
23

2
Introduction to
Database Development
Learning Objectives

This chapter provides an overview of the database development process. After this
chapter, the student should have acquired the following knowledge and skills:

• List the steps in the information systems life cycle.

• Describe the role of databases in an information system.

• List the goals of database development.

• Understand the relationships among phases in the database development process.

• List features typically provided by CASE tools for database development.

Overview

Chapter 1 provided a broad introduction to database usage in organizations and database
technology. You learned about the characteristics of business databases, essential features
of database managements systems (DBMSs), architectures for deploying databases, and
organizational roles interacting with databases. This chapter continues your introduction to
database management with a broad focus on database development. You will learn about
the context, goals, phases, and tools of database development to facilitate the acquisition of
specific knowledge and skills in Parts 3 and 4.

Before you can learn specific skills, you need to understand the broad context for database
development.This chapter discusses a context for databases as part of an information system.
You will learn about components of information systems, the life cycle of information sys-
tems, and the role of database development as part of information systems development.This
information systems context provides a background for database development. You will
learn the phases of database development, the kind of skills used in database development,
and software tools that can help you develop databases.

2.1 Information Systems
Databases exist as part of an information system. Before you can understand database de-
velopment, you must understand the larger environment that surrounds a database. This

Chapter

man42207_ch02.qxd 07/18/2005 15:59 Page 23

24 Part One Introduction to Database Environments

section describes the components of an information system and several methodologies to
develop information systems.

2.1.1 Components of Information Systems
A system is a set of related components that work together to accomplish some objectives.
Objectives are accomplished by interacting with the environment and performing func-
tions. For example, the human circulatory system, consisting of blood, blood vessels, and
the heart, makes blood flow to various parts of the body. The circulatory system interacts
with other systems of the body to ensure that the right quantity and composition of blood
arrives in a timely manner to various body parts.

An information system is similar to a physical system (such as the circulatory system)
except that an information system manipulates data rather than a physical object like blood.
An information system accepts data from its environment, processes data, and produces
output data for decision making. For example, an information system for processing
student loans (Figure 2.1) helps a service provider track loans for lending institutions. The
environment of this system consists of lenders, students, and government agencies.
Lenders send approved loan applications and students receive cash for school expenses.
After graduation, students receive monthly statements and remit payments to retire their
loans. If a student defaults, a government agency receives a delinquency notice.

Databases are essential components of many information systems. The role of a data-
base is to provide long-term memory for an information system. The long-term memory
contains entities and relationships. For example, the database in Figure 2.1 contains data
about students, loans, and payments so that the statements, cash disbursements, and delin-
quency notices can be generated. Information systems without permanent memory or with
only a few variables in permanent memory are typically embedded in a device to provide a
limited range of functions rather than an open range of functions as business information
systems provide.

Databases are not the only components of information systems. Information systems
also contain people, procedures, input data, output data, software, and hardware. Thus,
developing an information system involves more than developing a database, as we will
discuss next.

FIGURE 2.1 Overview of Student Loan Processing System

$
Student loan
processing

system

Loan applications

Payments

Status changes

Delinquency
notices

Statements

Cash
disbursements

PROCESSES

DATABASE

ENVIRONMENT

OUTPUTS

ENVIRONMENT

INPUTS

man42207_ch02.qxd 07/18/2005 15:59 Page 24

Chapter 2 Introduction to Database Development 25

2.1.2 Information Systems Development Process
Figure 2.2 shows the phases of the traditional systems development life cycle. The particu-
lar phases of the life cycle are not standard. Different authors and organizations have pro-
posed from 3 to 20 phases. The traditional life cycle is often known as the waterfall model
or methodology because the result of each phase flows to the next phase. The traditional life
cycle is mostly a reference framework. For most systems, the boundary between phases is
blurred and there is considerable backtracking between phases. But the traditional life cycle
is still useful because it describes the kind of activities and shows addition of detail until an
operational system emerges. The following items describe the activities in each phase:

• Preliminary Investigation Phase: Produces a problem statement and feasibility study.
The problem statement includes the objectives, constraints, and scope of the system.
The feasibility study identifies the costs and benefits of the system. If the system is fea-
sible, approval is given to begin systems analysis.

• Systems Analysis Phase: Produces requirements describing processes, data, and envi-
ronment interactions. Diagramming techniques are used to document processes, data,
and environment interactions. To produce the requirements, the current system is stud-
ied and users of the proposed system are interviewed.

• Systems Design Phase: Produces a plan to efficiently implement the requirements.
Design specifications are created for processes, data, and environment interaction. The
design specifications focus on choices to optimize resources given constraints.

• Systems Implementation Phase: Produces executable code, databases, and user docu-
mentation. To implement the system, the design specifications are coded and tested.

