
Part

2Understanding
Relational
Databases

The chapters in Part 2 provide a detailed introduction to the Relational Data Model to
instill a foundation for database design and application development with relational
databases. Chapter 3 presents data definition concepts and retrieval operators for
relational databases. Chapter 4 demonstrates SQL retrieval and modification statements
for problems of basic and intermediate complexity and emphasizes mental tools to
develop query formulation skills.

Chapter 3. The Relational Data Model

Chapter 4. Query Formulation with SQL

man42207_ch03.qxd 07/18/2005 20:46 Page 43

man42207_ch03.qxd 07/18/2005 20:46 Page 44

45

Chapter

Learning Objectives

This chapter provides the foundation for using relational databases. After this chapter
the student should have acquired the following knowledge and skills:

• Recognize relational database terminology.

• Understand the meaning of the integrity rules for relational databases.

• Understand the impact of referenced rows on maintaining relational databases.

• Understand the meaning of each relational algebra operator.

• List tables that must be combined to obtain desired results for simple retrieval requests.

Overview

The chapters in Part 1 provided a starting point for your exploration of database technol-
ogy and your understanding of the database development process. You broadly learned
about database characteristics, DBMS features, the goals of database development, and
the phases of the database development process. This chapter narrows your focus to the
relational data model. Relational DBMSs dominate the market for business DBMSs. You
will undoubtedly use relational DBMSs throughout your career as an information
systems professional. This chapter provides background so that you may become profi-
cient in designing databases and developing applications for relational databases in later
chapters.

To effectively use a relational database, you need two kinds of knowledge. First, you
need to understand the structure and contents of the database tables. Understanding the
connections among tables is especially critical because many database retrievals involve
multiple tables. To help you understand relational databases, this chapter presents the basic
terminology, the integrity rules, and a notation to visualize connections among tables.
Second, you need to understand the operators of relational algebra as they are the building
blocks of most commercial query languages. Understanding the operators will improve
your knowledge of query languages such as SQL. To help you understand the meaning of
each operator, this chapter provides a visual representation of each operator and several
convenient summaries.

3
The Relational
Data Model

man42207_ch03.qxd 07/18/2005 20:46 Page 45

46 Part Two Understanding Relational Databases

3.1 Basic Elements
Relational database systems were originally developed because of familiarity and simplic-
ity. Because tables are used to communicate ideas in many fields, the terminology of tables,
rows, and columns is not intimidating to most users. During the early years of relational
databases (1970s), the simplicity and familiarity of relational databases had strong appeal
especially as compared to the procedural orientation of other data models that existed at the
time. Despite the familiarity and simplicity of relational databases, there is a strong math-
ematical basis also. The mathematics of relational databases involves conceptualizing
tables as sets. The combination of familiarity and simplicity with a mathematical founda-
tion is so powerful that relational DBMSs are commercially dominant.

This section presents the basic terminology of relational databases and introduces the
CREATE TABLE statement of the Structured Query Language (SQL). Sections 3.2
through 3.4 provide more detail on the elements defined in this section.

3.1.1 Tables
A relational database consists of a collection of tables. Each table has a heading or defini-
tion part and a body or content part. The heading part consists of the table name and the
column names. For example, a student table may have columns for Social Security number,
name, street address, city, state, zip, class (freshman, sophomore, etc.), major, and cumula-
tive grade point average (GPA). The body shows the rows of the table. Each row in a student
table represents a student enrolled at a university. A student table for a major university may
have more than 30,000 rows, too many to view at one time.

To understand a table, it is also useful to view some of its rows. A table listing or
datasheet shows the column names in the first row and the body in the other rows. Table 3.1
shows a table listing for the Student table. Three sample rows representing university
students are displayed. In this book, the naming convention for column names uses a table
abbreviation (Std) followed by a descriptive name. Because column names are often used
without identifying the associated tables, the abbreviation supports easy table association.
Mixed case highlights the different parts of a column name.

A CREATE TABLE statement can be used to define the heading part of a table.
CREATE TABLE is a statement in the Structured Query Language (SQL). Because SQL
is an industry standard language, the CREATE TABLE statement can be used to create ta-
bles in most DBMSs. The CREATE TABLE statement that follows creates the Student
table.1 For each column, the column name and data type are specified. Data types indicate
the kind of data (character, numeric, Yes/No, etc.) and permissible operations (numeric op-
erations, string operations etc.) for the column. Each data type has a name (for example,

table
a two-dimensional
arrangement of data.
A table consists of a
heading defining the
table name and column
names and a body
containing rows of data.

data type
defines a set of values
and permissible
operations on the
values. Each column
of a table is associated
with a data type.

1 The CREATE TABLE statements in this chapter conform to the standard SQL syntax. There are slight
syntax differences for most commercial DBMSs.

StdSSN StdFirstName StdLastName StdCity StdState StdZip StdMajor StdClass StdGPA
123-45-6789 HOMER WELLS SEATTLE WA 98121-1111 IS FR 3.00
124-56-7890 BOB NORBERT BOTHELL WA 98011-2121 FIN JR 2.70
234-56-7890 CANDY KENDALL TACOMA WA 99042-3321 ACCT JR 3.50

TABLE 3.1 Sample Table Listing of the Student Table

man42207_ch03.qxd 07/18/2005 20:46 Page 46

Chapter 3 The Relational Data Model 47

CHAR for character) and usually a length specification. Table 3.2 lists common data types
used in relational DBMSs.2

CREATE TABLE Student
(StdSSN CHAR(11),

StdFirstName VARCHAR(50),
StdLastName VARCHAR(50),
StdCity VARCHAR(50),
StdState CHAR(2),
StdZip CHAR(10),
StdMajor CHAR(6),
StdClass CHAR(6),
StdGPA DECIMAL(3,2))

3.1.2 Connections among Tables
It is not enough to understand each table individually. To understand a relational database,
connections or relationships among tables also must be understood. The rows in a table are
usually related to rows in other tables. Matching (identical) values indicate relationships
between tables. Consider the sample Enrollment table (Table 3.3) in which each row repre-
sents a student enrolled in an offering of a course. The values in the StdSSN column of
the Enrollment table match the StdSSN values in the sample Student table (Table 3.1). For

2 Data types are not standard across relational DBMSs. The data types used in this chapter are
specified in the latest SQL standard. Most DBMSs support these data types although the data type
names may differ.

TABLE 3.2
Brief Description of
Common SQL Data
Types

Data Type Description

CHAR(L) For fixed-length text entries such as state abbreviations and Social Security
numbers. Each column value using CHAR contains the maximum number
of characters (L) even if the actual length is shorter. Most DBMSs have an
upper limit on the length (L) such as 255.

VARCHAR(L) For variable-length text such as names and street addresses. Column
values using VARCHAR contain only the actual number of characters, not
the maximum length for CHAR columns. Most DBMSs have an upper limit
on the length such as 255.

FLOAT(P) For columns containing numeric data with a floating precision such
as interest rate calculations and scientific calculations. The precision
parameter P indicates the number of significant digits. Most DBMSs have
an upper limit on P such as 38. Some DBMSs have two data types, REAL
and DOUBLE PRECISION, for low- and high-precision floating point
numbers instead of the variable precision with the FLOAT data type.

DATE/TIME For columns containing dates and times such as an order date. These data
types are not standard across DBMSs. Some systems support three data
types (DATE, TIME, and TIMESTAMP) while other systems support a
combined data type (DATE) storing both the date and time.

DECIMAL(W, R) For columns containing numeric data with a fixed precision such as
monetary amounts. The W value indicates the total number of digits and
the R value indicates the number of digits to the right of the decimal
point. This data type is also called NUMERIC in some systems.

INTEGER For columns containing whole numbers (i.e., numbers without a decimal
point). Some DBMSs have the SMALLINT data type for very small whole
numbers and the LONG data type for very large integers.

BOOLEAN For columns containing data with two values such as true/false or yes/no.

relationship
connection between
rows in two tables.
Relationships are
shown by column
values in one table that
match column values
in another table.

man42207_ch03.qxd 07/18/2005 20:46 Page 47

48 Part Two Understanding Relational Databases

example, the first and third rows of the Enrollment table have the same StdSSN value
(123-45-6789) as the first row of the Student table. Likewise, the values in the OfferNo
column of the Enrollment table match the OfferNo column in the Offering table (Table 3.4).
Figure 3.1 shows a graphical depiction of the matching values.

The concept of matching values is crucial in relational databases. As you will see,
relational databases typically contain many tables. Even a modest-size database can have
10 to 15 tables. Large databases can have hundreds of tables. To extract meaningful
information, it is often necessary to combine multiple tables using matching values. By
matching on Student.StdSSN and Enrollment.StdSSN, you could combine the Student and
Enrollment tables.3 Similarly, by matching on Enrollment.OfferNo and Offering.OfferNo,

StdSSN

Student

StdLastName
123-45-6789
124-56-7890
234-56-7890

WELLS
KENDALL
NORBERT

StdSSN

Enrollment

OfferNo
123-45-6789

234-56-7890

123-45-6789

124-56-7890

1234

1234

4321

4321

OfferNo

Offering

CourseNo
1234
4321

IS320
IS320

FIGURE 3.1
Matching Values
among the
Enrollment, Offering,
and Student Tables

OfferNo StdSSN EnrGrade
1234 123-45-6789 3.3
1234 234-56-7890 3.5
4321 123-45-6789 3.5
4321 124-56-7890 3.2

TABLE 3.3
Sample Enrollment
Table

OfferNo CourseNo OffTerm OffYear OffLocation OffTime FacSSN OffDays
1111 IS320 SUMMER 2006 BLM302 10:30 AM MW
1234 IS320 FALL 2005 BLM302 10:30 AM 098-76-5432 MW
2222 IS460 SUMMER 2005 BLM412 1:30 PM TTH
3333 IS320 SPRING 2006 BLM214 8:30 AM 098-76-5432 MW
4321 IS320 FALL 2005 BLM214 3:30 PM 098-76-5432 TTH
4444 IS320 SPRING 2006 BLM302 3:30 PM 543-21-0987 TTH
5678 IS480 SPRING 2006 BLM302 10:30 AM 987-65-4321 MW
5679 IS480 SPRING 2006 BLM412 3:30 PM 876-54-3210 TTH
9876 IS460 SPRING 2006 BLM307 1:30 PM 654-32-1098 TTH

TABLE 3.4 Sample Offering Table

3 When columns have identical names in two tables, it is customary to precede the column name
with the table name and a period as Student.StdSSN and Enrollment.StdSSN.

man42207_ch03.qxd 07/18/2005 20:46 Page 48

Chapter 3 The Relational Data Model 49

you could combine the Enrollment and Offering tables. As you will see later in this chapter,
the operation of combining tables on matching values is known as a join. Understanding the
connections between tables (or ways that tables can be combined) is crucial for extracting
useful data.

