
Chapter

79

4
Query Formulation
with SQL
Learning Objectives

This chapter provides the foundation for query formulation using the industry standard
Structured Query Language (SQL). Query formulation is the process of converting a
request for data into a statement of a database language such as SQL. After this chapter
the student should have acquired the following knowledge and skills:

• Write SQL SELECT statements for queries involving the restrict, project, and join
operators.

• Use the critical questions to transform a problem statement into a database
representation.

• Write SELECT statements for difficult joins involving three or more tables, self joins,
and multiple joins between tables.

• Understand the meaning of the GROUP BY clause using the conceptual evaluation
process.

• Write English descriptions to document SQL statements.

• Write INSERT, UPDATE, and DELETE statements to change the rows of a table.

Overview

Chapter 3 provided a foundation for using relational databases. Most importantly, you
learned about connections among tables and fundamental operators to extract useful data.
This chapter shows you how to apply this knowledge in using the data manipulation state-
ments of SQL.

Much of your skill with SQL or other computer languages is derived from imitating
examples. This chapter provides many examples to facilitate your learning process.
Initially you are presented with relatively simple examples so that you become comfortable
with the basics of the SQL SELECT statement. To prepare you for more difficult examples,
two problem-solving guidelines (conceptual evaluation process and critical questions) are
presented. The conceptual evaluation process explains the meaning of the SELECT state-
ment through the sequence of operations and intermediate tables that produce the result.

man42207_ch04.qxd 07/25/2005 18:35 Page 79

The critical questions help you transform a problem statement into a relational database
representation in a language such as SQL. These guidelines are used to help formulate and
explain the advanced problems presented in the last part of this chapter.

4.1 Background
Before using SQL, it is informative to understand its history and scope. The history reveals
the origin of the name and the efforts to standardize the language. The scope puts the vari-
ous parts of SQL into perspective. You have already seen the CREATE TABLE statement
in Chapter 3. The SELECT, UPDATE, DELETE, and INSERT statements are the subject of
this chapter and Chapter 9. To broaden your understanding, you should be aware of other
parts of SQL and different usage contexts.

4.1.1 Brief History of SQL
The Structured Query Language (SQL) has a colorful history.Table 4.1 depicts the highlights
of SQL’s development. SQL began life as the SQUARE language in IBM’s System R project.
The System R project was a response to the interest in relational databases sparked by Dr. Ted
Codd, an IBM fellow who wrote a famous paper in 1970 about relational databases. The
SQUARE language was somewhat mathematical in nature. After conducting human factors
experiments, the IBM research team revised the language and renamed it SEQUEL (a follow-
up to SQUARE). After another revision, the language was dubbed SEQUEL 2. Its current
name, SQL, resulted from legal issues surrounding the name SEQUEL. Because of this nam-
ing history, a number of database professionals, particularly those working during the 1970s,
pronounce the name as “sequel” rather than SQL.

SQL is now an international standard although it was not always so.1 With the force of
IBM behind SQL, many imitators used some variant of SQL. Such was the old order of the
computer industry when IBM was dominant. It may seem surprising, but IBM was not
the first company to commercialize SQL. Until a standards effort developed in the 1980s,
SQL was in a state of confusion. Many vendors implemented different subsets of SQL with
unique extensions. The standards efforts by the American National Standards Institute
(ANSI), the International Organization for Standards (ISO), and the International
Electrotechnical Commission (IEC) have restored some order. Although SQL was not
initially the best database language developed, the standards efforts have improved the
language as well as standardized its specification.

80 Part Two Understanding Relational Databases

TABLE 4.1
SQL Timeline

Year Event

1972 System R project at IBM Research Labs
1974 SQUARE language developed
1975 Language revision and name change to SEQUEL
1976 Language revision and name change to SEQUEL 2
1977 Name change to SQL
1978 First commercial implementation by Oracle Corporation
1981 IBM product SQL/DS featuring SQL
1986 SQL-86 (SQL1) standard approved
1989 SQL-89 standard approved (revision to SQL-86)
1992 SQL-92 (SQL2) standard approved
1999 SQL:1999 (SQL3) standard approved
2003 SQL:2003 approved

1 Dr. Michael Stonebraker, an early database pioneer, has even referred to SQL as “intergalactic
data speak.”

man42207_ch04.qxd 07/25/2005 18:35 Page 80

The size and scope of the SQL standard has increased significantly since the first standard
was adopted. The original standard (SQL-86) contained about 150 pages, while the SQL-92
standard contained more than 600 pages. In contrast, the most recent standards (SQL:1999
and SQL:2003) contained more than 2,000 pages.The early standards (SQL-86 and SQL-89)
had two levels (entry and full). SQL-92 added a third level (entry, intermediate, and full).
The SQL:1999 and SQL:2003 standards contain a single level called Core SQL along
with parts and packages for noncore features. SQL:2003 contains three core parts, six
optional parts, and seven optional packages.

The weakness of the SQL standards is the lack of conformance testing. Until 1996, the
U.S. Department of Commerce’s National Institute of Standards and Technology conducted
conformance tests to provide assurance that government software can be ported among
conforming DBMSs. Since 1996, however, DBMS vendor claims have substituted for
independent conformance testing. Even for Core SQL, the major vendors lack support for
some features and provide proprietary support for other features. With the optional parts
and packages, conformance has much greater variance. Writing portable SQL code
requires careful study for Core SQL but is not possible for advanced parts of SQL.