FIGURE 2.2
Traditional Systems
Development Life
Cycle

Preliminary
investigation

Systems
analysis

Systems
design

System requirements

Systems
implementation

Design specifications

Maintenance

Operational
system

Feedback

Feedback

Feedback

Problem statement,
feasibility study

man42207_ch02.qxd 07/18/2005 15:59 Page 25

Before making the new system operational, a transition plan from the old system to the
new system is devised. To gain confidence and experience with the new system, an
organization may run the old system in parallel to the new system for a period of time.

• Maintenance Phase: Produces corrections, changes, and enhancements to an operating
information system. The maintenance phase commences when an information system
becomes operational. The maintenance phase is fundamentally different from other
phases because it comprises activities from all of the other phases. The maintenance
phase ends when developing a new system becomes cost justified. Due to the high fixed
costs of developing new systems, the maintenance phase can last decades.

The traditional life cycle has been criticized for several reasons. First, an operating
system is not produced until late in the process. By the time a system is operational, the
requirements may have already changed. Second, there is often a rush to begin implemen-
tation so that a product is visible. In this rush, appropriate time may not be devoted to
analysis and design.

A number of alternative methodologies have been proposed to alleviate these difficul-
ties. In spiral development methodologies, the life cycle phases are performed for subsets
of a system, progressively producing a larger system until the complete system emerges.
Rapid application development methodologies delay producing design documents until
requirements are clear. Scaled-down versions of a system, known as prototypes, are used to
clarify requirements. Prototypes can be implemented rapidly using graphical development
tools for generating forms, reports, and other code. Implementing a prototype allows users
to provide meaningful feedback to developers. Often, users may not understand the
requirements unless they can experience a prototype. Thus, prototyping can reduce the risk
of developing an information system because it allows earlier and more direct feedback
about the system.

In all development methodologies, graphical models of the data, processes, and environ-
ment interactions should be produced. The data model describes the kinds of data and rela-
tionships. The process model describes relationships among processes. A process can pro-
vide input data used by other processes and use the output data of other processes. The
environment interaction model describes relationships between events and processes. An
event such as the passage of time or an action from the environment can trigger a process to
start or stop.The systems analysis phase produces an initial version of these models.The sys-
tems design phase adds more details so that the models can be efficiently implemented.

Even though models of data, processes, and environment interactions are necessary to
develop an information system, this book emphasizes data models only. In many informa-
tion systems development efforts, the data model is the most important. For business
information systems, the process and environment interaction models are usually produced
after the data model. Rather than present notation for the process and environment interac-
tion models, this book emphasizes prototypes to depict connections among data, processes,
and the environment. For more details about process and environment interaction models,
please consult several references at the end of the chapter.

2.2 Goals of Database Development
Broadly, the goal of database development is to create a database that provides an impor-
tant resource for an organization. To fulfill this broad goal, the database should serve a large
community of users, support organizational policies, contain high quality data, and provide
efficient access. The remainder of this section describes the goals of database development
in more detail.

26 Part One Introduction to Database Environments

man42207_ch02.qxd 07/18/2005 15:59 Page 26

Chapter 2 Introduction to Database Development 27

2.2.1 Develop a Common Vocabulary
A database provides a common vocabulary for an organization. Before a common database
is implemented, different parts of an organization may have different terminology. For
example, there may be multiple formats for addresses, multiple ways to identify customers,
and different ways to calculate interest rates. After a database is implemented, communica-
tion can improve among different parts of an organization. Thus, a database can unify an
organization by establishing a common vocabulary.

Achieving a common vocabulary is not easy. Developing a database requires compro-
mise to satisfy a large community of users. In some sense, a good database designer shares
some characteristics with a good politician. A good politician often finds solutions with
which everyone finds something to agree or disagree. In establishing a common vocabu-
lary, a good database designer also finds similar imperfect solutions. Forging compromises
can be difficult, but the results can improve productivity, customer satisfaction, and other
measures of organizational performance.

2.2.2 Define the Meaning of Data
A database contains business rules to support organizational policies. Defining business
rules is the essence of defining the semantics or meaning of a database. For example, in an
order entry system, an important rule is that an order must precede a shipment. The data-
base can contain an integrity constraint to support this rule. Defining business rules enables
the database to actively support organizational policies. This active role contrasts with the
more passive role that databases have in establishing a common vocabulary.

In establishing the meaning of data, a database designer must choose appropriate con-
straint levels. Selecting appropriate constraint levels may require compromise to balance
the needs of different groups. Constraints that are too strict may force work-around solu-
tions to handle exceptions. In contrast, constraints that are too loose may allow incorrect
data in a database. For example, in a university database, a designer must decide if a course
offering can be stored without knowing the instructor. Some user groups may want the
instructor to be entered initially to ensure that course commitments can be met. Other user
groups may want more flexibility because course catalogs are typically printed well in
advance of the beginning of the academic period. Forcing the instructor to be entered at the
time a course offering is stored may be too strict. If the database contains this constraint,
users may be forced to circumvent it by using a default value such as TBA (to be
announced). The appropriate constraint (forcing entry of the instructor or allowing later
entry) depends on the importance of the needs of the user groups to the goals of the
organization.