3.1.3 Alternative Terminology
You should be aware that other terminology is used besides table, row, and column. Table 3.5
shows three roughly equivalent terminologies. The divergence in terminology is due to the
different groups that use databases. The table-oriented terminology appeals to end users;
the set-oriented terminology appeals to academic researchers; and the record-oriented
terminology appeals to information systems professionals. In practice, these terms may be
mixed. For example, in the same sentence you might hear both “tables” and “fields.” You
should expect to see a mix of terminology in your career.

3.2 Integrity Rules
In the previous section, you learned that a relational database consists of a collection of
interrelated tables.To ensure that a database provides meaningful information, integrity rules
are necessary. This section describes two important integrity rules (entity integrity and ref-
erential integrity), examples of their usage, and a notation to visualize referential integrity.

3.2.1 Definition of the Integrity Rules
Entity integrity means that each table must have a column or combination of columns with
unique values.4 Unique means that no two rows of a table have the same value. For exam-
ple, StdSSN in Student is unique and the combination of StdSSN and OfferNo is unique in
Enrollment. Entity integrity ensures that entities (people, things, and events) are uniquely
identified in a database. For auditing, security, and communication reasons, it is important
that business entities be easily traceable.

Referential integrity means that the column values in one table must match column
values in a related table. For example, the value of StdSSN in each row of the Enrollment
table must match the value of StdSSN in some row of the Student table. Referential integrity
ensures that a database contains valid connections. For example, it is critical that each row
of the Enrollment table contains a Social Security number of a valid student. Otherwise,
some enrollments can be meaningless, possibly resulting in students denied enrollment
because nonexisting students took their places.

For more precise definitions of entity integrity and referential integrity, some other defini-
tions are necessary. These prerequisite definitions and the more precise definitions follow.

Definitions
• Superkey: a column or combination of columns containing unique values for each row.

The combination of every column in a table is always a superkey because rows in a table
must be unique.5

TABLE 3.5
Alternative
Terminology for
Relational Databases

Table-Oriented Set-Oriented Record-Oriented

Table Relation Record type, file
Row Tuple Record
Column Attribute Field

4 Entity integrity is also known as uniqueness integrity.
5 The uniqueness of rows is a feature of the relational model that SQL does not require.

man42207_ch03.qxd 07/18/2005 20:46 Page 49

50 Part Two Understanding Relational Databases

• Candidate key: a minimal superkey. A superkey is minimal if removing any column
makes it no longer unique.

• Null value: a special value that represents the absence of an actual value. A null value
can mean that the actual value is unknown or does not apply to the given row.

• Primary key: a specially designated candidate key. The primary key for a table cannot
contain null values.

• Foreign key: a column or combination of columns in which the values must match those
of a candidate key. A foreign key must have the same data type as its associated candi-
date key. In the CREATE TABLE statement of SQL, a foreign key must be associated
with a primary key rather than merely a candidate key.

Integrity Rules
• Entity integrity rule: No two rows of a table can contain the same value for the primary

key. In addition, no row can contain a null value for any column of a primary key.

• Referential integrity rule: Only two kinds of values can be stored in a foreign key:
� a value matching a candidate key value in some row of the table containing the asso-

ciated candidate key or
� a null value.

3.2.2 Application of the Integrity Rules
To extend your understanding, let us apply the integrity rules to several tables in the
university database. The primary key of Student is StdSSN. A primary key can be designated
as part of the CREATE TABLE statement. To designate StdSSN as the primary key of Stu-
dent, you use a CONSTRAINT clause for the primary key at the end of the CREATETABLE
statement. The constraint name (PKStudent) following the CONSTRAINT keyword facili-
tates identification of the constraint if a violation occurs when a row is inserted or updated.

CREATE TABLE Student
(StdSSN CHAR(11),

StdFirstName VARCHAR(50),
StdLastName VARCHAR(50),
StdCity VARCHAR(50),
StdState CHAR(2),
StdZip CHAR(10),
StdMajor CHAR(6),
StdClass CHAR(2),
StdGPA DECIMAL(3,2),

CONSTRAINT PKStudent PRIMARY KEY (StdSSN))

Social Security numbers are assigned by the federal government so the university does
not have to assign them. In other cases, primary values are assigned by an organization. For
example, customer numbers, product numbers, and employee numbers are typically
assigned by the organization controlling the underlying database. In these cases, automatic
generation of unique values is required. Some DBMSs support automatic generation of
unique values as explained in Appendix 3.C.

Entity Integrity Variations
Candidate keys that are not primary keys are declared with the UNIQUE keyword.
The Course table (see Table 3.6) contains two candidate keys: CourseNo (primary key) and
CrsDesc (course description). The CourseNo column is the primary key because it is more

man42207_ch03.qxd 07/18/2005 20:46 Page 50

Chapter 3 The Relational Data Model 51

stable than the CrsDesc column. Course descriptions may change over time, but course
numbers remain the same.

CREATE TABLE Course
(CourseNo CHAR(6),

CrsDesc VARCHAR(250),
CrsUnits SMALLINT,

CONSTRAINT PKCourse PRIMARY KEY(CourseNo),
CONSTRAINT UniqueCrsDesc UNIQUE (CrsDesc))

Some tables need more than one column in the primary key. In the Enrollment table, the
combination of StdSSN and OfferNo is the only candidate key. Both columns are needed
to identify a row. A primary key consisting of more than one column is known as a
composite or a combined primary key.

CREATE TABLE Enrollment
(OfferNo INTEGER,

StdSSN CHAR(11),
EnrGrade DECIMAL(3,2),

CONSTRAINT PKEnrollment PRIMARY KEY(OfferNo, StdSSN))

Nonminimal superkeys are not important because they are common and contain columns
that do not contribute to the uniqueness property. For example, the combination of StdSSN
and StdLastName is unique. However, if StdLastName is removed, StdSSN is still unique.

Referential Integrity
For referential integrity, the columns StdSSN and OfferNo are foreign keys in the Enrollment
table. The StdSSN column refers to the Student table and the OfferNo column refers to the
Offering table (Table 3.4). An Offering row represents a course given in an academic period
(summer, winter, etc.), year, time, location, and days of the week. The primary key of Offer-
ing is OfferNo. A course such as IS480 will have different offer numbers each time it is
offered.

Referential integrity constraints can be defined similarly to the way of defining pri-
mary keys. For example, to define the foreign keys in Enrollment, you should use
CONSTRAINT clauses for foreign keys at the end of the CREATE TABLE statement as
shown in the revised CREATE TABLE statement for the Enrollment table.

CREATE TABLE Enrollment
(OfferNo INTEGER,

StdSSN CHAR(11),
EnrGrade DECIMAL(3,2),

CONSTRAINT PKEnrollment PRIMARY KEY(OfferNo, StdSSN),
CONSTRAINT FKOfferNo FOREIGN KEY (OfferNo) REFERENCES Offering,
CONSTRAINT FKStdSSN FOREIGN KEY (StdSSN) REFERENCES Student)

CourseNo CrsDesc CrsUnits
IS320 FUNDAMENTALS OF BUSINESS 4
IS460 SYSTEMS ANALYSIS 4
IS470 BUSINESS DATA COMMUNICATIONS 4
IS480 FUNDAMENTALS OF DATABASE 4

TABLE 3.6
Sample Course Table

man42207_ch03.qxd 07/18/2005 20:46 Page 51

Although referential integrity permits foreign keys to have null values, it is not common
for foreign keys to have null values. When a foreign key is part of a primary key, null values
are not permitted because of the entity integrity rule. For example, null values are not per-
mitted for either Enrollment.StdSSN or Enrollment.OfferNo because each column is part of
the primary key.

When a foreign key is not part of a primary key, usage dictates whether null values
should be permitted. For example, Offering.CourseNo, a foreign key referring to Course
(Table 3.4), is not part of a primary key yet null values are not permitted. In most universi-
ties, a course cannot be offered before it is approved. Thus, an offering should not be
inserted without a related course.

The NOT NULL keywords indicate that a column cannot have null values as shown in the
CREATE TABLE statement for the Offering table. The NOT NULL constraints are inline
constraints associated with a specific column. In contrast, the primary and foreign key con-
straints in the CREATETABLE statement for the Offering table are table constraints in which
the associated columns must be specified in the constraint. Constraint names should be used
with both table and inline constraints to facilitate identification when a violation occurs.

CREATE TABLE Offering
(OfferNo INTEGER,

CourseNo CHAR(6) CONSTRAINT OffCourseNoRequired NOT NULL,
OffLocation VARCHAR(50),
OffDays CHAR(6),
OffTerm CHAR(6) CONSTRAINT OffTermRequired NOT NULL,
OffYear INTEGER CONSTRAINT OffYearRequired NOT NULL,
FacSSN CHAR(11),
OffTime DATE,

CONSTRAINT PKOffering PRIMARY KEY (OfferNo),
CONSTRAINT FKCourseNo FOREIGN KEY(CourseNo) REFERENCES Course,
CONSTRAINT FKFacSSN FOREIGN KEY(FacSSN) REFERENCES Faculty)

In contrast, Offering.FacSSN referring to the faculty member teaching the offering may
be null. The Faculty table (Table 3.7) stores data about instructors of courses. A null value
for Offering.FacSSN means that a faculty member is not yet assigned to teach the offering.
For example, an instructor is not assigned in the first and third rows of Table 3.4. Because
offerings must be scheduled perhaps a year in advance, it is likely that instructors for some
offerings will not be known until after the offering row is initially stored. Therefore, per-
mitting null values in the Offering table is prudent.

Referential Integrity for Self-Referencing (Unary) Relationships
A referential integrity constraint involving a single table is known as a self-referencing
relationshiporunaryrelationship.Self-referencingrelationshipsarenotcommon,but theyare
important when they occur. In the university database, a faculty member can supervise other
faculty members and be supervised by a faculty member. For example, Victoria Emmanuel

52 Part Two Understanding Relational Databases

self-referencing
relationship
a relationship in which
a foreign key refers to
the same table. Self-
referencing relation-
ships represent associa-
tions among members
of the same set.