The presentation in this chapter is limited to a subset of Core SQL:2003. Most features
presented in this chapter were part of SQL-92 as well as Core SQL:2003. Other chapters
present other parts of Core SQL as well as important features from selected SQL:2003
packages.

4.1.2 Scope of SQL
SQL was designed as a language for database definition, manipulation, and control.
Table 4.2 shows a quick summary of important SQL statements. Only database administra-
tors use most of the database definition and database control statements. You have already
seen the CREATE TABLE statement in Chapter 3. This chapter and Chapter 9 cover the
database manipulation statements. Power users and analysts use the database manipulation
statements. Chapter 10 covers the CREATE VIEW statement. The CREATE VIEW state-
ment can be used by either database administrators or analysts. Chapter 11 covers
the CREATE TRIGGER statement used by both database administrators and analysts.
Chapter 14 covers the GRANT, REVOKE, and CREATE ASSERTION statements used
primarily by database administrators. The transaction control statements (COMMIT and
ROLLBACK) presented in Chapter 15 are used by analysts.

SQL can be used in two contexts: stand-alone and embedded. In the stand-alone context,
the user submits SQL statements with the use of a specialized editor. The editor alerts the
user to syntax errors and sends the statements to the DBMS. The presentation in this chapter
assumes stand-alone usage. In the embedded context, an executing program submits SQL
statements, and the DBMS sends results back to the program. The program includes

Chapter 4 Query Formulation with SQL 81

SQL usage contexts
SQL statements can be
used stand-alone with a
specialized editor, or
embedded inside
a computer program.

TABLE 4.2 Selected SQL Statements

Statement Type Statements Purpose

Database definition CREATE SCHEMA, TABLE, VIEW Define a new database, table, and view
ALTER TABLE Modify table definition

Database manipulation SELECT Retrieve contents of tables
UPDATE, DELETE, INSERT Modify, remove, and add rows

Database control COMMIT, ROLLBACK Complete, undo transaction
GRANT, REVOKE Add and remove access rights
CREATE ASSERTION Define integrity constraint
CREATE TRIGGER Define database rule

man42207_ch04.qxd 07/25/2005 18:35 Page 81

SQL statements along with statements of the host programming language such as Java or
Visual Basic. Additional statements allow SQL statements (such as SELECT) to be used in-
side a computer program. Chapter 11 covers embedded SQL.

4.2 Getting Started with the SELECT Statement
The SELECT statement supports data retrieval from one or more tables. This section de-
scribes a simplified format of the SELECT statement. More complex formats are presented
in Chapter 9. The SELECT statement described here has the following format:

SELECT <list of columns and expressions usually involving columns>
FROM <list of tables and join operations>
WHERE <list of row conditions connected by AND, OR, NOT>
GROUP BY <list of grouping columns>
HAVING <list of group conditions connected by AND, OR, NOT>
ORDER BY <list of sorting specifications>

In the preceding format, the uppercase words are keywords. You replace the angle
brackets < > with information to make a meaningful statement. For example, after the key-
word SELECT, type the list of columns that should appear in the result, but do not type the
angle brackets. The result list can include columns such as StdFirstName or expressions in-
volving constants, column names, and functions. Example expressions are Price * Qty and
1.1 * FacSalary. To make meaningful names for computed columns, you can rename a col-
umn in the result table using the AS keyword. For example, SELECT Price * Qty AS
Amount renames the expression Price * Qty to Amount in the result table.

To depict this SELECT format and show the meaning of statements, this chapter shows nu-
merous examples. Examples are provided for both Microsoft Access, a popular desktop
DBMS, and Oracle, a prominent enterprise DBMS. Most examples execute on both systems.
Unless noted, the examples run on the 1997 through 2003 versions ofAccess and the 8i through
and 10g versions of Oracle. Examples that only execute on one product are marked. In addition
to the examples,Appendix 4.B summarizes syntax differences among major DBMSs.

The examples use the university database tables introduced in Chapter 3. Tables 4.3
through 4.7 list the contents of the tables. CREATE TABLE statements are listed in Ap-
pendix 3.A. For your reference, the relationship diagram showing the primary and foreign

82 Part Two Understanding Relational Databases

expression
a combination of con-
stants, column names,
functions, and operators
that produces a value.
In conditions and result
columns, expressions
can be used in any place
that column names can
appear.

TABLE 4.3 Sample Student Table

StdSSN StdFirstName StdLastName StdCity StdState StdZip StdMajor StdClass StdGPA
123-45-6789 HOMER WELLS SEATTLE WA 98121-1111 IS FR 3.00
124-56-7890 BOB NORBERT BOTHELL WA 98011-2121 FIN JR 2.70
234-56-7890 CANDY KENDALL TACOMA WA 99042-3321 ACCT JR 3.50
345-67-8901 WALLY KENDALL SEATTLE WA 98123-1141 IS SR 2.80
456-78-9012 JOE ESTRADA SEATTLE WA 98121-2333 FIN SR 3.20
567-89-0123 MARIAH DODGE SEATTLE WA 98114-0021 IS JR 3.60
678-90-1234 TESS DODGE REDMOND WA 98116-2344 ACCT SO 3.30
789-01-2345 ROBERTO MORALES SEATTLE WA 98121-2212 FIN JR 2.50
876-54-3210 CRISTOPHER COLAN SEATTLE WA 98114-1332 IS SR 4.00
890-12-3456 LUKE BRAZZI SEATTLE WA 98116-0021 IS SR 2.20
901-23-4567 WILLIAM PILGRIM BOTHELL WA 98113-1885 IS SO 3.80

man42207_ch04.qxd 07/25/2005 18:35 Page 82

Chapter 4 Query Formulation with SQL 83

TABLE 4.4A Sample Faculty Table (first part)

