table
should be affected. This separation should be even more pronounced if a change only af-
fects physical implementation of a database. Database specialists should be free to experi-
ment with performance tuning without concern about computer program changes.

In the mid-1970s, the concept of data independence led to the proposal of the Three
Schema Architecture depicted in Figure 1.12. The word schema as applied to databases
means database description. The Three Schema Architecture includes three levels of
database description. The external level is the user level. Each group of users can have a
separate external view (or view for short) of a database tailored to the group’s specific
needs.

In contrast, the conceptual and internal schemas represent the entire database. The
conceptual schema defines the entities and relationships. For a business database, the con-
ceptual schema can be quite large, perhaps hundreds of entity types and relationships. Like
the conceptual schema, the internal schema represents the entire database. However, the
internal schema represents the storage view of the database whereas the conceptual schema
represents the logical meaning of the database. The internal schema defines files, collec-
tions of data on a storage device such as a hard disk. A file can store one or more entities
described in the conceptual schema.

To make the three schema levels clearer, Table 1.4 shows differences among database de-
finition at the three schema levels using examples from the features described in Section 1.2.
Even in a simplified university database, the differences among the schema levels is clear.
With a more complex database, the differences would be even more pronounced with many
more views, a much larger conceptual schema, and a more complex internal schema.

The schema mappings describe how a schema at a higher level is derived from a schema
at a lower level. For example, the external views in Table 1.4 are derived from the tables in
the conceptual schema. The mapping provides the knowledge to convert a request using an
external view (for example, HighGPAView) into a request using the tables in the conceptual

16 Part One Introduction to Database Environments

TABLE 1.4
University Database
Example Depicting
Differences among
Schema Levels

client-server
architecture

an arrangement of
components (clients and
servers) and data among
computers connected
by a network. The
client—server architec-
ture supports efficient
processing of messages
(requests for service)
between clients and
servers.

Schema Level Description

External HighGPAView: data required for the query in Figure 1.7
FacultyAssignmentFormView: data required for the form in Figure 1.9
FacultyWorkLoadReportView: data required for the report in Figure 1.10

Conceptual Student, Enrollment, Course, Faculty, and Enrollment tables and relationships
(Figure 1.6)

Internal Files needed to store the tables; extra files (indexed property in Figure 1.5)

to improve performance

schema. The mapping between conceptual and internal levels shows how entities are stored
in files.

DBMSs, using schemas and mappings, ensure data independence. Typically, applica-
tions access a database using a view. The DBMS converts an application’s request into a
request using the conceptual schema rather than the view. The DBMS then transforms the
conceptual schema request into a request using the internal schema. Most changes to
the conceptual or internal schema do not affect applications because applications do not
use the lower schema levels. The DBMS, not the user, is responsible for using the mappings
to make the transformations. For more details about mappings and transformations, Chap-
ter 10 describes views and transformations between the external and conceptual levels.
Chapter 8 describes query optimization, the process of converting a conceptual level query
into an internal level representation.

The Three Schema Architecture is an official standard of the American National Stan-
dards Institute (ANSI). However, the specific details of the standard were never widely
adopted. Rather, the standard serves as a guideline about how data independence can be
achieved. The spirit of the Three Schema Architecture is widely implemented in third- and
fourth-generation DBMSs.

1.4.2 Distributed Processing and the Client-Server
Architecture

With the growing importance of network computing and the Internet, distributed processing
is becoming a crucial function of DBMSs. Distributed processing allows geographically
dispersed computers to cooperate when providing data access. A large part of electronic
commerce on the Internet involves accessing and updating remote databases. Many data-
bases in retail, banking, and security trading are now available through the Internet.
DBMSs use available network capacity and local processing capabilities to provide effi-
cient remote database access.

Many DBMSs support distributed processing using a client—server architecture. A client
is a program that submits requests to a server. A server processes requests on behalf of a
client. For example, a client may request a server to retrieve product data. The server lo-
cates the data and sends them back to the client. The client may perform additional pro-
cessing on the data before displaying the results to the user. As another example, a client
submits a completed order to a server. The server validates the order, updates a database,
and sends an acknowledgement to the client. The client informs the user that the order has
been processed.

To improve performance and availability of data, the client—server architecture supports
many ways to distribute software and data in a computer network. The simplest scheme is
just to place both software and data on the same computer (Figure 1.13(a)). To take advan-
tage of a network, both software and data can be distributed. In Figure 1.13(b), the server
software and database are located on a remote computer. In Figure 1.13(c), the server soft-
ware and the database are located on multiple remote computers.

FIGURE 1.13
Typical Client—Server
Arrangements of
Database and
Software

Chapter 1 Introduction to Database Management 17

(a) Client, server, and (b) Multiple clients and one server
database on the on different computers
same computer
Client Client Server
Server
Client
Client
Database
Database

(c) Multiple servers and databases on different computers

Client Server ¢ Server Client

Client Client

Database Database

The DBMS has anumber of responsibilities in a client—server architecture. The DBMS pro-
vides software that can execute on both the client and the server. The client software is typically
responsible for accepting user input, displaying results, and performing some processing of
data. The server software validates client requests, locates remote databases, updates remote
databases (if needed), and sends the data in a format that the client understands.