2.2.3 Ensure Data Quality
The importance of data quality is analogous to the importance of product quality in
manufacturing. Poor product quality can lead to loss of sales, lawsuits, and customer dis-
satisfaction. Because data are the product of an information system, data quality is equally
important. Poor data quality can lead to poor decision making about communicating with
customers, identifying repeat customers, tracking sales, and resolving customer problems.
For example, communicating with customers can be difficult if addresses are outdated or
customer names are inconsistently spelled on different orders.

Data quality has many dimensions or characteristics, as depicted in Table 2.1. The im-
portance of data quality characteristics can depend on the part of the database in which they
are applied. For example, in the product part of a retail grocery database, important char-
acteristics of data quality may be the timeliness and consistency of prices. For other parts
of the database, other characteristics may be more important.

man42207_ch02.qxd 07/18/2005 15:59 Page 27

28 Part One Introduction to Database Environments

A database design should help achieve adequate data quality. When evaluating alterna-
tives, a database designer should consider data quality characteristics. For example, in a
customer database, a database designer should consider the possibility that some customers
may not have U.S. addresses. Therefore, the database design may be incomplete if it fails to
support non-U.S. addresses.

Achieving adequate data quality may require a cost–benefit trade-off. For example, in a
grocery store database, the benefits of timely price updates are reduced consumer com-
plaints and less loss in fines from government agencies. Achieving data quality can be
costly both in preventative and monitoring activities. For example, to improve the timeliness
and accuracy of price updates, automated data entry may be used (preventative activity) as
well as sampling the accuracy of the prices charged to consumers (monitoring activity).

The cost–benefit trade-off for data quality should consider long-term as well as short-
term costs and benefits. Often the benefits of data quality are long-term, especially data
quality issues that cross individual databases. For example, consistency of customer iden-
tification across databases can be a crucial issue for strategic decision making. The issue
may not be important for individual databases. Chapter 16 on data warehouses addresses
issues of data quality related to strategic decision making.

2.2.4 Find an Efficient Implementation
Even if the other design goals are met, a slow-performing database will not be used. Thus,
finding an efficient implementation is paramount. However, an efficient implementation
should respect the other goals as much as possible. An efficient implementation that com-
promises the meaning of the database or database quality may be rejected by database
users.

Finding an efficient implementation is an optimization problem with an objective and
constraints. Informally, the objective is to maximize performance subject to constraints
about resource usage, data quality, and data meaning. Finding an efficient implementation
can be difficult because of the number of choices available, the interaction among choices,
and the difficulty of describing inputs. In addition, finding an efficient implementation is a
continuing effort. Performance should be monitored and design changes should be made if
warranted.

2.3 Database Development Process
This section describes the phases of the database development process and discusses rela-
tionships to the information systems development process. The chapters in Parts 3 and 4
elaborate on the framework provided here.

2.3.1 Phases of Database Development
The goal of the database development process is to produce an operational database for an
information system. To produce an operational database, you need to define the three

TABLE 2.1
Common
Characteristics of
Data Quality

Characteristic Meaning

Completeness Database represents all important parts of the information system
Lack of ambiguity Each part of the database has only one meaning
Correctness Database contains values perceived by the user
Timeliness Business changes are posted to the database without excessive delays
Reliability Failures or interference do not corrupt database
Consistency Different parts of the database do not conflict

man42207_ch02.qxd 07/18/2005 15:59 Page 28

Chapter 2 Introduction to Database Development 29

schemas (external, conceptual, and internal) and populate (supply with data) the database.
To create these schemas, you can follow the process depicted in Figure 2.3. The first two
phases are concerned with the information content of the database while the last two phases
are concerned with efficient implementation. These phases are described in more detail in
the remainder of this section.

Conceptual Data Modeling
The conceptual data modeling phase uses data requirements and produces entity relation-
ship diagrams (ERDs) for the conceptual schema and for each external schema. Data
requirements can have many formats such as interviews with users, documentation of
existing systems, and proposed forms and reports. The conceptual schema should represent
all the requirements and formats. In contrast, the external schemas (or views) represent the
requirements of a particular usage of the database such as a form or report rather than all
requirements. Thus, external schemas are generally much smaller than the conceptual
schema.

The conceptual and external schemas follow the rules of the Entity Relationship Model,
a graphical representation that depicts things of interest (entities) and relationships among
entities. Figure 2.4 depicts an entity relationship diagram (ERD) for part of a student loan
system. The rectangles (Student and Loan) represent entity types and labeled lines
(Receives) represent relationships. Attributes or properties of entities are listed inside the

FIGURE 2.3
Phases of Database
Development

Conceptual data
modeling

Data requirements

Logical database
design

Entity relationship diagrams
(conceptual and external)

Distributed
database design

Relational database tables

Physical
database design

Distribution schema

Internal schema, populated database

man42207_ch02.qxd 07/18/2005 15:59 Page 29

30 Part One Introduction to Database Environments

rectangle. The underlined attribute, known as the primary key, provides unique identifica-
tion for the entity type. Chapter 3 provides a precise definition of primary keys. Chapters 5
and 6 present more details about the Entity Relationship Model. Because the Entity Rela-
tionship Model is not fully supported by any DBMS, the conceptual schema is not biased
toward any specific DBMS.