TABLE 4.4B
Sample Faculty Table
(second part)

TABLE 4.5 Sample Offering Table

CourseNo CrsDesc CrsUnits
FIN300 FUNDAMENTALS OF FINANCE 4
FIN450 PRINCIPLES OF INVESTMENTS 4
FIN480 CORPORATE FINANCE 4
IS320 FUNDAMENTALS OF BUSINESS PROGRAMMING 4
IS460 SYSTEMS ANALYSIS 4
IS470 BUSINESS DATA COMMUNICATIONS 4
IS480 FUNDAMENTALS OF DATABASE MANAGEMENT 4

TABLE 4.6
Sample Course Table

FacSSN FacSupervisor FacHireDate FacZipCode
098-76-5432 654-32-1098 10-Apr-1995 98111-9921
543-21-0987 15-Apr-1996 98011-2242
654-32-1098 543-21-0987 01-May-1994 98121-0094
765-43-2109 11-Apr-1997 98015-9945
876-54-3210 654-32-1098 01-Mar-1999 98114-1332
987-65-4321 765-43-2109 15-Mar-2000 98114-9954

FacSSN FacFirstName FacLastName FacCity FacState FacDept FacRank FacSalary
098-76-5432 LEONARD VINCE SEATTLE WA MS ASST $35,000
543-21-0987 VICTORIA EMMANUEL BOTHELL WA MS PROF $120,000
654-32-1098 LEONARD FIBON SEATTLE WA MS ASSC $70,000
765-43-2109 NICKI MACON BELLEVUE WA FIN PROF $65,000
876-54-3210 CRISTOPHER COLAN SEATTLE WA MS ASST $40,000
987-65-4321 JULIA MILLS SEATTLE WA FIN ASSC $75,000

OfferNo CourseNo OffTerm OffYear OffLocation OffTime FacSSN OffDays
1111 IS320 SUMMER 2006 BLM302 10:30 AM MW
1234 IS320 FALL 2005 BLM302 10:30 AM 098-76-5432 MW
2222 IS460 SUMMER 2005 BLM412 1:30 PM TTH
3333 IS320 SPRING 2006 BLM214 8:30 AM 098-76-5432 MW
4321 IS320 FALL 2005 BLM214 3:30 PM 098-76-5432 TTH
4444 IS320 WINTER 2006 BLM302 3:30 PM 543-21-0987 TTH
5555 FIN300 WINTER 2006 BLM207 8:30 AM 765-43-2109 MW
5678 IS480 WINTER 2006 BLM302 10:30 AM 987-65-4321 MW
5679 IS480 SPRING 2006 BLM412 3:30 PM 876-54-3210 TTH
6666 FIN450 WINTER 2006 BLM212 10:30 AM 987-65-4321 TTH
7777 FIN480 SPRING 2006 BLM305 1:30 PM 765-43-2109 MW
8888 IS320 SUMMER 2006 BLM405 1:30 PM 654-32-1098 MW
9876 IS460 SPRING 2006 BLM307 1:30 PM 654-32-1098 TTH

man42207_ch04.qxd 07/25/2005 18:35 Page 83

84 Part Two Understanding Relational Databases

OfferNo StdSSN EnrGrade
1234 123-45-6789 3.3
1234 234-56-7890 3.5
1234 345-67-8901 3.2
1234 456-78-9012 3.1
1234 567-89-0123 3.8
1234 678-90-1234 3.4
4321 123-45-6789 3.5
4321 124-56-7890 3.2
4321 789-01-2345 3.5
4321 876-54-3210 3.1
4321 890-12-3456 3.4
4321 901-23-4567 3.1
5555 123-45-6789 3.2
5555 124-56-7890 2.7
5678 123-45-6789 3.2
5678 234-56-7890 2.8
5678 345-67-8901 3.3
5678 456-78-9012 3.4
5678 567-89-0123 2.6
5679 123-45-6789 2
5679 124-56-7890 3.7
5679 678-90-1234 3.3
5679 789-01-2345 3.8
5679 890-12-3456 2.9
5679 901-23-4567 3.1
6666 234-56-7890 3.1
6666 567-89-0123 3.6
7777 876-54-3210 3.4
7777 890-12-3456 3.7
7777 901-23-4567 3.4
9876 124-56-7890 3.5
9876 234-56-7890 3.2
9876 345-67-8901 3.2
9876 456-78-9012 3.4
9876 567-89-0123 2.6
9876 678-90-1234 3.3
9876 901-23-4567 4

TABLE 4.7
Sample Enrollment
Table

keys is repeated in Figure 4.1. Recall that the Faculty1 table with relationship to the Faculty
table represents a self-referencing relationship with FacSupervisor as the foreign key.