FacSSN FacFirstName FacLastName FacCity FacState FacDept FacRank FacSalary FacSupervisor FacHireDate FacZipCode
098-76-5432 LEONARD VINCE SEATTLE WA MS ASST $35,000 654-32-1098 01-Apr-95 98111-9921
543-21-0987 VICTORIA EMMANUEL BOTHELL WA MS PROF $120,000 01-Apr-96 98011-2242
654-32-1098 LEONARD FIBON SEATTLE WA MS ASSC $70,000 543-21-0987 01-Apr-95 98121-0094
765-43-2109 NICKI MACON BELLEVUE WA FIN PROF $65,000 01-Apr-97 98015-9945
876-54-3210 CRISTOPHER COLAN SEATTLE WA MS ASST $40,000 654-32-1098 01-Apr-99 98114-1332
987-65-4321 JULIA MILLS SEATTLE WA FIN ASSC $75,000 765-43-2109 01-Apr-00 98114-9954

TABLE 3.7 Sample Faculty Table

man42207_ch03.qxd 07/18/2005 20:46 Page 52

Chapter 3 The Relational Data Model 53

(second row) supervises Leonard Fibon (third row). The FacSupervisor column shows this
relationship: the FacSupervisor value in the third row (543-21-0987) matches the FacSSN
value in the second row.Areferential integrityconstraint involving the FacSupervisorcolumn
represents theself-referencingrelationship. In theCREATETABLEstatement, thereferential
integrity constraint for a self-referencing relationship can be written the same way as other
referential integrity constraints.

CREATE TABLE Faculty
(FacSSN CHAR(11),

FacFirstName VARCHAR(50) CONSTRAINT FacFirstNameRequired NOT NULL,
FacLastName VARCHAR(50) CONSTRAINT FacLastNameRequired NOT NULL,
FacCity VARCHAR(50) CONSTRAINT FacCityRequired NOT NULL,
FacState CHAR(2) CONSTRAINT FacStateRequired NOT NULL,
FacZipCode CHAR(10) CONSTRAINT FacZipRequired NOT NULL,
FacHireDate DATE,
FacDept CHAR(6),
FacRank CHAR(4),
FacSalary DECIMAL(10,2),
FacSupervisor CHAR(11),

CONSTRAINT PKFaculty PRIMARY KEY (FacSSN),
CONSTRAINT FKFacSupervisor FOREIGN KEY (FacSupervisor) REFERENCES Faculty)

3.2.3 Graphical Representation of Referential Integrity
In recent years, commercial DBMSs have provided graphical representations for referential
integrity constraints. The graphical representation makes referential integrity easier to
define and understand than the text representation in the CREATE TABLE statement. In
addition, a graphical representation supports nonprocedural data access.

To depict a graphical representation, let us study the Relationship window in Microsoft
Access. Access provides the Relationship window to visually define and display referential
integrity constraints. Figure 3.2 shows the Relationship window for the tables of the
university database. Each line represents a referential integrity constraint or relationship. In
a relationship, the primary key table is known as the parent or “1” table (for example,

Connections are
from the primary
key (bold font) to
the foreign key.

Parent
table

Child table

FIGURE 3.2
Relationship Window
for the University
Database

man42207_ch03.qxd 07/18/2005 20:46 Page 53

54 Part Two Understanding Relational Databases

Student) and the foreign key table (for example, Enrollment) is known as the child or “M”
(many) table.

The relationship from Student to Enrollment is called “1-M” (one to many) because a
student can be related to many enrollments but an enrollment can be related to only one
student. Similarly, the relationship from the Offering table to the Enrollment table means
that an offering can be related to many enrollments but an enrollment can be related to only
one offering. You should practice by writing similar sentences for the other relationships in
Figure 3.2.

M-N (many to many) relationships are not directly represented in the Relational
Model. An M-N relationship means that rows from each table can be related to many rows
of the other table. For example, a student enrolls in many course offerings and a course
offering contains many students. In the Relational Model, a pair of 1-M relationships and
a linking or associative table represents an M-N relationship. In Figure 3.2, the linking
table Enrollment and its relationships with Offering and Student represent an M-N rela-
tionship between the Student and Offering tables.

Self-referencing relationships are represented indirectly in the Relationship window. The
self-referencing relationship involving Faculty is represented as a relationship between
the Faculty and Faculty_1 tables. Faculty_1 is not a real table as it is created only inside the
Access Relationship window. Access can only indirectly show self-referencing relationships.

A graphical representation such as the Relationship window makes it easy to identify
tables that should be combined to answer a retrieval request. For example, assume that you
want to find instructors who teach courses with “database” in the course description.
Clearly, you need the Course table to find “database” courses. You also need the Faculty
table to display instructor data. Figure 3.2 shows that you also need the Offering table
because Course and Faculty are not directly connected. Rather, Course and Faculty are
connected through Offering. Thus, visualizing relationships helps to identify tables needed
to fulfill retrieval requests. Before attempting the retrieval problems in later chapters, you
should carefully study a graphical representation of the relationships. You should construct
your own diagram if one is not available.

3.3 Delete and Update Actions for Referenced Rows
For each referential integrity constraint, you should carefully consider actions on referenced
rows in parent tables of 1-M relationships. A parent row is referenced if there are rows in a
child table with foreign key values identical to the primary key value of the parent table row.
For example, the first row of the Course table (Table 3.6) with CourseNo “IS320” is refer-
enced by the first row of the Offering table (Table 3.4). It is natural to consider what happens
to related Offering rows when the referenced Course row is deleted or the CourseNo is
updated. More generally, these concerns can be stated as

Deleting a referenced row: What happens to related rows (that is, rows in the child
table with the identical foreign key value) when the referenced row in the parent table
is deleted?

Updating the primary key of a referenced row: What happens to related rows when
the primary key of the referenced row in the parent table is updated?

Actions on referenced rows are important when changing the rows of a database. When
developing data entry forms (discussed in Chapter 10), actions on referenced rows can be es-
pecially important. For example, if a data entry form permits deletion of rows in the Course
table, actions on related rows in the Offering table must be carefully planned. Otherwise, the
database can become inconsistent or difficult to use.

M-N relationship
a connection between
two tables in which
rows of each table can
be related to many rows
of the other table. M-N
relationships cannot be
directly represented in
the Relational Model.
Two 1-M relationships
and a linking or
associative table
represent an M-N
relationship.

1-M relationship
a connection between
two tables in which one
row of a parent table
can be referenced by
many rows of a child
table. 1-M relationships
are the most common
kind of relationship.

man42207_ch03.qxd 07/18/2005 20:46 Page 54

Chapter 3 The Relational Data Model 55

Possible Actions
There are several possible actions in response to the deletion of a referenced row or the
update of the primary key of a referenced row. The appropriate action depends on the tables
involved. The following list describes the actions and provides examples of usage.

• Restrict6: Do not allow the action on the referenced row. For example, do not permit a
Student row to be deleted if there are any related Enrollment rows. Similarly, do not
allow Student.StdSSN to be changed if there are related Enrollment rows.

• Cascade: Perform the same action (cascade the action) to related rows. For example, if a
Student is deleted, then delete the related Enrollment rows. Likewise, if Student.StdSSN
is changed in some row, update StdSSN in the related Enrollment rows.

• Nullify: Set the foreign key of related rows to null. For example, if a Faculty row is deleted,
then set FacSSN to NULL in related Offering rows. Likewise, if Faculty.FacSSN is updated,
then set FacSSN to NULL in related Offering rows.The nullify action is not permitted if the
foreign key does not allow null values. For example, the nullify option is not valid when
deleting rows of the Student table because Enrollment.StdSSN is part of the primary key.

• Default: Set the foreign key of related rows to its default value. For example, if a Fac-
ulty row is deleted, then set FacSSN to a default faculty in related Offering rows. The
default faculty might have an interpretation such as “to be announced.” Likewise, if
Faculty.FacSSN is updated, then set FacSSN to its default value in related Offering rows.
The default action is an alternative to the nullify action as the default action avoids
null values.

The delete and update actions can be specified in SQL using the ON DELETE and ON
UPDATE clauses. These clauses are part of foreign key constraints. For example, the
revised CREATE TABLE statement for the Enrollment table shows ON DELETE and
ON UPDATE clauses for the Enrollment table. The RESTRICT keyword means restrict
(the first possible action). The keywords CASCADE, SET NULL, and SET DEFAULT can
be used to specify the second through fourth options, respectively.

CREATE TABLE Enrollment
(OfferNo INTEGER,

StdSSN CHAR(11),
EnrGrade DECIMAL(3,2),

CONSTRAINT PKEnrollment PRIMARY KEY (OfferNo, StdSSN),
CONSTRAINT FKOfferNo FOREIGN KEY (OfferNo) REFERENCES Offering

ON DELETE RESTRICT
ON UPDATE CASCADE,

CONSTRAINT FKStdSSN FOREIGN KEY (StdSSN) REFERENCES Student
ON DELETE RESTRICT
ON UPDATE CASCADE)

Before finishing this section, you should understand the impact of referenced rows on
insert operations. A referenced row must be inserted before its related rows. For example,
before inserting a row in the Enrollment table, the referenced rows in the Student and
Offering tables must exist. Referential integrity places an ordering on insertion of rows
from different tables. When designing data entry forms, you should carefully consider the
impact of referential integrity on the order that users complete forms.

6 There is a related action designated by the keywords NO ACTION. The difference between RESTRICT
and NO ACTION involves the concept of deferred integrity constraints, discussed in Chapter 15.

man42207_ch03.qxd 07/18/2005 20:46 Page 55

56 Part Two Understanding Relational Databases

3.4 Operators of Relational Algebra
In previous sections of this chapter, you have studied the terminology and integrity rules of
relational databases with the goal of understanding existing relational databases. In particu-
lar, understanding connections among tables was emphasized as a prerequisite to retrieving
useful information. This section describes some fundamental operators that can be used to
retrieve useful information from a relational database.

You can think of relational algebra similarly to the algebra of numbers except that the
objects are different: algebra applies to numbers and relational algebra applies to tables. In
algebra, each operator transforms one or more numbers into another number. Similarly,
each operator of relational algebra transforms a table (or two tables) into a new table.

This section emphasizes the study of each relational algebra operator in isolation. For
each operator, you should understand its purpose and inputs. While it is possible to com-
bine operators to make complicated formulas, this level of understanding is not important
for developing query formulation skills. Using relational algebra by itself to write queries
can be awkward because of details such as ordering of operations and parentheses. There-
fore, you should seek only to understand the meaning of each operator, not how to combine
operators to write expressions.

The coverage of relational algebra groups the operators into three categories. The most
widely used operators (restrict, project, and join) are presented first. The extended cross
product operator is also presented to provide background for the join operator. Knowledge
of these operators will help you to formulate a large percentage of queries. More special-
ized operators are covered in latter parts of the section. The more specialized operators
include the traditional set operators (union, intersection, and difference) and advanced
operators (summarize and divide). Knowledge of these operators will help you formulate
more difficult queries.