Client—server architectures provide a flexible way for DBMSs to interact with computer
networks. The distribution of work among clients and servers and the possible choices to
locate data and software are much more complex than described here. You will learn more
details about client—server architectures in Chapter 17.

1.5 Organizational Impacts of Database Technology

This section completes your introduction to database technology by discussing the effects
of database technology on organizations. The first section describes possible interactions
that you may have with a database in an organization. The second section describes infor-
mation resource management, an effort to control the data produced and used by an
organization. Special attention is given to management roles that you can play as part of an
effort to control information resources. Chapter 14 provides more detail about the tools and
processes used in these management roles.

1.5.1 Interacting with Databases

Because databases are pervasive, there are a variety of ways in which you may interact with
databases. The classification in Figure 1.14 distinguishes between functional users who
interact with databases as part of their work and information systems professionals who

18 Part One Introduction to Database Environments

FIGURE 1.14
Classification
of Roles

TABLE 1.5
Responsibilities of
the Database
Administrator

database
administrator

a support position that
specializes in managing
individual databases and
DBMSs.

Specialization
|
[I
Functional Information
user systems
[[
[[] [[]
. . Analyst/
Indirect Parametric Power DBA programmer Management
I
[]
Technical Nontechnical
Technical Nontechnical
Designing conceptual schemas Setting database standards
Designing internal schemas Devising training materials
Monitoring database performance Promoting benefits of databases
Selecting and evaluating database software Consulting with users

Designing client-server databases
Troubleshooting database problems

participate in designing and implementing databases. Each box in the hierarchy represents
a role that you may play. You may simultaneously play more than one role. For example, a
functional user in a job such as a financial analyst may play all three roles in different data-
bases. In some organizations, the distinction between functional users and information sys-
tems professionals is blurred. In these organizations, functional users may participate in
designing and using databases.

Functional users can play a passive or an active role when interacting with databases.
Indirect usage of a database is a passive role. An indirect user is given a report or some
data extracted from a database. A parametric user is more active than an indirect user. A
parametric user requests existing forms or reports using parameters, input values that
change from usage to usage. For example, a parameter may indicate a date range, sales ter-
ritory, or department name. The power user is the most active. Because decision-making
needs can be difficult to predict, ad hoc or unplanned usage of a database is important. A
power user is skilled enough to build a form or report when needed. Power users should have
a good understanding of nonprocedural access, a skill described in Parts 2 and 5 of this book.

Information systems professionals interact with databases as part of developing an in-
formation system. Analyst/programmers are responsible for collecting requirements, de-
signing applications, and implementing information systems. They create and use external
views to develop forms, reports, and other parts of an information system. Management
has an oversight role in the development of databases and information systems.

Database administrators assist both information systems professionals and functional
users. Database administrators have a variety of both technical and nontechnical responsi-
bilities (Table 1.5). Technical skills are more detail-oriented; nontechnical responsibilities
are more people-oriented. The primary technical responsibility is database design. On the
nontechnical side, the database administrator’s time is split among a number of activities.
Database administrators can also have responsibilities in planning databases and evaluating
DBMS:s.

data administrator
a management position
that performs planning
and policy setting

for the information
resources of an entire
organization.

Chapter 1 Introduction to Database Management 19

1.5.2 Information Resource Management

Information resource management is a response to the challenge of effectively utilizing in-
formation technology. The goal of information resource management is to use information
technology as a tool for processing, distributing, and integrating information throughout an
organization. Management of information resources has many similarities with managing
physical resources such as inventory. Inventory management involves activities such as
safeguarding inventory from theft and deterioration, storing it for efficient usage, choosing
suppliers, handling waste, coordinating movement, and reducing holding costs. Informa-
tion resource management involves similar activities: planning databases, acquiring data,
protecting data from unauthorized access, ensuring reliability, coordinating flow among
information systems, and eliminating duplication.

As part of controlling information resources, new management responsibilities have
arisen. The data administrator is a management role with many of these responsibilities; the
major responsibility being planning the development of new databases. The data adminis-
trator maintains an enterprise data architecture that describes existing databases and new
databases and also evaluates new information technologies and determines standards for
managing databases.

The data administrator typically has broader responsibilities than the database adminis-
trator. The data administrator has primarily a planning role, while the database administrator
has a more technical role focused on individual databases and DBMSs. The data
administrator also views the information resource in a broader context and considers all
kinds of data, both computerized and noncomputerized. A major effort in many organiza-
tions is to computerize nontraditional data such as video, training materials, images, and cor-
respondence. The data administrator develops long-range plans for nontraditional data, while
the database administrator implements the plans using appropriate database technology.

Because of broader responsibilities, the data administrator typically is higher in an or-
ganization chart. Figure 1.15 depicts two possible placements of data administrators and

FIGURE 1.15 Organizational Placement of Data and Database Administration

(a) Data administrator under MIS director

MIS director

Technical support

Application development

Database administration

Operations

Data administration

(b) Data administrator parallel to MIS director

Data administration

MIS director

Technical support

Application development

Operations

Database administration

20 Part One Introduction to Database Environments

database administrators. In a small organization, both roles may be combined in systems
administration.