4.2.1 Single Table Problems
Let us begin with the simple SELECT statement in Example 4.1. In all the examples, key-
words appear in uppercase while information specific to the query appears in mixed case. In
Example 4.1, only the Student table is listed in the FROM clause because the conditions in
the WHERE clause and columns after the SELECT keyword involve only the Student table.
In Oracle, a semicolon or / (on a separate line) terminates a statement.

man42207_ch04.qxd 07/25/2005 18:35 Page 84

Chapter 4 Query Formulation with SQL 85

FIGURE 4.1
Relationship Window
for the University
Database

EXAMPLE 4.1 Testing Rows Using the WHERE Clause

Retrieve the name, city, and grade point average (GPA) of students with a high GPA
(greater than or equal to 3.7). The result follows the SELECT statement.

SELECT StdFirstName, StdLastName, StdCity, StdGPA
FROM Student
WHERE StdGPA >= 3.7

Table 4.8 depicts the standard comparison operators. Note that the symbol for some
operators depends on the DBMS.

Example 4.2 is even simpler than Example 4.1. The result is identical to the original
Faculty table in Table 4.4. Example 4.2 uses a shortcut to list all columns. The asterisk * in
the column list indicates that all columns of the tables in the FROM clause appear in the
result. The asterisk serves as a wildcard character matching all column names.

TABLE 4.8
Standard
Comparison
Operators

StdFirstName StdLastName StdCity StdGPA
CRISTOPHER COLAN SEATTLE 4.00
WILLIAM PILGRIM BOTHELL 3.80

Comparison Operator Meaning

= equal to
< less than
> greater than
<= less than or equal to
>= greater than or equal to
< > or != not equal (check your DBMS)

man42207_ch04.qxd 07/25/2005 18:35 Page 85

86 Part Two Understanding Relational Databases

EXAMPLE 4.2 Show all Columns

List all columns and rows of the Faculty table. The resulting table is shown in two parts.

SELECT * FROM Faculty

FacSSN FacFirstName FacLastName FacCity FacState FacDept FacRank FacSalary
098-76-5432 LEONARD VINCE SEATTLE WA MS ASST $35,000
543-21-0987 VICTORIA EMMANUEL BOTHELL WA MS PROF $120,000
654-32-1098 LEONARD FIBON SEATTLE WA MS ASSC $70,000
765-43-2109 NICKI MACON BELLEVUE WA FIN PROF $65,000
876-54-3210 CRISTOPHER COLAN SEATTLE WA MS ASST $40,000
987-65-4321 JULIA MILLS SEATTLE WA FIN ASSC $75,000

FacSSN FacSupervisor FacHireDate FacZipCode
098-76-5432 654-32-1098 10-Apr-1995 98111-9921
543-21-0987 15-Apr-1996 98011-2242
654-32-1098 543-21-0987 01-May-1994 98121-0094
765-43-2109 11-Apr-1997 98015-9945
876-54-3210 654-32-1098 01-Mar-1999 98114-1332
987-65-4321 765-43-2109 15-Mar-2000 98114-9954

EXAMPLE 4.3 Expressions in SELECT and WHERE Clauses
(Access) List the name, city, and increased salary of faculty hired after 1996. The year function

extracts the year part of a column with a date data type.

SELECT FacFirstName, FacLastName, FacCity,
FacSalary*1.1 AS IncreasedSalary, FacHireDate

FROM Faculty
WHERE year(FacHireDate) > 1996

Example 4.3 depicts expressions in the SELECT and WHERE clauses. The expression in
the SELECT clause increases the salary by 10 percent. The AS keyword is used to rename
the computed column. Without renaming, most DBMSs will generate a meaningless name
such as Expr001. The expression in the WHERE clause extracts the year from the hiring
date. Because functions for the date data type are not standard, Access and Oracle formula-
tions are provided. To become proficient with SQL on a particular DBMS, you will need to
study the available functions especially with date columns.

FacFirstName FacLastName FacCity IncreasedSalary FacHireDate
NICKI MACON BELLEVUE 71500 11-Apr-1997
CRISTOPHER COLAN SEATTLE 44000 01-Mar-1999
JULIA MILLS SEATTLE 82500 15-Mar-2000

man42207_ch04.qxd 07/25/2005 18:35 Page 86

Chapter 4 Query Formulation with SQL 87

EXAMPLE 4.3 Expressions in SELECT and WHERE Clauses
(Oracle) The to_char function extracts the four-digit year from the FacHireDate column and the

to_number function converts the character representation of the year into a number.

SELECT FacFirstName, FacLastName, FacCity,
FacSalary*1.1 AS IncreasedSalary, FacHireDate

FROM Faculty
WHERE to_number(to_char(FacHireDate, ‘YYYY’)) > 1996

Inexact matching supports conditions that match some pattern rather than matching
an identical string. One of the most common types of inexact matching is to find values hav-
ing a common prefix such as “IS4” (400 level IS Courses). Example 4.4 uses the LIKE op-
erator along with a pattern-matching character * to perform prefix matching.2 The string
constant ‘IS4*’ means match strings beginning with “IS4” and ending with anything. The
wildcard character * matches any string. The Oracle formulation of Example 4.4 uses
the percent symbol %, the SQL:2003 standard for the wildcard character. Note that string
constants must be enclosed in quotation marks.3

EXAMPLE 4.4 Inexact Matching with the LIKE Operator
(Access) List the senior-level IS courses.

SELECT *
FROM Course
WHERE CourseNo LIKE ‘IS4*’

EXAMPLE 4.4 Inexact Matching with the LIKE Operator
(Oracle) List the senior-level IS courses.