3.4.1 Restrict (Select) and Project Operators
The restrict (also known as select) and project operators produce subsets of a table.7

Because users often want to see a subset rather than an entire table, these operators are
widely used. These operators are also popular because they are easy to understand.

The restrict and project operators produce an output table that is a subset of an input
table (Figure 3.3). Restrict produces a subset of the rows, while project produces a subset of

restrict
an operator that re-
trieves a subset of the
rows of the input table
that satisfy a given
condition.

7 In this book, the operator name restrict is used to avoid confusion with the SQL SELECT statement.
The operator is more widely known as select.

Restrict Project

FIGURE 3.3
Graphical
Representation of
Restrict and Project
Operators

man42207_ch03.qxd 07/18/2005 20:46 Page 56

the columns. Restrict uses a condition or logical expression to indicate what rows should be
retained in the output. Project uses a list of column names to indicate what columns to retain
in the output. Restrict and project are often used together because tables can have many
rows and columns. It is rare that a user wants to see all rows and columns.

The logical expression used in the restrict operator can include comparisons involving
columns and constants. Complex logical expressions can be formed using the logical oper-
ators AND, OR, and NOT. For example, Table 3.8 shows the result of a restrict operation on
Table 3.4 where the logical expression is: OffDays � ‘MW’ AND OffTerm � ‘SPRING’
AND OffYear � 2006.

A project operation can have a side effect. Sometimes after a subset of columns is retrieved,
there are duplicate rows. When this occurs, the project operator removes the duplicate rows.
For example, if Offering.CourseNo is the only column used in a project operation, only three
rows are in the result (Table 3.9) even though the Offering table (Table 3.4) has nine rows.
The column Offering.CourseNo contains only three unique values inTable 3.4. Note that if the
primary key or a candidate key is included in the list of columns, the resulting table has no
duplicates. For example, if OfferNo was included in the list of columns, the result table would
have nine rows with no duplicate removal necessary.

This side effect is due to the mathematical nature of relational algebra. In relational al-
gebra, tables are considered sets. Because sets do not have duplicates, duplicate removal is
a possible side effect of the project operator. Commercial languages such as SQL usually
take a more pragmatic view. Because duplicate removal can be computationally expensive,
duplicates are not removed unless the user specifically requests it.

3.4.2 Extended Cross Product Operator
The extended cross product operator can combine any two tables. Other table combining
operators have conditions about the tables to combine. Because of its unrestricted nature,
the extended cross product operator can produce tables with excessive data. The extended
cross product operator is important because it is a building block for the join operator.
When you initially learn the join operator, knowledge of the extended cross product opera-
tor can be useful. After you gain experience with the join operator, you will not need to rely
on the extended cross product operator.

The extended cross product (product for short) operator shows everything possible from
two tables.8 The product of two tables is a new table consisting of all possible combinations
of rows from the two input tables. Figure 3.4 depicts a product of two single column tables.
Each result row consists of the columns of the Faculty table (only FacSSN) and the columns
of the Student table (only StdSSN). The name of the operator (product) derives from the

Chapter 3 The Relational Data Model 57

project
an operator that
retrieves a specified
subset of the columns
of the input table.

8 The extended cross product operator is also known as the Cartesian product after French
mathematician René Descartes.

extended cross
product
an operator that builds
a table consisting of all
combinations of rows
from each of the two
input tables.

OfferNo CourseNo OffTerm OffYear OffLocation OffTime FacSSN OffDays
3333 IS320 SPRING 2006 BLM214 8:30 AM 098-76-5432 MW
5678 IS480 SPRING 2006 BLM302 10:30 AM 987-65-4321 MW

TABLE 3.8 Result of Restrict Operation on the Sample Offering Table (TABLE 3.4)

CourseNo
IS320
IS460
IS480

TABLE 3.9
Result of a Project
Operation on
Offering.CourseNo

man42207_ch03.qxd 07/18/2005 20:46 Page 57

58 Part Two Understanding Relational Databases

number of rows in the result. The number of rows in the resulting table is the product of
the number of rows of the two input tables. In contrast, the number of result columns is the
sum of the columns of the two input tables. In Figure 3.4, the result table has nine rows and
two columns.

As another example, consider the product of the sample Student (Table 3.10) and
Enrollment (Table 3.11) tables. The resulting table (Table 3.12) has 9 rows (3 � 3) and 7
columns (4 � 3). Note that most rows in the result are not meaningful as only three rows
have the same value for StdSSN.

FacSSN
111-11-1111
222-22-2222
333-33-3333

Faculty

FacSSN
111-11-1111
111-11-1111
111-11-1111
222-22-2222
222-22-2222
222-22-2222
333-33-3333
333-33-3333
333-33-3333

StdSSN
111-11-1111
444-44-4444
555-55-5555
111-11-1111
444-44-4444
555-55-5555
111-11-1111
444-44-4444
555-55-5555

Faculty PRODUCT Student

StdSSN
111-11-1111
444-44-4444
555-55-5555

Student

FIGURE 3.4
Cross Product
Example

TABLE 3.12 Student PRODUCT Enrollment

StdSSN StdLastName StdMajor StdClass
123-45-6789 WELLS IS FR
124-56-7890 NORBERT FIN JR
234-56-7890 KENDALL ACCT JR

TABLE 3.10
Sample Student Table

OfferNo StdSSN EnrGrade
1234 123-45-6789 3.3
1234 234-56-7890 3.5
4321 124-56-7890 3.2

TABLE 3.11
Sample Enrollment
Table

Student.StdSSN StdLastName StdMajor StdClass OfferNo Enrollment.StdSSN EnrGrade
123-45-6789 WELLS IS FR 1234 123-45-6789 3.3
123-45-6789 WELLS IS FR 1234 234-56-7890 3.5
123-45-6789 WELLS IS FR 4321 124-56-7890 3.2
124-56-7890 NORBERT FIN JR 1234 123-45-6789 3.3
124-56-7890 NORBERT FIN JR 1234 234-56-7890 3.5
124-56-7890 NORBERT FIN JR 4321 124-56-7890 3.2
234-56-7890 KENDALL ACCT JR 1234 123-45-6789 3.3
234-56-7890 KENDALL ACCT JR 1234 234-56-7890 3.5
234-56-7890 KENDALL ACCT JR 4321 124-56-7890 3.2

man42207_ch03.qxd 07/18/2005 20:46 Page 58

Chapter 3 The Relational Data Model 59

As these examples show, the extended cross product operator often generates excessive
data. Excessive data are as bad as lack of data. For example, the product of a student table
of 30,000 rows and an enrollment table of 300,000 rows is a table of nine billion rows!
Most of these rows would be meaningless combinations. So it is rare that a cross product
operation by itself is needed. Rather, the importance of the cross product operator is as a
building block for other operators such as the join operator.

3.4.3 Join Operator
Join is the most widely used operator for combining tables. Because most databases have
many tables, combining tables is important. Join differs from cross product because join
requires a matching condition on rows of two tables. Most tables are combined in this way.
To a large extent, your skill in retrieving useful data will depend on your ability to use the
join operator.

The join operator builds a new table by combining rows from two tables that match on a
join condition. Typically, the join condition specifies that two rows have an identical value
in one or more columns. When the join condition involves equality, the join is known as an
equi-join, for equality join. Figure 3.5 shows a join of sample Faculty and Offering tables
where the join condition is that the FacSSN columns are equal. Note that only a few
columns are shown to simplify the illustration. The arrows indicate how rows from the
input tables combine to form rows in the result table. For example, the first row of the Fac-
ulty table combines with the first and third rows of the Offering table to yield two rows in
the result table.

The natural join operator is the most common join operation. In a natural join operation,
the join condition is equality (equi-join), one of the join columns is removed, and the
join columns have the same unqualified name.9 In Figure 3.5, the result table contains only
three columns because the natural join removes one of the FacSSN columns. The particular
column (Faculty.FacSSN or Offering.FacSSN) removed does not matter.

natural join
a commonly used join
operator where the
matching condition is
equality (equi-join),
one of the matching
columns is discarded in
the result table, and the
join columns have the
same unqualified names.

join
an operator that
produces a table
containing rows that
match on a condition
involving a column
from each input table.

FacSSN
111-11-1111
222-22-2222
333-33-3333

FacName
joe
sue
sara

Faculty

FacSSN
111-11-1111

222-22-2222

111-11-1111

FacName
joe

sue

joe

OfferNo
1111

2222

3333

Natural Join of Offering and Faculty

FacSSN
111-11-1111
222-22-2222
111-11-1111

OfferNo
1111
2222
3333

Offering

FIGURE 3.5
Sample Natural Join
Operation

9 An unqualified name is the column name without the table name. The full name of a column
includes the table name. Thus, the full names of the join columns in Figure 3.5 are Faculty.FacSSN
and Offering.FacSSN.

man42207_ch03.qxd 07/18/2005 20:46 Page 59

As another example, consider the natural join of Student (Table 3.13) and Enrollment
(Table 3.14) shown in Table 3.15. In each row of the result, Student.StdSSN matches
Enrollment.StdSSN. Only one of the join columns is included in the result. Arbitrarily,
Student.StdSSN is shown although Enrollment.StdSSN could be included without changing
the result.

Derivation of the Natural Join
The natural join operator is not primitive because it can be derived from other operators. The
natural join operator consists of three steps:

1. A product operation to combine the rows.

2. A restrict operation to remove rows not satisfying the join condition.

3. A project operation to remove one of the join columns.

To depict these steps, the first step to produce the natural join in Table 3.15 is the
product result shown in Table 3.12. The second step is to retain only the matching rows
(rows 1, 6, and 8 of Table 3.12). A restrict operation is used with Student.StdSSN =
Enrollment.StdSSN as the restriction condition. The final step is to eliminate one of the join
columns (Enrollment.StdSSN). The project operation includes all columns except for
Enrollment.StdSSN.

Although the join operator is not primitive, it can be conceptualized directly without its
primitive operations. When you are initially learning the join operator, it can be helpful to
derive the results using the underlying operations. As an exercise, you are encouraged to de-
rive the result in Figure 3.5. After learning the join operator, you should not need to use the
underlying operations.

Visual Formulation of Join Operations
As a query formulation aid, many DBMSs provide a visual way to formulate joins.
Microsoft Access provides a visual representation of the join operator using the Query
Design window. Figure 3.6 depicts a join between Student and Enrollment on StdSSN using
the Query Design window. To form this join, you need only to select the tables. Access
determines that you should join over the StdSSN column. Access assumes that most joins
involve a primary key and foreign key combination. If Access chooses the join condition
incorrectly, you can choose other join columns.