Logical Database Design
The logical database design phase transforms the conceptual data model into a format un-
derstandable by a commercial DBMS. The logical design phase is not concerned with effi-
cient implementation. Rather, the logical design phase is concerned with refinements to the
conceptual data model. The refinements preserve the information content of the conceptual
data model while enabling implementation on a commercial DBMS. Because most busi-
ness databases are implemented on relational DBMSs, the logical design phase usually pro-
duces a table design.

The logical database design phase consists of two refinement activities: conversion and
normalization.The conversion activity transforms ERDs into table designs using conversion
rules. As you will learn in Chapter 3, a table design includes tables, columns, primary keys,
foreign keys (links to other related tables), and other properties. For example, the ERD in
Figure 2.4 is converted into two tables as depicted in Figure 2.5. The normalization activity
removes redundancies in a table design using constraints or dependencies among columns.
Chapter 6 presents conversion rules while Chapter 7 presents normalization techniques.

CREATE TABLE Student
(StdNo INTEGER NOT NULL,

StdName CHAR (50),
. . .

PRIMARY KEY (StdNo))

CREATE TABLE Loan

(LoanNo INTEGER NOT NULL,

LoanAmt DECIMAL(10, 2),

StdNo INTEGER NOT NULL,
. . .

PRIMARY KEY (LoanNo),

FOREIGN KEY (StdNo) REFERENCES Student)

FIGURE 2.5
Conversion of
Figure 2.4

Student

StdNo
StdName

Receives

Loan

LoanNo
LoanAmt

FIGURE 2.4
Partial ERD for the
Student Loan System

man42207_ch02.qxd 07/18/2005 15:59 Page 30

Chapter 2 Introduction to Database Development 31

Distributed Database Design
The distributed database design phase marks a departure from the first two phases. The dis-
tributed database design and physical database design phases are both concerned with an
efficient implementation. In contrast, the first two phases (conceptual data modeling and
logical database design) are concerned with the information content of the database.

Distributed database design involves choices about the location of data and processes so
that performance can be improved. Performance can be measured in many ways such as re-
duced response time, improved availability of data, and improved control. For data location
decisions, the database can be split in many ways to distribute it among computer sites. For
example, a loan table can be distributed according to the location of the bank granting the
loan. Another technique to improve performance is to replicate or make copies of parts of
the database. Replication improves availability of the database but makes updating more
difficult because multiple copies must be kept consistent.

For process location decisions, some of the work is typically performed on a server and
some of the work is performed by a client. For example, the server often retrieves data and
sends them to the client. The client displays the results in an appealing manner. There
are many other options about the location of data and processing that are explored in
Chapter 17.

Physical Database Design
The physical database design phase, like the distributed database design phase, is con-
cerned with an efficient implementation. Unlike distributed database design, physical data-
base design is concerned with performance at one computer location only. If a database
is distributed, physical design decisions are necessary for each location. An efficient
implementation minimizes response time without using too many resources such as disk
space and main memory. Because response time is difficult to directly measure, other
measures such as the amount of disk input-output activity is often used as a substitute.

In the physical database design phase, two important choices are about indexes and data
placement. An index is an auxiliary file that can improve performance. For each column of
a table, the designer decides whether an index can improve performance. An index can
improve performance on retrievals but reduce performance on updates. For example,
indexes on the primary keys (StdNo and LoanNo in Figure 2.5) can usually improve per-
formance. For data placement, the designer decides how data should be clustered or located
close together on a disk. For example, performance might improve by placing student rows
near the rows of associated loans. Chapter 8 describes details of physical database design
including index selection and data placement.

Splitting Conceptual Design for Large Projects
The database development process shown in Figure 2.3 works well for moderate-size data-
bases. For large databases, the conceptual modeling phase is usually modified. Designing
large databases is a time-consuming and labor-intensive process often involving a team of
designers. The development effort can involve requirements from many different groups of
users. To manage complexity, the “divide and conquer” strategy is used in many areas
of computing. Dividing a large problem into smaller problems allows the smaller problems
to be solved independently. The solutions to the smaller problems are then combined into a
solution for the entire problem.

View design and integration (Figure 2.6) is an approach to managing the complexity of
large database development efforts. In view design, an ERD is constructed for each group
of users. A view is typically small enough for a single person to design. Multiple designers
can work on views covering different parts of the database. The view integration process
merges the views into a complete, conceptual schema. Integration involves recognizing and

man42207_ch02.qxd 07/18/2005 15:59 Page 31

32 Part One Introduction to Database Environments

resolving conflicts. To resolve conflicts, it is sometimes necessary to revise the conflicting
views. Compromise is an important part of conflict resolution in the view integration
process. Chapter 12 provides details about the view design and view integration processes.