Closing

Thoughts

Chapter 1 has provided a broad introduction to DBMSs. You should use this background as a
context for the skills you will acquire in subsequent chapters. You learned that databases
contain interrelated data that can be shared across multiple parts of an organization. DBMSs
support transformation of data for decision making. To support this transformation, database
technology has evolved from simple file access to powerful systems that support database
definition, nonprocedural access, application development, transaction processing, and
performance tuning. Nonprocedural access is the most vital element because it allows access
without detailed coding. You learned about two architectures that provide organizing
principles for DBMSs. The Three Schema Architecture supports data independence, an
important concept for reducing the cost of software maintenance. Client—server architectures
allow databases to be accessed over computer networks, a feature vital in today’s networked
world.

The skills emphasized in later chapters should enable you to work as an active functional
user or analyst. Both kinds of users need to understand the skills taught in the second part
of this book. The fifth part of the book provides skills for analysts/programmers. This book
also provides the foundation of skills to obtain a specialist position as a database or data
administrator. The skills in the third, fourth, sixth, and seventh parts of this book are most
useful for a position as a database administrator. However, you will probably need to take
additional courses, learn details of popular DBMSs, and acquire management experience
before obtaining a specialist role. A position as a database specialist can be an exciting and
lucrative career opportunity that you should consider.

Review
Concepts

» Database characteristics: persistent, interrelated, and shared.
» Features of database management systems (DBMSs).
* Nonprocedural access: a key to software productivity.
» Transaction: a unit of work that should be processed reliably.

» Application development using nonprocedural access to specify the data requirements
of forms and reports.

* Procedural language interface for combining nonprocedural access with a programming
language such as COBOL or Visual Basic.

» Evolution of database software over four generations of technological improvement.

* Current emphasis on database software for multimedia support, distributed processing,
more powerful operators, and data warehouses.

* Types of DBMSs: enterprise, desktop, embedded.

» Data independence to alleviate problems with maintenance of computer programs.
* Three Schema Architecture for reducing the impact of database definition changes.
* Client—server architecture for using databases over computer networks.

» Database specialist roles: database administrator and data administrator.

* Information resource management for utilizing information technology.

Chapter 1 Introduction to Database Management 21

Questions

O 00 N N W B W DN

10.
11.

12.
13.
14.
15.
16.

17.
18.
19.
20.
21.
22.
23.
24.

25.

26.
27.

28.

29.

30.

31.

32.

Describe a database that you have used on a job or as a consumer. List the entities and rela-
tionships that the database contains. If you are not sure, imagine the entities and relationships that
are contained in the database.

. For the database in question 1, list different user groups that can use the database.

. For one of the groups in question 2, describe an application (form or report) that the group uses.
. Explain the persistent property for databases.

. Explain the interrelated property for databases.

. Explain the shared property for databases.

. What is a DBMS?

. What is SQL?

. Describe the difference between a procedural and a nonprocedural language. What statements

belong in a procedural language but not in a nonprocedural language?
Why is nonprocedural access an important feature of DBMSs?

What is the connection between nonprocedural access and application (form or report) develop-
ment? Can nonprocedural access be used in application development?

What is the difference between a form and a report?

What is a procedural language interface?

What is a transaction?

What features does a DBMS provide to support transaction processing?

For the database in question 1, describe a transaction that uses the database. How often do you
think that the transaction is submitted to the database? How many users submit transactions at
the same time? Make guesses for the last two parts if you are unsure.

What is an enterprise DBMS?

What is a desktop DBMS?

What is an embedded DBMS?

What were the prominent features of first-generation DBMSs?
What were the prominent features of second-generation DBMSs?
What were the prominent features of third-generation DBMSs?
What are the prominent features of fourth-generation DBMSs?

For the database you described in question 1, make a table to depict differences among schema
levels. Use Table 1.4 as a guide.

What is the purpose of the mappings in the Three Schema Architecture? Is the user or DBMS re-
sponsible for using the mappings?

Explain how the Three Schema Architecture supports data independence.

In a client—server architecture, why are processing capabilities divided between a client and
server? In other words, why not have the server do all the processing?

In a client—server architecture, why are data sometimes stored on several computers rather than
on a single computer?

For the database in question 1, describe how functional users may interact with the database. Try
to identify indirect, parametric, and power uses of the database.

Explain the differences in responsibilities between an active functional user of a database and an
analyst. What schema level is used by both kinds of users?

Which role, database administrator or data administrator, is more appealing to you as a long-term
career goal? Briefly explain your preference.

What market niche is occupied by open source DBMS products?

22 Part One Introduction to Database Environments

Problems

References
for Further
Study

Because of the introductory nature of this chapter, there are no problems in this chapter. Problems
appear at the end of most other chapters.

The DBAZine (www.dbazine.com), the Intelligent Enterprise magazine (Www.iemagazine.com),
and the Advisor.com (www.advisor.com) websites provide detailed technical information about
commercial DBMSs, database design, and database application development. To learn more about
the role of database specialists and information resource management, you should consult Mullin
(2002).