60 Part Two Understanding Relational Databases

StdSSN StdLastName StdMajor StdClass
123-45-6789 WELLS IS FR
124-56-7890 NORBERT FIN JR
234-56-7890 KENDALL ACCT JR

TABLE 3.13
Sample Student Table

Student.StdSSN StdLastName StdMajor StdClass OfferNo EnrGrade
123-45-6789 WELLS IS FR 1234 3.3
124-56-7890 NORBERT FIN JR 4321 3.2
234-56-7890 KENDALL ACCT JR 1234 3.5

TABLE 3.15
Natural Join of
Student and
Enrollment

OfferNo StdSSN EnrGrade
1234 123-45-6789 3.3
1234 234-56-7890 3.5
4321 124-56-7890 3.2

TABLE 3.14
Sample Enrollment
Table

man42207_ch03.qxd 07/18/2005 20:46 Page 60

Chapter 3 The Relational Data Model 61

3.4.4 Outer Join Operator
The result of a join operation includes the rows matching on the join condition. Sometimes
it is useful to include both matching and nonmatching rows. For example, you may want to
know offerings that have an assigned instructor as well as offerings without an assigned in-
structor. In these situations, the outer join operator is useful.

The outer join operator provides the ability to preserve nonmatching rows in the result
as well as to include the matching rows. Figure 3.7 depicts an outer join between sample
Faculty and Offering tables. Note that each table has one row that does not match any row
in the other table. The third row of Faculty and the fourth row of Offering do not have
matching rows in the other table. For nonmatching rows, null values are used to complete
the column values in the other table. In Figure 3.7, blanks (no values) represent null values.
The fourth result row is the nonmatched row of Faculty with a null value for the OfferNo
column. Likewise, the fifth result row contains a null value for the first two columns be-
cause it is a nonmatched row of Offering.

FIGURE 3.6
Query Design
Window Showing a
Join between Student
and Enrollment

FacSSN
111-11-1111
222-22-2222
333-33-3333

FacName
joe
sue
sara

Faculty

FacSSN
111-11-1111

222-22-2222

111-11-1111

333-33-333

FacName
joe

sue

joe

sara

OfferNo
1111

2222

3333

4444

Outer Join of Offering and Faculty

FacSSN
111-11-1111
222-22-2222
111-11-1111

OfferNo
1111
2222
3333
4444

Offering

FIGURE 3.7
Sample Outer Join
Operation

man42207_ch03.qxd 07/18/2005 20:46 Page 61

62 Part Two Understanding Relational Databases

Full versus One-Sided Outer Join Operators
The outer join operator has two variations. The full outer join preserves nonmatching rows
from both input tables. Figure 3.7 shows a full outer join because the nonmatching rows from
both tables are preserved in the result. Because it is sometimes useful to preserve the non-
matching rows from just one input table, the one-sided outer join operator has been devised. In
Figure 3.7, only the first four rows of the result would appear for a one-sided outer join that pre-
serves the rows of the Faculty table.The last row would not appear in the result because it is an
unmatched row of the Offering table. Similarly, only the first three rows and the last row would
appear in the result for a one-sided outer join that preserves the rows of the Offering table.

The outer join is useful in two situations. A full outer join can be used to combine two
tables with some common columns and some unique columns. For example, to combine
the Student and Faculty tables, a full outer join can be used to show all columns about all
university people. In Table 3.18, the first two rows are only from the sample Student table
(Table 3.16), while the last two rows are only from the sample Faculty table (Table 3.17).
Note the use of null values for the columns from the other table. The third row in Table 3.18
is the row common to the sample Faculty and Student tables.

A one-sided outer join can be useful when a table has null values in a foreign key. For
example, the Offering table (Table 3.19) can have null values in the FacSSN column repre-
senting course offerings without an assigned professor. A one-sided outer join between
Offering and Faculty preserves the rows of Offering that do not have an assigned Faculty as
shown in Table 3.20. With a natural join, the first and third rows of Table 3.20 would not
appear. As you will see in Chapter 10, one-sided joins can be useful in data entry forms.

TABLE 3.18 Result of Full Outer Join of Sample Student and Faculty Tables

OfferNo CourseNo OffTerm FacSSN
1111 IS320 SUMMER
1234 IS320 FALL 098-76-5432
2222 IS460 SUMMER
3333 IS320 SPRING 098-76-5432
4444 IS320 SPRING 543-21-0987

TABLE 3.19
Sample Offering
Table

one-sided outer
join
an operator that
produces the matching
rows (the join part)
as well as the nonmatch-
ing rows from the
designated input table.

StdSSN StdLastName StdMajor StdClass
123-45-6789 WELLS IS FR
124-56-7890 NORBERT FIN JR
876-54-3210 COLAN MS SR

TABLE 3.16
Sample Student Table

TABLE 3.17
Sample Faculty Table

FacSSN FacLastName FacDept FacRank
098-76-5432 VINCE MS ASST
543-21-0987 EMMANUEL MS PROF
876-54-3210 COLAN MS ASST

StdSSN StdLastName StdMajor StdClass FacSSN FacLastName FacDept FacRank
123-45-6789 WELLS IS FR
124-56-7890 NORBERT FIN JR
876-54-3210 COLAN MS SR 876-54-3210 COLAN MS ASST

098-76-5432 VINCE MS ASST
543-21-0987 EMMANUEL MS PROF

full outer join
an operator that
produces the matching
rows (the join part)
as well as the nonmatch-
ing rows from both
input tables.

man42207_ch03.qxd 07/18/2005 20:46 Page 62

Chapter 3 The Relational Data Model 63

Visual Formulation of Outer Join Operations
As a query formulation aid, many DBMSs provide a visual way to formulate outer joins.
Microsoft Access provides a visual representation of the one-sided join operator in the
Query Design window. Figure 3.8 depicts a one-sided outer join that preserves the rows of
the Offering. The arrow from Offering to Faculty means that the nonmatched rows of
Offering are preserved in the result. When combining the Faculty and Offering tables,
Microsoft Access provides three choices: (1) show only the matched rows (a join); (2) show
matched rows and nonmatched rows of Faculty; and (3) show matched rows and
nonmatched rows of Offering. Choice (3) is shown in Figure 3.8. Choice (1) would appear
similar to Figure 3.6. Choice (2) would have the arrow from Faculty to Offering.

3.4.5 Union, Intersection, and Difference Operators
The union, intersection, and difference table operators are similar to the traditional set
operators. The traditional set operators are used to determine all members of two sets
(union), common members of two sets (intersection), and members unique to only one
set (difference), as depicted in Figure 3.9.

The union, intersection, and difference operators for tables apply to rows of a table but
otherwise operate in the same way as the traditional set operators. A union operation
retrieves all the rows in either table. For example, a union operator applied to two student
tables at different universities can find all student rows. An intersection operation retrieves
just the common rows. For example, an intersection operation can determine the students
attending both universities. A difference operation retrieves the rows in the first table but

FIGURE 3.8
Query Design
Window Showing a
One-Sided Outer
Join Preserving the
Offering Table

traditional set
operators
the union operator
produces a table
containing rows from
either input table. The
intersection operator
produces a table
containing rows com-
mon to both input
tables. The difference
operator produces a
table containing rows
from the first input table
but not in the second
input table.

OfferNo CourseNo OffTerm Offering.FacSSN Faculty.FacSSN FacLastName FacDept FacRank
1111 IS320 SUMMER
1234 IS320 FALL 098-76-5432 098-76-5432 VINCE MS ASST
2222 IS460 SUMMER
3333 IS320 SPRING 098-76-5432 098-76-5432 VINCE MS ASST
4444 IS320 SPRING 543-21-0987 543-21-0987 EMMANUEL MS PROF

TABLE 3.20 Result of a One-Sided Outer Join between Offering (Table 3.19) and Faculty (Table 3.17)

man42207_ch03.qxd 07/18/2005 20:46 Page 63

64 Part Two Understanding Relational Databases

not in the second table. For example, a difference operation can determine the students
attending only one university.

Union Compatibility
Compatibility is a new concept for the table operators as compared to the traditional set
operators. With the table operators, both tables must be union compatible because all
columns are compared. Union compatibility means that each table must have the same
number of columns and each corresponding column must have a compatible data type.
Union compatibility can be confusing because it involves positional correspondence of the
columns. That is, the first columns of the two tables must have compatible data types,
the second columns must have compatible data type, and so on.

To depict the union, intersection, and difference operators, let us apply them to the
Student1 and Student2 tables (Tables 3.21 and 3.22). These tables are union compati-
ble because they have identical columns listed in the same order. The results of union,

Union Intersection Difference

FIGURE 3.9 Venn Diagrams for Traditional Set Operators

union compatibility
a requirement on the
input tables for the
traditional set operators.
Each table must have
the same number of
columns and each
corresponding column
must have a compatible
data type.

StdSSN StdLastName StdCity StdState StdMajor StdClass StdGPA
123-45-6789 WELLS SEATTLE WA IS FR 3.00
124-56-7890 NORBERT BOTHELL WA FIN JR 2.70
234-56-7890 KENDALL TACOMA WA ACCT JR 3.50

TABLE 3.21
Student1 Table

StdSSN StdLastName StdCity StdState StdMajor StdClass StdGPA
123-45-6789 WELLS SEATTLE WA IS FR 3.00
995-56-3490 BAGGINS AUSTIN TX FIN JR 2.90
111-56-4490 WILLIAMS SEATTLE WA ACCT JR 3.40

TABLE 3.22
Student2 Table

man42207_ch03.qxd 07/18/2005 20:46 Page 64

Chapter 3 The Relational Data Model 65

intersection, and difference operators are shown in Tables 3.23 through 3.25, respectively.
Even though we can determine that two rows are identical from looking only at StdSSN, all
columns are compared due to the way that the operators are designed.

Note that the result of Student1 DIFFERENCE Student2 would not be the same as
Student2 DIFFERENCE Student1. The result of the latter (Student2 DIFFERENCE
Student1) is the second and third rows of Student2 (rows in Student2 but not in Student1).

Because of the union compatibility requirement, the union, intersection, and difference
operators are not as widely used as other operators. However, these operators have some im-
portant, specialized uses. One use is to combine tables distributed over multiple locations.
For example, suppose there is a student table at Big State University (BSUStudent) and a stu-
dent table at University of Big State (UBSStudent). Because these tables have identical
columns, the traditional set operators are applicable. To find students attending either uni-
versity, you should use UBSStudent UNION BSUStudent. To find students only attending
Big State, you should use BSUStudent DIFFERENCE UBSStudent. To find students attend-
ing both universities, you should use UBSStudent INTERSECT BSUStudent. Note that the
resulting table in each operation has the same number of columns as the two input tables.