Cross-Checking with Application Development
The database development process does not exist in isolation. Database development is
conducted along with activities in the systems analysis, systems design, and systems
implementation phases. The conceptual data modeling phase is performed as part of the sys-
tems analysis phase. The logical database design phase is performed during systems design.
The distributed database design and physical database design phases are usually divided
between systems design and systems implementation. Most of the preliminary decisions for
the last two phases can be made in systems design. However, many physical design and
distributed design decisions must be tested on a populated database. Thus, some activities in
the last two phases occur in systems implementation.

To fulfill the goals of database development, the database development process must be
tightly integrated with other parts of information systems development. To produce data,
process, and interaction models that are consistent and complete, cross-checking can be
performed, as depicted in Figure 2.7. The information systems development process can
be split between database development and applications development. The database devel-
opment process produces ERDs, table designs, and so on as described in this section. The
applications development process produces process models, interaction models, and proto-
types. Prototypes are especially important for cross-checking. A database has no value
unless it supports intended applications such as forms and reports. Prototypes can help re-
veal mismatches between the database and applications using the database.

2.3.2 Skills in Database Development
As a database designer, you need two different kinds of skills as depicted in Figure 2.8. The
conceptual data modeling and logical database design phases involve mostly soft skills.
Soft skills are qualitative, subjective, and people-oriented. Qualitative skills emphasize the
generation of feasible alternatives rather than the best alternatives. As a database designer,
you want to generate a range of feasible alternatives. The choice among feasible alterna-
tives can be subjective. You should note the assumptions in which each feasible alternative

View design

Conceptual Data Modeling

Data requirements

View integration

View ERDs

Entity relationship diagrams

FIGURE 2.6
Splitting of
Conceptual Data
Modeling into View
Design and View
Integration

man42207_ch02.qxd 07/18/2005 15:59 Page 32

Chapter 2 Introduction to Database Development 33

FIGURE 2.7
Interaction between
Database and
Application
Development

Database
development

ERDs, table design
...

Data requirements

Operational database Operational applications

Cross-checking

Application requirements

Application
development

Process models,
interaction models,

prototypes

System
requirements

Operational
system

is preferred. The alternative chosen is often subjective based on the designer’s assessment
of the most reasonable assumptions. Conceptual data modeling is especially people-
oriented. In the role of data modeling, you need to obtain requirements from diverse groups
of users. As mentioned earlier, compromise and effective listening are essential skills in
data modeling.

Distributed database design and physical database design involve mostly hard skills.
Hard skills are quantitative, objective, and data intensive. A background in quantitative
disciplines such as statistics and operations management can be useful to understand math-
ematical models used in these phases. Many of the decisions in these phases can be mod-
eled mathematically using an objective function and constraints. For example, the objective
function for index selection is to minimize disk reads and writes with constraints about the
amount of disk space and response time limitations. Many decisions cannot be based on
objective criteria alone because of uncertainty about database usage. To resolve uncer-
tainty, intensive data analysis can be useful. The database designer should collect and ana-
lyze data to understand patterns of database usage and database performance.

Because of the diverse skills and background knowledge required in different phases of
database development, role specialization can occur. In large organizations, database
design roles are divided between data modelers and database performance experts. Data
modelers are mostly involved in the conceptual data modeling and logical database design
phases. Database performance experts are mostly involved in the distributed and physical
database design phases. Because the skills are different in these roles, the same person will
not perform both roles in large organizations. In small organizations, the same person may
fulfill both roles.

man42207_ch02.qxd 07/18/2005 15:59 Page 33

34 Part One Introduction to Database Environments

FIGURE 2.8
Design Skills Used
in Database
Development

Conceptual data
modeling

Data requirements

Logical database
design

Entity relationship diagrams

Distributed
database design

Relational database tables

Physical
database design

Distribution schema

Internal schema, populated database

Design skills
Soft

Hard

2.4 Tools of Database Development
To improve productivity in developing information systems, computer-aided software
engineering (CASE) tools have been created. CASE tools can help improve the productiv-
ity of information systems professionals working on large projects as well as end users
working on small projects. A number of studies have provided evidence that CASE tools
facilitate improvements in the early phases of systems development leading to lower cost,
higher quality, and faster implementations.

Most CASE tools support the database development process. Some CASE tools support
database development as a part of information systems development. Other CASE tools
target various phases of database development without supporting other aspects of infor-
mation systems development.