SELECT *
FROM Course
WHERE CourseNo LIKE ‘IS4%’

2 Beginning with Access 2002, the SQL:2003 pattern-matching characters can be used by specifying
ANSI 92 query mode in the Options window. Since earlier Access versions do not support this
option and this option is not default in Access 2002, the textbook uses the * and ? pattern-matching
characters for Access SQL statements.
3 Most DBMSs require single quotes, the SQL:2003 standard. Microsoft Access allows either single
or double quotes for string constants.

CourseNo CrsDesc CrsUnits
IS460 SYSTEMS ANALYSIS 4
IS470 BUSINESS DATA COMMUNICATIONS 4
IS480 FUNDAMENTALS OF DATABASE MANAGEMENT 4

man42207_ch04.qxd 07/25/2005 18:35 Page 87

Another common type of inexact matching is to match strings containing a substring. To
perform this kind of matching, a wildcard character should be used before and after the sub-
string. For example, to find courses containing the word DATABASE anywhere in
the course description, write the condition: CrsDesc LIKE ‘*DATABASE*’ in Access or
CrsDesc LIKE ‘%DATABASE%’ in Oracle.

The wildcard character is not the only pattern-matching character. SQL:2003 specifies
the underscore character _ to match any single character. Some DBMSs such as Access use
the question mark ? to match any single character. In addition, most DBMSs have pattern-
matching characters for matching a range of characters (for example, the digits 0 to 9) and
any character from a list of characters. The symbols used for these other pattern-matching
characters are not standard. To become proficient at writing inexact matching conditions,
you should study the pattern-matching characters available with your DBMS.

In addition to performing pattern matching with strings, you can use exact matching with
the equality = comparison operator. For example, the condition, CourseNo = ‘IS480’
matches a single row in the Course table. For both exact and inexact matching, case sensi-
tivity is an important issue. Some DBMSs such as Microsoft Access are not case sensitive.
In Access SQL, the previous condition matches “is480”, “Is480”, and “iS480” in addition to
“IS480”. Other DBMSs such as Oracle are case sensitive. In Oracle SQL, the previous con-
dition matches only “IS480”, not “is480”, “Is480”, or “iS480”. To alleviate confusion, you
can use the Oracle upper or lower functions to convert strings to upper- or lowercase,
respectively.

Example 4.5 depicts range matching on a column with the date data type. In Access SQL,
pound symbols enclose date constants, while in Oracle SQL, single quotation marks enclose
date constants. Date columns can be compared just like numbers with the usual comparison
operators (=, <, etc.). The BETWEEN-AND operator defines a closed interval (includes
end points). In Access Example 4.5, the BETWEEN-AND condition is a shortcut for
FacHireDate >= #1/1/1999# AND FacHireDate <= #12/31/2000#.

88 Part Two Understanding Relational Databases

BETWEEN-AND
operator
a shortcut operator to
test a numeric or date
column against a
range of values. The
BETWEEN-AND oper-
ator returns true if the
column is greater than
or equal to the first
value and less than or
equal to the second
value.

EXAMPLE 4.5 Conditions on Date Columns
(Access) List the name and hiring date of faculty hired in 1999 or 2000.

SELECT FacFirstName, FacLastName, FacHireDate
FROM Faculty
WHERE FacHireDate BETWEEN #1/1/1999# AND #12/31/2000#

FacFirstName FacLastName FacHireDate
CRISTOPHER COLAN 01-Mar-1994
JULIA MILLS 15-Mar-2000

EXAMPLE 4.5 Conditions on Date Columns
(Oracle) In Oracle SQL, the standard format for dates is DD-Mon-YYYY where DD is the day

number, Mon is the month abbreviation, and YYYY is the four-digit year.

SELECT FacFirstName, FacLastName, FacHireDate
FROM Faculty
WHERE FacHireDate BETWEEN ‘1-Jan-1999’ AND ‘31-Dec-2000’

man42207_ch04.qxd 07/25/2005 18:35 Page 88

Chapter 4 Query Formulation with SQL 89

EXAMPLE 4.6 Testing for Nulls

List the offering number and course number of summer 2006 offerings without an assigned
instructor.

SELECT OfferNo, CourseNo
FROM Offering
WHERE FacSSN IS NULL AND OffTerm = ‘SUMMER’

AND OffYear = 2006

EXAMPLE 4.7 Complex Logical Expression

List the offer number, course number, and faculty Social Security number for course
offerings scheduled in fall 2005 or winter 2006.

SELECT OfferNo, CourseNo, FacSSN
FROM Offering
WHERE (OffTerm = ‘FALL’ AND OffYear = 2005)

OR (OffTerm = ‘WINTER’ AND OffYear = 2006)

Example 4.7 depicts a complex logical expression involving both logical operators AND
and OR. When mixing AND and OR in a logical expression, it is a good idea to use paren-
theses. Otherwise, the reader of the SELECT statement may not understand how the AND
and OR conditions are grouped. Without parentheses, you must depend on the default way
that AND and OR conditions are grouped.

mixing AND
and OR
always use parentheses
to make the grouping of
conditions explicit.