The traditional operators are also useful if there are tables that are similar but not union
compatible. For example, the Student and Faculty tables have some compatible columns
(StdSSN with FacSSN, StdLastName with FacLastName, and StdCity with FacCity), but
other columns are different. The union compatible operators can be used if the Student
and Faculty tables are first made union compatible using the project operator presented in
Section 3.4.1.

3.4.6 Summarize Operator
Summarize is a powerful operator for decision making. Because tables can contain many
rows, it is often useful to see statistics about groups of rows rather than individual rows.
The summarize operator allows groups of rows to be compressed or summarized by a cal-
culated value. Almost any kind of statistical function can be used to summarize groups of
rows. Because this is not a statistics book, we will use only simple functions such as count,
min, max, average, and sum.

The summarize operator compresses a table by replacing groups of rows with individ-
ual rows containing calculated values. A statistical or aggregate function is used for the

StdSSN StdLastName StdCity StdState StdMajor StdClass StdGPA
123-45-6789 WELLS SEATTLE WA IS FR 3.00
124-56-7890 NORBERT BOTHELL WA FIN JR 2.70
234-56-7890 KENDALL TACOMA WA ACCT JR 3.50
995-56-3490 BAGGINS AUSTIN TX FIN JR 2.90
111-56-4490 WILLIAMS SEATTLE WA ACCT JR 3.40

TABLE 3.23
Student1 UNION
Student2

TABLE 3.24
Student1
INTERSECT
Student2

StdSSN StdLastName StdCity StdState StdMajor StdClass StdGPA
124-56-7890 NORBERT BOTHELL WA FIN JR 2.70
234-56-7890 KENDALL TACOMA WA ACCT JR 3.50

TABLE 3.25
Student1
DIFFERENCE
Student2

summarize
an operator that pro-
duces a table with rows
that summarize the
rows of the input table.
Aggregate functions are
used to summarize the
rows of the input table.

StdSSN StdLastName StdCity StdState StdMajor StdClass StdGPA
123-45-6789 WELLS SEATTLE WA IS FR 3.00

man42207_ch03.qxd 07/18/2005 20:46 Page 65

66 Part Two Understanding Relational Databases

calculated values. Figure 3.10 depicts a summarize operation for a sample enrollment
table. The input table is grouped on the StdSSN column. Each group of rows is replaced by
the average of the grade column.

As another example, Table 3.27 shows the result of a summarize operation on the sam-
ple Faculty table in Table 3.26. Note that the result contains one row per value of the
grouping column, FacDept.

The summarize operator can include additional calculated values (also showing the min-
imum salary, for example) and additional grouping columns (also grouping on FacRank,
for example). When grouping on multiple columns, each result row shows one combination
of values for the grouping columns.

3.4.7 Divide Operator
The divide operator is a more specialized and difficult operator than join because the
matching requirement in divide is more stringent than join. For example, a join operator is
used to retrieve offerings taken by any student. A divide operator is required to retrieve

StdSSN
111-11-1111
222-22-2222
333-33-3333

AVG(EnrGrade)
3.4
3.3
3.0

SUMMARIZE Enrollment
ADD AVG (EnrGrade)
GROUP BY StdSSNStdSSN

111-11-1111
111-11-1111
111-11-1111
222-22-2222
222-22-2222
333-33-3333

OfferNo
1111
2222
3333
1111
3333
1111

EnrGrade
3.8
3.0
3.4
3.5
3.1
3.0

Enrollment

FIGURE 3.10
Sample Summarize
Operation

TABLE 3.26 Sample Faculty Table

TABLE 3.27
Result Table for
SUMMARIZE
Faculty ADD
AVG(FacSalary)
GROUP BY FacDept

divide
an operator that pro-
duces a table in which
the values of a column
from one input table are
associated with all the
values from a column
of a second input table.

FacSSN FacLastName FacDept FacRank FacSalary FacSupervisor FacHireDate
098-76-5432 VINCE MS ASST $35,000 654-32-1098 01-Apr-95
543-21-0987 EMMANUEL MS PROF $120,000 01-Apr-96
654-32-1098 FIBON MS ASSC $70,000 543-21-0987 01-Apr-94
765-43-2109 MACON FIN PROF $65,000 01-Apr-97
876-54-3210 COLAN MS ASST $40,000 654-32-1098 01-Apr-99
987-65-4321 MILLS FIN ASSC $75,000 765-43-2109 01-Apr-00

FacDept FacSalary
MS $66,250
FIN $70,000

man42207_ch03.qxd 07/18/2005 20:46 Page 66

Chapter 3 The Relational Data Model 67

offerings taken by all (or every) students. Because divide has more stringent matching con-
ditions, it is not as widely used as join, and it is more difficult to understand. When appro-
priate, the divide operator provides a powerful way to combine tables.

The divide operator for tables is somewhat analogous to the divide operator for num-
bers. In numerical division, the objective is to find how many times one number contains
another number. In table division, the objective is to find values of one column that contain
every value in another column. Stated another way, the divide operator finds values of one
column that are associated with every value in another column.

To understand more concretely how the divide operator works, consider an example with
sample Part and SuppPart (supplier-part) tables as depicted in Figure 3.11. The divide
operator uses two input tables. The first table (SuppPart) has two columns (a binary table)
and the second table (Part) has one column (a unary table).10 The result table has one
column where the values come from the first column of the binary table. The result table in
Figure 3.11 shows the suppliers who supply every part. The value s3 appears in the output
because it is associated with every value in the Part table. Stated another way, the set of
values associated with s3 contains the set of values in the Part table.

To understand the divide operator in another way, rewrite the SuppPart table as three
rows using the angle brackets < > to surround a row: <s3, {p1, p2, p3}>, <s0, {p1}>, <s1,
{p2}>. Rewrite the Part table as a set: {p1, p2, p3}. The value s3 is in the result table be-
cause its set of second column values {p1, p2, p3} contains the values in the second table
{p1, p2, p3}. The other SuppNo values (s0 and s1) are not in the result because they are not
associated with all values in the Part table.

As an example using the university database tables,Table 3.30 shows the result of a divide
operation involving the sample Enrollment (Table 3.28) and Student tables (Table 3.29).
The result shows offerings in which every student is enrolled. Only OfferNo 4235 has all
three students enrolled.

SuppNo PartNo
s3
s3
s3
s0
s1

p1
p2
p3
p1
p2

SuppPart

PartNo
p1
p2
p3

Part

SuppNo
s3

SuppPart DIVIDEBY Part

s3{p1, p2, p3}
contains {p1, p2, p3}

FIGURE 3.11
Sample Divide
Operation

10 The divide by operator can be generalized to work with input tables containing more columns.
However, the details are not important in this book.

OfferNo StdSSN
1234 123-45-6789
1234 234-56-7890
4235 123-45-6789
4235 234-56-7890
4235 124-56-7890
6321 124-56-7890

TABLE 3.28
Sample Enrollment Table

TABLE 3.29
Sample Student Table

TABLE 3.30
Result of Enrollment DIVIDEBY Student

StdSSN
123-45-6789
124-56-7890
234-56-7890

OfferNo
4235

man42207_ch03.qxd 07/18/2005 20:46 Page 67

68 Part Two Understanding Relational Databases

3.4.8 Summary of Operators
To help you recall the relational algebra operators, Tables 3.31 and 3.32 provide a conve-
nient summary of the meaning and usage of each operator. You might want to refer to these
tables when studying query formulation in later chapters.

Chapter 3 has introduced the Relational Data Model as a prelude to developing queries,
forms, and reports with relational databases.As a first step to work with relational databases,
you should understand the basic terminology and integrity rules. You should be able to read
table definitions in SQL and other proprietary formats. To effectively query a relational
database, you must understand the connections among tables. Most queries involve multiple
tables using relationships defined by referential integrity constraints. A graphical
representation such as the Relationship window in Microsoft Access provides a powerful

Closing
Thoughts

TABLE 3.31
Summary of
Meanings of the
Relational Algebra
Operators

Operator Meaning

Restrict (Select) Extracts rows that satisfy a specified condition.
Project Extracts specified columns.
Product Builds a table from two tables consisting of all possible combinations of

rows, one from each of the two tables.
Union Builds a table consisting of all rows appearing in either of two tables.
Intersect Builds a table consisting of all rows appearing in both of two specified

tables.
Difference Builds a table consisting of all rows appearing in the first table but not in

the second table.
Join Extracts rows from a product of two tables such that two input rows

contributing to any output row satisfy some specified condition.
Outer Join Extracts the matching rows (the join part) of two tables and the

unmatched rows from both tables.
Divide Builds a table consisting of all values of one column of a binary (two-

column) table that match (in the other column) all values in a unary
(one-column) table.

Summarize Organizes a table on specified grouping columns. Specified
aggregate computations are made on each value of the grouping
columns.

TABLE 3.32
Summary of Usage
of the Relational
Algebra Operators

Operator Notes

Union Input tables must be union compatible.
Difference Input tables must be union compatible.
Intersection Input tables must be union compatible.
Product Conceptually underlies join operator.
Restrict (Select) Uses a logical expression.
Project Eliminates duplicate rows if necessary.
Join Only matched rows are in the result. Natural join eliminates one join

column.
Outer Join Retains both matched and unmatched rows in the result. Uses null values

for some columns of the unmatched rows.
Divide Stronger operator than join, but less frequently used.
Summarize Specify grouping column(s) if any and aggregate function(s).

man42207_ch03.qxd 07/18/2005 20:46 Page 68

Chapter 3 The Relational Data Model 69

tool to conceptualize referential integrity constraints. When developing applications that
can change a database, it is important to respect the action rules for referenced rows.

The final part of this chapter described the operators of relational algebra. At this point,
you should understand the purpose of each operator, the number of input tables, and other
inputs used. You do not need to write complicated formulas that combine operators.
Eventually, you should be comfortable understanding statements such as “write an SQL
SELECT statement to join three tables.” The SELECT statement will be discussed in Chap-
ters 4 and 9, but the basic idea of a join is important to learn now. As you learn to extract
data using the SQL SELECT statement in Chapter 4, you may want to review this chapter
again. To help you remember the major points about the operators, the last section of this
chapter presented several convenient summaries.

Understanding the operators will improve your knowledge of SQL and your query formu-
lation skills. The meaning of SQL queries can be understood as relational algebra operations.
Chapter 4 provides a flowchart demonstrating this correspondence. For this reason, relational
algebra provides a yardstick to measure commercial languages: the commercial languages
should provide at least the same retrieval ability as the operators of relational algebra.