CASE tools often are classified as front-end and back-end tools. Front-end CASE tools
can help designers diagram, analyze, and document models used in the database develop-
ment process. Back-end CASE tools create prototypes and generate code that can be used
to cross-check a database with other components of an information system. This section
discusses the functions of CASE tools in more detail and demonstrates a commercial
CASE tool, Microsoft Office Visio Professional 2003.

man42207_ch02.qxd 07/18/2005 15:59 Page 34

2.4.1 Diagramming
Diagramming is the most important and widely used function in CASE tools. Most CASE
tools provide predefined shapes and connections among the shapes. The connection tools
typically allow shapes to be moved while remaining connected as though “glued.” This glue
feature provides important flexibility because symbols on a diagram typically are
rearranged many times.

For large drawings, CASE tools provide several features. Most CASE tools allow dia-
grams to span multiple pages. Multiple-page drawings can be printed so that the pages can
be pasted together to make a wall display. Layout can be difficult for large drawings. Some
CASE tools try to improve the visual appeal of a diagram by performing automatic layout.
The automatic layout feature may minimize the number of crossing connections in a dia-
gram. Although automated layout is not typically sufficient by itself, a designer can use it
as a first step to improve the visual appearance of a large diagram.

2.4.2 Documentation
Documentation is one of the oldest and most valuable functions of CASE tools. CASE
tools can store various properties of a data model and link the properties to symbols on the
diagram. Example properties stored in a CASE tool include alias names, integrity rules,
data types, and owners. In addition to properties, CASE tools can store text describing
assumptions, alternatives, and notes. Both the properties and text are stored in the data
dictionary, the database of the CASE tool. The data dictionary is also known as the
repository or encyclopedia.

To support system evolution, many CASE tools can document versions. A version is a
group of changes and enhancements to a system that is released together. Because of the
volume of changes, groups of changes rather than individual changes are typically released
together. In the life of an information system, many versions can be made. To aid in under-
standing relationships between versions, many CASE tools support documentation for
individual changes and entire versions.

2.4.3 Analysis
CASE tools can provide active assistance to database designers through analysis functions.
In documentation and diagramming, CASE tools help designers become more proficient.
In analysis functions, CASE tools can perform the work of a database designer. An analysis
function is any form of reasoning applied to specifications produced in the database
development process. For example, an important analysis function is to convert between an
ERD and a table design. Converting from an ERD to a table design is known as forward
engineering and converting in the reverse direction is known as reverse engineering.

Analysis functions can be provided in each phase of database development. In the
conceptual data modeling phase, analysis functions can reveal conflicts in an ERD. In the
logical database design phase, conversion and normalization are common analysis func-
tions. Conversion produces a table design from an ERD. Normalization removes redun-
dancy in a table design. In the distributed database design and physical database design
phases, analysis functions can suggest decisions about data location and index selection. In
addition, analysis functions for version control can cross database development phases.
Analysis functions can convert between versions and show a list of differences between
versions.

Because analysis functions are advanced features in CASE tools, availability of analysis
functions varies widely. Some CASE tools support little or no analysis functions while
others support extensive analysis functions. Because analysis functions can be useful in
each phase of database development, no single CASE tool provides a complete range of

Chapter 2 Introduction to Database Development 35

man42207_ch02.qxd 07/18/2005 15:59 Page 35

36 Part One Introduction to Database Environments

analysis functions. CASE tools tend to specialize by the phases supported. CASE tools
independent of a DBMS typically specialize in analysis functions in the conceptual data
modeling phase. In contrast, CASE tools offered by a DBMS vendor often specialize in the
distributed database design and physical database design phases.

2.4.4 Prototyping Tools
Prototyping tools provide a link between database development and application develop-
ment. Prototyping tools can be used to create forms and reports that use a database. Because
prototyping tools may generate code (SQL statements and programming language code),
they are sometimes known as code generation tools. Prototyping tools are often provided as
part of a DBMS. The prototyping tools may provide wizards to aid a developer in quickly
creating applications that can be tested by users. Prototyping tools can also create an initial
database design by retrieving existing designs from a library of designs. This kind of proto-
typing tool can be very useful to end users and novice database designers.

2.4.5 Commercial CASE Tools
As shown in Table 2.2, there are a number of CASE tools that provide extensive function-
ality for database development. Each product in Table 2.2 supports the full life cycle of
information systems development although the quality, depth, and breadth of the features
may vary across products. In addition, most of the products in Table 2.2 have several

TABLE 2.2
Prominent CASE
Tools for Database
Development

Tool Vendor Innovative Features

PowerDesigner 10 Sybase Forward and reverse engineering for relational
databases and many programming languages;
model management support for comparing and
merging models; application code generation; UML
support; business process modeling; XML code
generation; version control; data warehouse
modeling support

Oracle Designer 10g Oracle Forward and reverse engineering for relational
databases; reverse engineering of forms; application
code generation; version control; dependency
analysis; business process modeling; cross reference
analysis

Visual Studio .Net Microsoft Forward and reverse engineering for relational
Enterprise Architect databases and the Unified Modeling Language; code

generation for XML Web Services; support for
architectural guidance; generation of data models
from natural language descriptions