Besides testing columns for specified values, you sometimes need to test for the lack of
a value. Null values are used when there is no normal value for a column. A null can mean
that the value is unknown or the value is not applicable to the row. For the Offering table, a
null value for FacSSN means that the instructor is not yet assigned. Testing for null values is
done with the IS NULL comparison operator as shown in Example 4.6.You can also test for
a normal value using IS NOT NULL.

4.2.2 Joining Tables
Example 4.8 demonstrates a join of the Course and Offering tables. The join condition
Course.CourseNo = Offering.CourseNo is specified in the WHERE clause.

OfferNo CourseNo
1111 IS320

OfferNo CourseNo FacSSN
1234 IS320 098-76-5432
4321 IS320 098-76-5432
4444 IS320 543-21-0987
5555 FIN300 765-43-2109
5678 IS480 987-65-4321
6666 FIN450 987-65-4321

man42207_ch04.qxd 07/25/2005 18:35 Page 89

90 Part Two Understanding Relational Databases

There are two additional points of interest about Example 4.8. First, the CourseNo
column names must be qualified (prefixed) with a table name (Course or Offering). Other-
wise, the SELECT statement is ambiguous because CourseNo can refer to a column in either
the Course or Offering tables. Second, both tables must be listed in the FROM clause
even though the result columns come from only the Offering table. The Course table is
needed in the FROM clause because conditions in the WHERE clause reference CrsDesc, a
column of the Course table.

Example 4.9 demonstrates another join, but this time the result columns come from both
tables. There are conditions on each table in addition to the join conditions. The Oracle
formulation uses the % instead of the * as the wildcard character.

EXAMPLE 4.8 Join Tables but Show Columns from One Table Only
(Access) List the offering number, course number, days, and time of offerings containing the words

database or programming in the course description and taught in spring 2006. The Oracle
version of this example uses the % instead of the * as the wildcard character.

SELECT OfferNo, Offering.CourseNo, OffDays, OffTime
FROM Offering, Course
WHERE OffTerm = ‘SPRING’ AND OffYear = 2006

AND (CrsDesc LIKE ‘*DATABASE*’
OR CrsDesc LIKE ‘*PROGRAMMING*’)

AND Course.CourseNo = Offering.CourseNo

OfferNo CourseNo OffDays OffTime
3333 IS320 MW 8:30 AM
5679 IS480 TTH 3:30 PM

EXAMPLE 4.9 Join Tables and Show Columns from Both Tables
(Access) List the offer number, course number, and name of the instructor of IS course offerings

scheduled in fall 2005 taught by assistant professors.

SELECT OfferNo, CourseNo, FacFirstName, FacLastName
FROM Offering, Faculty
WHERE OffTerm = ‘FALL’ AND OffYear = 2005

AND FacRank = ‘ASST’ AND CourseNo LIKE ‘IS*’
AND Faculty.FacSSN = Offering.FacSSN

OfferNo CourseNo FacFirstName FacLastName
1234 IS320 LEONARD VINCE
4321 IS320 LEONARD VINCE

man42207_ch04.qxd 07/25/2005 18:35 Page 90

In the SQL:2003 standard, the join operation can be expressed directly in the FROM
clause rather than being expressed in both the FROM and WHERE clauses as shown in
Examples 4.8 and 4.9. Note that Oracle beginning with version 9i supports join opera-
tions in the FROM clause, but previous versions do not support join operations in the
FROM clause. To make a join operation in the FROM clause, use the keywords INNER
JOIN as shown in Example 4.10. The join conditions are indicated by the ON keyword in-
side the FROM clause. Notice that the join condition no longer appears in the WHERE
clause.

Chapter 4 Query Formulation with SQL 91

4.2.3 Summarizing Tables with GROUP BY and HAVING
So far, the results of all examples in this section relate to individual rows. Even Example 4.9
relates to a combination of columns from individual Offering and Faculty rows. As men-
tioned in Chapter 3, it is sometimes important to show summaries of rows. The GROUP BY
and HAVING clauses are used to show results about groups of rows rather than individual
rows.

Example 4.11 depicts the GROUP BY clause to summarize groups of rows. Each result
row contains a value of the grouping column (StdMajor) along with the aggregate calcula-
tion summarizing rows with the same value for the grouping column. The GROUP BY
clause must contain every column in the SELECT clause except for aggregate expressions.
For example, adding the StdClass column in the SELECT clause would make Example 4.11
invalid unless StdClass was also added to the GROUP BY clause.

EXAMPLE 4.10 Join Tables Using a Join Operation in the FROM Clause
(Access) List the offer number, course number, and name of the instructor of IS course offerings

scheduled in fall 2005 that are taught by assistant professors (result is identical to Example
4.9). In Oracle, you should use the % instead of *.

SELECT OfferNo, CourseNo, FacFirstName, FacLastName
FROM Offering INNER JOIN Faculty

ON Faculty.FacSSN = Offering.FacSSN
WHERE OffTerm = ‘FALL’ AND OffYear = 2005

AND FacRank = ‘ASST’ AND CourseNo LIKE ‘IS*’

EXAMPLE 4.9 Join Tables and Show Columns from Both Tables
(Oracle) List the offer number, course number, and name of the instructor of IS course offerings

scheduled in fall 2005 taught by assistant professors.