• Tables: heading and body.

• Primary keys and entity integrity rule.

• Foreign keys, referential integrity rule, and matching values.

• Visualizing referential integrity constraints.

• Relational Model representation of 1-M relationships, M-N relationships, and self-
referencing relationships.

• Actions on referenced rows: cascade, nullify, restrict, default.

• Subset operators: restrict (select) and project.

• Join operator for combining two tables using a matching condition to compare join
columns.

• Natural join using equality for the matching operator, join columns with the same un-
qualified name, and elimination of one join column.

• Most widely used operator for combining tables: natural join.

• Less widely used operators for combining tables: full outer join, one-sided outer join,
divide.

• Outer join operator extending the join operator by preserving nonmatching rows.

• One-sided outer join preserving the nonmatching rows of one input table.

• Full outer join preserving the nonmatching rows of both input tables.

• Traditional set operators: union, intersection, difference, extended cross product.

• Union compatibility for comparing rows for the union, intersection, and difference
operators.

• Complex matching operator: divide operator for matching on a subset of rows.

• Summarize operator that replaces groups of rows with summary rows.

Questions 1. How is creating a table similar to writing a chapter of a book?

2. With what terminology for relational databases are you most comfortable? Why?

3. What is the difference between a primary key and a candidate key?

4. What is the difference between a candidate key and a superkey?

Review
Concepts

man42207_ch03.qxd 07/18/2005 20:46 Page 69

70 Part Two Understanding Relational Databases

5. What is a null value?

6. What is the motivation for the entity integrity rule?

7. What is the motivation for the referential integrity rule?

8. What is the relationship between the referential integrity rule and foreign keys?

9. How are candidate keys that are not primary keys indicated in the CREATE TABLE statement?

10. What is the advantage of using constraint names when defining primary key, candidate key,
or referential integrity constraints in CREATE TABLE statements?

11. When is it not permissible for foreign keys to store null values?

12. What is the purpose of a database diagram such as the Access Relationship window?

13. How is a 1-M relationship represented in the Relational Model?

14. How is an M-N relationship represented in the Relational Model?

15. What is a self-referencing relationship?

16. How is a self-referencing relationship represented in the Relational Model?

17. What is a referenced row?

18. What two actions on referenced rows can affect related rows in a child table?

19. What are the possible actions on related rows after a referenced row is deleted or its primary key
is updated?

20. Why is the restrict action for referenced rows more common than the cascade action?

21. When is the nullify action not allowed?

22. Why study the operators of relational algebra?

23. Why are the restrict and the project operators widely used?

24. Explain how the union, intersection, and difference operators for tables differ from the traditional
operators for sets.

25. Why is the join operator so important for retrieving useful information?

26. What is the relationship between the join and the extended cross product operators?

27. Why is the extended cross product operator used sparingly?

28. What happens to unmatched rows with the join operator?

29. What happens to unmatched rows with the full outer join operator?

30. What is the difference between the full outer join and the one-sided outer join?

31. Define a decision-making situation that might require the summarize operator.

32. What is an aggregate function?

33. How are grouping columns used in the summarize operator?

34. Why is the divide operator not as widely used as the join operator?

35. What are the requirements of union compatibility?

36. What are the requirements of the natural join operator?

37. Why is the natural join operator widely used for combining tables?

38. How do visual tools such as the Microsoft Access Query Design tool facilitate the formulation of
join operations?

Problems The problems use the Customer, OrderTbl, and Employee tables of the simplified Order Entry
database. Chapters 4 and 10 extend the database to increase its usefulness. The Customer table
records clients who have placed orders. The OrderTbl contains the basic facts about customer orders.
The Employee table contains facts about employees who take orders. The primary keys of the tables
are CustNo for Customer, EmpNo for Employee, and OrdNo for OrderTbl.

man42207_ch03.qxd 07/18/2005 20:46 Page 70

Chapter 3 The Relational Data Model 71

1. Write a CREATE TABLE statement for the Customer table. Choose data types appropriate for
the DBMS used in your course. Note that the CustBal column contains numeric data. The
currency symbols are not stored in the database. The CustFirstName and CustLastName columns
are required (not null).

2. Write a CREATE TABLE statement for the Employee table. Choose data types appropriate for
the DBMS used in your course. The EmpFirstName, EmpLastName, and EmpEMail columns are
required (not null).

3. Write a CREATE TABLE statement for the OrderTbl table. Choose data types appropriate for the
DBMS used in your course. The OrdDate column is required (not null).

4. Identify the foreign keys and draw a relationship diagram for the simplified Order Entry data-
base. The CustNo column references the Customer table and the EmpNo column references the
Employee table. For each relationship, identify the parent table and the child table.

5. Extend your CREATE TABLE statement from problem 3 with referential integrity constraints.
Updates and deletes on related rows are restricted.

6. From examination of the sample data and your common understanding of order entry businesses,
are null values allowed for the foreign keys in the OrderTbl table? Why or why not? Extend the
CREATE TABLE statement in problem 5 to enforce the null value restrictions if any.

CustNo CustFirstName CustLastName CustCity CustState CustZip CustBal
C0954327 Sheri Gordon Littleton CO 80129-5543 $230.00
C1010398 Jim Glussman Denver CO 80111-0033 $200.00
C2388597 Beth Taylor Seattle WA 98103-1121 $500.00
C3340959 Betty Wise Seattle WA 98178-3311 $200.00
C3499503 Bob Mann Monroe WA 98013-1095 $0.00
C8543321 Ron Thompson Renton WA 98666-1289 $85.00

Customer

EmpNo EmpFirstName EmpLastName EmpPhone EmpEmail
E1329594 Landi Santos (303) 789-1234 LSantos@bigco.com
E8544399 Joe Jenkins (303) 221-9875 JJenkins@ bigco.com
E8843211 Amy Tang (303) 556-4321 ATang@ bigco.com
E9345771 Colin White (303) 221-4453 CWhite@ bigco.com
E9884325 Thomas Johnson (303) 556-9987 TJohnson@ bigco.com
E9954302 Mary Hill (303) 556-9871 MHill@ bigco.com

Employee

OrdNo OrdDate CustNo EmpNo
O1116324 01/23/2007 C0954327 E8544399
O2334661 01/14/2007 C0954327 E1329594
O3331222 01/13/2007 C1010398
O2233457 01/12/2007 C2388597 E9884325
O4714645 01/11/2007 C2388597 E1329594
O5511365 01/22/2007 C3340959 E9884325
O7989497 01/16/2007 C3499503 E9345771
O1656777 02/11/2007 C8543321
O7959898 02/19/2007 C8543321 E8544399

OrderTbl

man42207_ch03.qxd 07/18/2005 20:46 Page 71

72 Part Two Understanding Relational Databases

7. Extend your CREATE TABLE statement for the Employee table (problem 2) with a unique con-
straint for EmpEMail. Use a named constraint clause for the unique constraint.

8. Show the result of a restrict operation that lists the orders in February 2007.

9. Show the result of a restrict operation that lists the customers residing in Seattle, WA.

10. Show the result of a project operation that lists the CustNo, CustFirstName, and CustLastName
columns of the Customer table.

11. Show the result of a project operation that lists the CustCity and CustState columns of the
Customer table.

12. Show the result of a natural join that combines the Customer and OrderTbl tables.

13. Show the steps to derive the natural join for problem 10. How many rows and columns are in the
extended cross product step?

14. Show the result of a natural join of the Employee and OrderTbl tables.

15. Show the result of a one-sided outer join between the Employee and OrderTbl tables. Preserve
the rows of the OrderTbl table in the result.

16. Show the result of a full outer join between the Employee and OrderTbl tables.

17. Show the result of the restrict operation on Customer where the condition is CustCity equals
“Denver” or “Seattle” followed by a project operation to retain the CustNo, CustFirstName,
CustLastName, and CustCity columns.

18. Show the result of a natural join that combines the Customer and OrderTbl tables followed by a
restrict operation to retain only the Colorado customers (CustState = “CO”).

19. Show the result of a summarize operation on Customer. The grouping column is CustState and
the aggregate calculation is COUNT. COUNT shows the number of rows with the same value for
the grouping column.

20. Show the result of a summarize operation on Customer. The grouping column is CustState and
the aggregate calculations are the minimum and maximum CustBal values.

21. What tables are required to show the CustLastName, EmpLastName, and OrdNo columns in the
result table?

22. Extend your relationship diagram from problem 4 by adding two tables (OrdLine and Product).
Partial CREATE TABLE statements for the primary keys and referential integrity constraints are
shown below:

CREATE TABLE Product . . . PRIMARY KEY (ProdNo)
CREATE TABLE OrdLine . . . PRIMARY KEY (OrdNo, ProdNo)

FOREIGN KEY (OrdNo) REFERENCES Order
FOREIGN KEY (ProdNo) REFERENCES Product

23. Extend your relationship diagram from problem 22 by adding a foreign key in the Employee
table. The foreign key SupEmpNo is the employee number of the supervising employee. Thus, the
SupEmpNo column references the Employee table.

24. What relational algebra operator do you use to find products contained in every order? What re-
lational algebra operator do you use to find products contained in any order?

25. Are the Customer and Employee tables union compatible? Why or why not?

26. Using the database after problem 23, what tables must be combined to list the product names on
order number O1116324?

27. Using the database after problem 23, what tables must be combined to list the product names
ordered by customer number C0954327?

28. Using the database after problem 23, what tables must be combined to list the product names or-
dered by the customer named Sheri Gordon?

29. Using the database after problem 23, what tables must be combined to list the number of orders
submitted by customers residing in Colorado?

30. Using the database after problem 23, what tables must be combined to list the product names
appearing on an order taken by an employee named Landi Santos?

man42207_ch03.qxd 07/18/2005 20:46 Page 72

Chapter 3 The Relational Data Model 73

Codd defined the Relational Model in a seminal paper in 1970. His paper inspired research projects
at the IBM research laboratories and the University of California at Berkeley that led to commercial
relational DBMSs. Date (2003) provides a syntax for the relational algebra. Elmasri and Navathe
(2004) provide a more theoretical treatment of the Relational Model, especially the relational algebra.

CREATE TABLE Statements for the University
Database Tables
The following are the CREATE TABLE statements for the university database tables
(Tables 3.1, 3.3, 3.4, 3.6, and 3.7). The names of the standard data types can vary by
DBMS. For example, Microsoft Access SQL supports the TEXT data type instead of
CHAR and VARCHAR. In Oracle, you should use VARCHAR2 instead of VARCHAR.