AllFusion ERWin Computer Forward and reverse engineering for relational
Data Modeler Associates databases; application code generation; data

warehouse data modeling support; model reuse
tools

ER/Studio 6.6 Embarcadero Forward and reverse engineering for relational
Technologies databases; Java and other language code

generation; model management support for
comparing and merging models; UML support;
version control; administration support for multiple
DBMSs

Visible Analyst 7.6 Visible Systems Forward and reverse engineering for relational
Corporation databases; model management support for

comparing and merging models; version control;
methodology and rules checking support; strategic
planning support

man42207_ch02.qxd 07/18/2005 15:59 Page 36

different versions that vary in price and features. All of the products are relatively neutral
to a particular DBMS even though four products are offered by organizations with major
DBMS products. Besides the full featured products listed in Table 2.2, other companies
offer CASE tools that specialize in a subset of database development phases.

To provide a flavor for some features of commercial CASE tools, a brief depiction is
given of Microsoft Office Visio 2003 Professional, an entry-level version of Visual Studio
.Net Enterprise Architect. Visio Professional provides excellent drawing capabilities and a
number of useful analysis tools. This section depicts Visio Professional because it is an
easy-to-use and powerful tool for introductory database courses.

For database development, Visio Professional features several stencils (collections of
shapes) and data dictionary support. As shown in Figure 2.9, Visio provides templates for
several data modeling notations (Database Model Diagram, Express-G, and Object Role
Modeling (ORM) notations) as well as the Unified Modeling Language (available in the
software folder). Figure 2.10 depicts the Entity Relationship template (on the left) and
the drawing window (on the right). If a symbol is moved, it stays connected to other sym-
bols because of a feature known as “glue.” For example, if the Product rectangle is moved,
it stays connected to the OrdLine rectangle through the PurchasedIn line. Visio Profes-
sional can automatically lay out the entire diagram if requested.

Visio provides a data dictionary to accompany the Entity Relationship template. For
entity types (rectangle symbols), Visio supports the name, data type, required (Req’d),
primary key (PK), and notes properties as shown in the Columns category of Figure 2.11
as well as many other properties in the nonselected categories. For relationships (connect-
ing line symbols), Visio supports properties about the definition, name, cardinality, and

Chapter 2 Introduction to Database Development 37

FIGURE 2.9
Data Modeling
Templates in Visio
2003 Professional

man42207_ch02.qxd 07/18/2005 15:59 Page 37

38 Part One Introduction to Database Environments

FIGURE 2.11
Database Properties
Window in Visio
Professional for the
Product Entity Type

FIGURE 2.12
Database Properties
Window in Visio
Professional for the
Places Relationship

FIGURE 2.10
Template and Canvas
Windows in Visio
Professional

referential action as shown in Figure 2.12. For additional data dictionary support, custom
properties and properties specific to a DBMS can be added.

Visio provides several analysis and prototyping tools beyond its template and data
dictionary features. The analysis tools primarily support the schema conversion task in the
logical database design phase. The Refresh Model Wizard detects and resolves differences

man42207_ch02.qxd 07/18/2005 15:59 Page 38

Chapter 2 Introduction to Database Development 39

between a Visio database diagram and an existing relational database. The Reverse
Engineer Wizard performs the reverse task of converting a relational database definition
into a Visio database diagram. Visio also supports various error checks to ensure consistent
database diagrams. For prototyping, Visio can store shapes in relational databases. This
feature can be particularly useful for providing a visual interface for hierarchical data such
as organization charts and bill of material data. For more powerful prototyping, Visio
supports the Visual Basic with Applications (VBA) language, an event-driven language
integrated with Microsoft Office.

This chapter initially described the role of databases in information systems and the nature
of the database development process. Information systems are collections of related
components that produce data for decision making. Databases provide the permanent
memory for information systems. Development of an information system involves a
repetitive process of analysis, design, and implementation. Database development occurs
in all phases of systems development. Because a database is often a crucial part of an
information system, database development can be the dominant part of information
systems development. Development of the processing and environment interaction
components are often performed after the database development. Cross-checking between
the database and applications is the link that connects the database development process to
the information systems development process.

After presenting the role of databases and the nature of database development, this chap-
ter described the goals, phases, and tools of database development. The goals emphasize
both the information content of the database as well as efficient implementation. The
phases of database development first establish the information content of the database and
then find an efficient implementation. The conceptual data modeling and logical database
design phases involve the information content of the database. The distributed database de-
sign and physical database design phases involve efficient implementation. Because devel-
oping databases can be a challenging process, computer-aided software engineering
(CASE) tools have been created to improve productivity. CASE tools can be essential in
helping the database designer to draw, document, and prototype the database. In addition,
some CASE tools provide active assistance with analyzing a database design.