SELECT OfferNo, CourseNo, FacFirstName, FacLastName
FROM Offering, Faculty
WHERE OffTerm = ‘FALL’ AND OffYear = 2005

AND FacRank = ‘ASST’ AND CourseNo LIKE ‘IS%’
AND Faculty.FacSSN = Offering.FacSSN

GROUP BY
reminder
the columns in the
SELECT clause must
either be in the GROUP
BY clause or be part of
a summary calculation
with an aggregate
function.

man42207_ch04.qxd 07/25/2005 18:35 Page 91

92 Part Two Understanding Relational Databases

Table 4.9 shows the standard aggregate functions. If you have a statistical calculation that
cannot be performed with these functions, check your DBMS. Most DBMSs feature many
functions beyond these standard ones.

The COUNT, AVG, and SUM functions support the DISTINCT keyword to restrict
the computation to unique column values. Example 4.12 demonstrates the DISTINCT
keyword for the COUNT function. This example retrieves the number of offerings in a year
as well as the number of distinct courses taught. Some DBMSs such as Microsoft Access

TABLE 4.9
Standard Aggregate
Functions

Aggregate Function Meaning and Comments

COUNT(*) Computes the number of rows.
COUNT(column) Counts the non-null values in column; DISTINCT can be used to count

the unique column values.
AVG Computes the average of a numeric column or expression excluding

null values; DISTINCT can be used to compute the average of unique
column values.

SUM Computes the sum of a numeric column or expression excluding null
values; DISTINCT can be used to compute the average of unique
column values.

MIN Computes the smallest value. For string columns, the collating
sequence is used to compare strings.

MAX Computes the largest value. For string columns, the collating sequence
is used to compare strings.

EXAMPLE 4.11 Grouping on a Single Column

Summarize the averageGPA of students by major.

SELECT StdMajor, AVG(StdGPA) AS AvgGPA
FROM Student
GROUP BY StdMajor

StdMajor AvgGPA
ACCT 3.39999997615814
FIN 2.80000003178914
IS 3.23333330949148

EXAMPLE 4.12 Counting Rows and Unique Column Values
(Oracle) Summarize the number of offerings and unique courses by year.

SELECT OffYear, COUNT(*) AS NumOfferings,
COUNT(DISTINCT CourseNo) AS NumCourses

FROM Offering
GROUP BY OffYear

COUNT function
usage
COUNT(*) and
COUNT(column)
produce identical
results except when
“column” contains null
values. See Chapter 9
for more details about
the effect of null values
on aggregate functions.

OffYear NumOfferings NumCourses
2005 3 2
2006 10 6

man42207_ch04.qxd 07/25/2005 18:35 Page 92

Chapter 4 Query Formulation with SQL 93

EXAMPLE 4.13 Grouping with Row Conditions

Summarize the average GPA of upper-division (junior or senior) students by major.

SELECT StdMajor, AVG(StdGPA) AS AvgGpa
FROM Student
WHERE StdClass = ‘JR’ OR StdClass = ‘SR’
GROUP BY StdMajor

StdMajor AvgGPA
ACCT 3.5
FIN 2.800000031789
IS 3.149999976158

StdMajor AvgGPA
ACCT 3.5
IS 3.149999976158

One other point about Examples 4.13 and 4.14 is the use of the OR operator as compared
to the IN operator (set element of operator). The WHERE condition in Examples 4.13 and
4.14 retains the same rows. The IN condition is true if StdClass matches any value in the
parenthesized list. Chapter 9 provides additional explanation about the IN operator for
nested queries.

do not support the DISTINCT keyword inside of aggregate functions. Chapter 9 presents
an alternative formulation in Access SQL to compensate for the inability to use the
DISTINCT keyword inside the COUNT function.

Examples 4.13 and 4.14 contrast the WHERE and HAVING clauses. In Example 4.13,
the WHERE clause selects upper-division students (juniors or seniors) before grouping on
major. Because the WHERE clause eliminates students before grouping occurs, only
upper-division students are grouped. In Example 4.14, a HAVING condition retains groups
with an average GPA greater than 3.1. The HAVING clause applies to groups of rows,
whereas the WHERE clause applies to individual rows. To use a HAVING clause, there
must be a GROUP BY clause.

HAVING reminder
the HAVING clause
must be preceded by
the GROUP BY clause.

WHERE vs. HAVING
use the WHERE clause
for conditions that can
be tested on individual
rows. Use the HAVING
clause for conditions
that can be tested only
on groups. Conditions
in the HAVING
clause should involve
aggregate functions,
whereas conditions in
the WHERE clause
cannot involve
aggregate functions.

EXAMPLE 4.14 Grouping with Row and Group Conditions

Summarize the average GPA of upper-division (junior or senior) students by major. Only
list the majors with average GPA greater than 3.1.

SELECT StdMajor, AVG(StdGPA) AS AvgGpa
FROM Student
WHERE StdClass IN (‘JR’, ‘SR’)
GROUP BY StdMajor
HAVING AVG(StdGPA) > 3.1

man42207_ch04.qxd 07/25/2005 18:35 Page 93

94 Part Two Understanding Relational Databases

To summarize all rows, aggregate functions can be used in SELECT without a GROUP
BY clause as demonstrated in Example 4.15. The result is always a single row containing
just the aggregate calculations.

EXAMPLE 4.15 Grouping all Rows

List the number of upper-division students and their average GPA.

SELECT COUNT(*) AS StdCnt, AVG(StdGPA) AS AvgGPA
FROM Student
WHERE StdClass = ‘JR’ OR StdClass = ‘SR’

EXAMPLE 4.16 Grouping on Two Columns

Summarize the minimum and maximum GPA of students by major and class.