CREATE TABLE Student
(StdSSN CHAR(11),

StdFirstName VARCHAR(50) CONSTRAINT StdFirstNameRequired NOT NULL,
StdLastName VARCHAR(50) CONSTRAINT StdLastNameRequired NOT NULL,
StdCity VARCHAR(50) CONSTRAINT StdCityRequired NOT NULL,
StdState CHAR(2) CONSTRAINT StdStateRequired NOT NULL,
StdZip CHAR(10) CONSTRAINT StdZipRequired NOT NULL,
StdMajor CHAR(6),
StdClass CHAR(2),
StdGPA DECIMAL(3,2),

CONSTRAINT PKStudent PRIMARY KEY (StdSSN))

CREATE TABLE Course
(CourseNo CHAR(6),

CrsDesc VARCHAR(250) CONSTRAINT CrsDescRequired NOT NULL,
CrsUnits INTEGER,

CONSTRAINT PKCourse PRIMARY KEY (CourseNo),
CONSTRAINT UniqueCrsDesc UNIQUE (CrsDesc))

CREATE TABLE Faculty
(FacSSN CHAR(11),

FacFirstName VARCHAR(50) CONSTRAINT FacFirstNameRequired NOT NULL,
FacLastName VARCHAR(50) CONSTRAINT FacLastNameRequired NOT NULL,
FacCity VARCHAR(50) CONSTRAINT FacCityRequired NOT NULL,
FacState CHAR(2) CONSTRAINT FacStateRequired NOT NULL,
FacZipCode CHAR(10) CONSTRAINT FacZipRequired NOT NULL,
FacHireDate DATE,
FacDept CHAR(6),
FacRank CHAR(4),

Appendix 3.A

References
for Further
Study

man42207_ch03.qxd 07/18/2005 20:46 Page 73

74 Part Two Understanding Relational Databases

FacSalary DECIMAL(10,2),
FacSupervisor CHAR(11),

CONSTRAINT PKFaculty PRIMARY KEY (FacSSN),
CONSTRAINT FKFacSupervisor FOREIGN KEY (FacSupervisor) REFERENCES Faculty

ON DELETE SET NULL
ON UPDATE CASCADE)

CREATE TABLE Offering
(OfferNo INTEGER,

CourseNo CHAR(6) CONSTRAINT OffCourseNoRequired NOT NULL,
OffLocation VARCHAR(50),
OffDays CHAR(6),
OffTerm CHAR(6) CONSTRAINT OffTermRequired NOT NULL,
OffYear INTEGER CONSTRAINT OffYearRequired NOT NULL,
FacSSN CHAR(11),
OffTime DATE,

CONSTRAINT PKOffering PRIMARY KEY (OfferNo),
CONSTRAINT FKCourseNo FOREIGN KEY (CourseNo) REFERENCES Course

ON DELETE RESTRICT
ON UPDATE RESTRICT,

CONSTRAINT FKFacSSN FOREIGN KEY (FacSSN) REFERENCES Faculty
ON DELETE SET NULL
ON UPDATE CASCADE)

CREATE TABLE Enrollment
(OfferNo INTEGER,

StdSSN CHAR(11),
EnrGrade DECIMAL(3,2),

CONSTRAINT PKEnrollment PRIMARY KEY (OfferNo, StdSSN),
CONSTRAINT FKOfferNo FOREIGN KEY (OfferNo) REFERENCES Offering

ON DELETE CASCADE
ON UPDATE CASCADE,

CONSTRAINT FKStdSSN FOREIGN KEY (StdSSN) REFERENCES Student
ON DELETE CASCADE
ON UPDATE CASCADE)

SQL:2003 Syntax Summary
This appendix provides a convenient summary of the SQL:2003 syntax for the CREATE
TABLE statement along with several related statements. For brevity, only the syntax of the
most common parts of the statements is described. SQL:2003 is the current version of the
SQL standard. The syntax in SQL:2003 for the statements described in this appendix is
identical to the syntax in the previous SQL standards, SQL:1999 and SQL-92. For the
complete syntax, refer to a SQL:2003 or a SQL-92 reference book such as Groff and

Appendix 3.B

man42207_ch03.qxd 07/18/2005 20:46 Page 74

Chapter 3 The Relational Data Model 75

Weinberg (2002). The conventions used in the syntax notation are listed before the state-
ment syntax:

• Uppercase words denote reserved words.
• Mixed-case words without hyphens denote names that the user substitutes.
• The asterisk* after a syntax element indicates that a comma-separated list can be used.
• The plus symbol + after a syntax element indicates that a list can be used. No commas

appear in the list.
• Names enclosed in angle brackets < > denote definitions defined later in the syntax. The

definitions occur on a new line with the element and colon followed by the syntax.
• Square brackets [] enclose optional elements.
• Curly brackets { } enclose choice elements. One element must be chosen among the

elements separated by the vertical bars |.
• The parentheses () denote themselves.
• Double hyphens -- denote comments that are not part of the syntax.

CREATE TABLE11 Syntax

CREATE TABLE TableName
(<Column-Definition>* [, <Table-Constraint>*])

<Column-Definition>: ColumnName DataType
[DEFAULT { DefaultValue | USER | NULL }]
[<Embedded-Column-Constraint>+]

<Embedded-Column-Constraint>:
{ [CONSTRAINT ConstraintName] NOT NULL |

[CONSTRAINT ConstraintName] UNIQUE |
[CONSTRAINT ConstraintName] PRIMARY KEY |
[CONSTRAINT ConstraintName] FOREIGN KEY

REFERENCES TableName [(ColumnName)]
[ON DELETE <Action-Specification>]
[ON UPDATE <Action-Specification>] }

<Table-Constraint>: [CONSTRAINT ConstraintName]
{ <Primary-Key-Constraint> |

<Foreign-Key-Constraint> |
<Uniqueness-Constraint> }

<Primary-Key-Constraint>: PRIMARY KEY (ColumnName*)

<Foreign-Key-Constraint>: FOREIGN KEY (ColumnName*)
REFERENCES TableName [(ColumnName*)]
[ON DELETE <Action-Specification>]
[ON UPDATE <Action-Specification>]

11 The CHECK constraint, an important kind of table constraint, is described in Chapter 14.

man42207_ch03.qxd 07/18/2005 20:46 Page 75

76 Part Two Understanding Relational Databases

<Action-Specification>: { CASCADE | SET NULL | SET DEFAULT | RESTRICT }

<Uniqueness-Constraint>: UNIQUE (ColumnName*)

Other Related Statements
The ALTER TABLE and DROP TABLE statements support modification of a table
definition and deleting a table definition. The ALTER TABLE statement is particularly
useful because table definitions often change over time. In both statements, the key-
word RESTRICT means that the statement cannot be performed if related tables exist. The
keyword CASCADE means that the same action will be performed on related tables.

ALTER TABLE TableName
{ ADD { <Column-Definition> | <Table-Constraint> } |

ALTER ColumnName { SET DEFAULT DefaultValue |
DROP DEFAULT } |

DROP ColumnName { CASCADE | RESTRICT } |
DROP CONSTRAINT ConstraintName { CASCADE | RESTRICT } }

DROP TABLE TableName { CASCADE | RESTRICT }

Notes on Oracle Syntax
The CREATE TABLE statement in Oracle 10g SQL conforms closely to the SQL:2003
standard. Here is a list of the most significant syntax differences:

• Oracle SQL does not support the ON UPDATE clause for referential integrity con-
straints.

• Oracle SQL only supports CASCADE and SET NULL as the action specifications of
the ON DELETE clause. If an ON DELETE clause is not specified, the deletion is not
allowed (restricted) if related rows exist.

• Oracle SQL does not support dropping columns in the ALTER statement.

• Oracle SQL supports the MODIFY keyword in place of the ALTER keyword in the
ALTER TABLE statement (use MODIFY ColumnName instead of ALTER Column-
Name).

• Oracle SQL supports data type changes using the MODIFY keyword in the ALTER
TABLE statement.

Generation of Unique Values for Primary Keys
The SQL:2003 standard provides the GENERATED clause to support the generation of
unique values for selected columns, typically primary keys. The GENERATED clause is
used in place of a default value as shown in the following syntax specification. Typically
a whole number data type such as INTEGER should be used for columns with a
GENERATED clause. The START BY and INCREMENT BY keywords can be used to in-
dicate the initial value and the increment value. The ALWAYS keyword indicates that the

Appendix 3.C

man42207_ch03.qxd 07/18/2005 20:46 Page 76

Chapter 3 The Relational Data Model 77

value is always automatically generated. The BY DEFAULT clause allows a user to specify
a value, overriding the automatic value generation.

<Column-Definition>: ColumnName DataType
[<Default-Specification>]
[<Embedded-Column-Constraint>+]

<Default-Specification>:
{ DEFAULT { DefaultValue | USER | NULL } |

GENERATED {ALWAYS | BY DEFAULT } AS IDENTITY
START WITH NumericConstant

[INCREMENT BY NumericConstant] }

Conformance to the SQL:2003 syntax for the GENERATED clause varies among
DBMSs. IBM DB2 conforms closely to the syntax. Microsoft SQL Server uses slightly dif-
ferent syntax and only supports the ALWAYS option unless a SET IDENTITY statement is
also used. Microsoft Access provides the AutoNumber data type to generate unique values.
Oracle uses sequence objects in place of the GENERATED clause. Oracle sequences have
similar features except that users must maintain the association between a sequence and a
column, a burden not necessary with the SQL:2003 standard.

The following examples contrast the SQL:2003 and Oracle approaches for automatic
value generation. Note that the primary key constraint is not required for columns with
generated values although generated values are mostly used for primary keys. The Oracle
example contains two statements: one for the sequence creation and another for the table
creation. Because sequences are not associated with columns, Oracle provides functions
that should be used when inserting a row into a table. In contrast, the usage of extra func-
tions is not necessary in SQL:2003.

SQL:2003 GENERATED Clause Example

CREATE TABLE Customer
(CustNo INTEGER GENERATED ALWAYS AS IDENTITY

START WITH 1 INCREMENT BY 1,
...,
CONSTRAINT PKCustomer PRIMARY KEY (CustNo))

Oracle Sequence Example

CREATE SEQUENCE CustNoSeq START WITH 1 INCREMENT BY 1;

CREATE TABLE Customer
(CustNo INTEGER,
...,
CONSTRAINT PKCustomer PRIMARY KEY (CustNo)) ;

man42207_ch03.qxd 07/18/2005 20:46 Page 77

man42207_ch03.qxd 07/18/2005 20:46 Page 78