This chapter provides a context for the chapters in Parts 3 and 4. You might want to
reread this chapter after completing the chapters in Parts 3 and 4. The chapters in Parts 3
and 4 provide details about the phases of database development. Chapters 5 and 6 present
details of the Entity Relationship Model, data modeling practice using the Entity Relation-
ship Model, and conversion from the Entity Relationship Model to the Relational Model.
Chapter 7 presents normalization techniques for relational tables. Chapter 8 presents
physical database design techniques.

• System: related components that work together to accomplish objectives.

• Information system: system that accepts, processes, and produces data.

• Waterfall model of information systems development: reference framework for activi-
ties in the information systems development process.

• Spiral development methodologies and rapid application development methodologies to
alleviate the problems in the traditional waterfall development approach.

• Role of databases in information systems: provide permanent memory.

• Define a common vocabulary to unify an organization.

• Define business rules to support organizational processes.

Review
Concepts

Closing
Thoughts

man42207_ch02.qxd 07/18/2005 15:59 Page 39

40 Part One Introduction to Database Environments

• Ensure data quality to improve the quality of decision making.

• Evaluate investment in data quality using a cost–benefit approach.

• Find an efficient implementation to ensure adequate performance while not compromis-
ing other design goals.

• Conceptual data modeling to represent the information content independent of a target
DBMS.

• View design and view integration to manage the complexity of large data modeling
efforts.

• Logical database design to refine a conceptual data model to a target DBMS.

• Distributed database design to determine locations of data and processing to achieve an
efficient and reliable implementation.

• Physical database design to achieve efficient implementations on each computer site.

• Develop prototype forms and reports to cross-check among the database and applica-
tions using the database.

• Soft skills for conceptual data modeling: qualitative, subjective, and people-oriented.

• Hard skills for finding an efficient implementation: quantitative, objective, and data
intensive.

• Computer-aided software engineering (CASE) tools to improve productivity in the data-
base development process.

• Fundamental assistance of CASE tools: drawing and documenting.

• Active assistance of CASE tools: analysis and prototyping.

Questions 1. What is the relationship between a system and an information system?

2. Provide an example of a system that is not an information system.

3. For an information system of which you are aware, describe some of the components (input data,
output data, people, software, hardware, and procedures).

4. Briefly describe some of the kinds of data in the database for the information system in question 3.

5. Describe the phases of the waterfall model.

6. Why is the waterfall model considered only a reference framework?

7. What are the shortcomings in the waterfall model?

8. What alternative methodologies have been proposed to alleviate the difficulties of the waterfall
model?

9. What is the relationship of the database development process to the information systems
development process?

10. What is a data model? Process model? Environment interaction model?

11. What is the purpose of prototyping in the information systems development process?

12. How is a database designer like a politician in establishing a common vocabulary?

13. Why should a database designer establish the meaning of data?

14. What factors should a database designer consider when choosing database constraints?

15. Why is data quality important?

16. Provide examples of data quality problems according to two characteristics mentioned in
Section 2.2.3.

17. How does a database designer decide on the appropriate level of data quality?

18. Why is it important to find an efficient implementation?

19. What are the inputs and the outputs of the conceptual data modeling phase?

man42207_ch02.qxd 07/18/2005 15:59 Page 40

20. What are the inputs and the outputs of the logical database design phase?

21. What are the inputs and the outputs of the distributed database design phase?

22. What are the inputs and the outputs of the physical database design phase?

23. What does it mean to say that the conceptual data modeling phase and the logical database design
phase are concerned with the information content of the database?

24. Why are there two phases (conceptual data modeling and logical database design) that involve
the information content of the database?

25. What is the relationship of view design and view integration to conceptual data modeling?

26. What is a soft skill?

27. What phases of database development primarily involve soft skills?

28. What is a hard skill?

29. What phases of database development primarily involve hard skills?

30. What kind of background is appropriate for hard skills?

31. Why do large organizations sometimes have different people performing design phases dealing
with information content and efficient implementation?

32. Why are CASE tools useful in the database development process?

33. What is the difference between front-end and back-end CASE tools?

34. What kinds of support can a CASE tool provide for drawing a database diagram?

35. What kinds of support can a CASE tool provide for documenting a database design?

36. What kinds of support can a CASE tool provide for analyzing a database design?

37. What kinds of support can a CASE tool provide for prototyping?

38. Should you expect to find one software vendor providing a full range of functions (drawing,
documenting, analyzing, and prototyping) for the database development process? Why or why
not?

Problems Because of the introductory nature of this chapter, there are no problems in this chapter. Problems
appear at the end of chapters in Parts 3 and 4.

For a more detailed description of the database development process, you can consult specialized
books on database design such as Batini, Ceri, and Navathe (1992) and Teorey (1999). For more
details on the systems development process, you can consult books on systems analysis and design
such as Whitten and Bentley (2001). For more details about data quality, consult specialized books
about data quality including Olson (2002) and Redman (2001).

References
for Further
Study

Chapter 2 Introduction to Database Development 41

man42207_ch02.qxd 07/18/2005 15:59 Page 41

man42207_ch02.qxd 07/18/2005 15:59 Page 42