SELECT StdMajor, StdClass, MIN(StdGPA) AS MinGPA, MAX(StdGPA) AS
MaxGPA

FROM Student
GROUP BY StdMajor, StdClass

StdMajor StdClass MinGPA MaxGPA
ACCT JR 3.5 3.5
ACCT SO 3.3 3.3
FIN JR 2.5 2.7
FIN SR 3.2 3.2
IS FR 3 3
IS JR 3.6 3.6
IS SO 3.8 3.8
IS SR 2.2 4

StdCnt AvgGPA
8 3.0625

A powerful combination is to use grouping with joins. There is no reason to restrict
grouping to just one table. Often, more useful information is obtained by summarizing rows
that result from a join. Example 4.17 demonstrates grouping applied to a join between
Course and Offering. It is important to note that the join is performed before the grouping
occurs. For example, after the join, there are six rows for BUSINESS PROGRAMMING.
Because queries combining joins and grouping can be difficult to understand, Section 4.3
provides a more detailed explanation.

Sometimes it is useful to group on more than one column as demonstrated by Exam-
ple 4.16. The result shows one row for each combination of StdMajor and StdClass. Some
rows have the same value for both aggregate calculations because there is only one associ-
ated row in the Student table. For example, there is only one row for the combination
(‘ACCT’, ‘JR’).

man42207_ch04.qxd 07/25/2005 18:35 Page 94

Chapter 4 Query Formulation with SQL 95

CrsDesc OfferCount
FUNDAMENTALS OF BUSINESS PROGRAMMING 6
FUNDAMENTALS OF DATABASE MANAGEMENT 2
SYSTEMS ANALYSIS 2

EXAMPLE 4.17 Combining Grouping and Joins
(Access) Summarize the number of IS course offerings by course description.

SELECT CrsDesc, COUNT(*) AS OfferCount
FROM Course, Offering
WHERE Course.CourseNo = Offering.CourseNo

ANDCourse.CourseNo LIKE ‘IS*’
GROUP BY CrsDesc

EXAMPLE 4.17 Combining Grouping and Joins
(Oracle) Summarize the number of IS course offerings by course description.

SELECT CrsDesc, COUNT(*) AS OfferCount
FROM Course, Offering
WHERE Course.CourseNo = Offering.CourseNo

AND Course.CourseNo LIKE ‘IS%’
GROUP BY CrsDesc

4.2.4 Improving the Appearance of Results
We finish this section with two parts of the SELECT statement that can improve the
appearance of results. Examples 4.18 and 4.19 demonstrate sorting using the ORDER BY
clause. The sort sequence depends on the date type of the sorted field (numeric for

EXAMPLE 4.18 Sorting on a Single Column

List the GPA, name, city, and state of juniors. Order the result by GPA in ascending order.

SELECT StdGPA, StdFirstName, StdLastName, StdCity, StdState
FROM Student
WHERE StdClass = ‘JR’
ORDER BY StdGPA

StdGPA StdFirstName StdLastName StdCity StdState
2.50 ROBERTO MORALES SEATTLE WA
2.70 BOB NORBERT BOTHELL WA
3.50 CANDY KENDALL TACOMA WA
3.60 MARIAH DODGE SEATTLE WA

man42207_ch04.qxd 07/25/2005 18:35 Page 95

EXAMPLE 4.20 Result with Duplicates

List the city and state of faculty members.

SELECT FacCity, FacState
FROM Faculty

96 Part Two Understanding Relational Databases

Some students confuse ORDER BY and GROUP BY. In most systems, GROUP BY has
the side effect of sorting by the grouping columns.You should not depend on this side effect.
If you just want to sort, use ORDER BY rather than GROUP BY. If you want to sort and
group, use both ORDER BY and GROUP BY.

Another way to improve the appearance of the result is to remove duplicate rows. By
default, SQL does not remove duplicate rows. Duplicate rows are not possible when the pri-
mary keys of the result tables are included. There are a number of situations in which the
primary key does not appear in the result. Example 4.21 demonstrates the DISTINCT key-
word to remove duplicates that appear in the result of Example 4.20.

ORDER BY vs.
DISTINCT
use the ORDER BY
clause to sort a result
table on one or more
columns. Use the
DISTINCT keyword
to remove duplicates in
the result.

EXAMPLE 4.19 Sorting on Two Columns with Descending Order

List the rank, salary, name, and department of faculty. Order the result by ascending
(alphabetic) rank and descending salary.

SELECT FacRank, FacSalary, FacFirstName, FacLastName, FacDept
FROM Faculty
ORDER BY FacRank, FacSalary DESC

FacRank FacSalary FacFirstName FacLastName FacDept
ASSC 75000.00 JULIA MILLS FIN
ASSC 70000.00 LEONARD FIBON MS
ASST 40000.00 CRISTOPHER COLAN MS
ASST 35000.00 LEONARD VINCE MS
PROF 120000.00 VICTORIA EMMANUEL MS
PROF 65000.00 NICKI MACON FIN

FacCity FacState
SEATTLE WA
BOTHELL WA
SEATTLE WA
BELLEVUE WA
SEATTLE WA
SEATTLE WA

numeric data types, ASCII collating sequence for string fields, and calendar sequence
for data fields). By default, sorting occurs in ascending order. The keyword DESC can
be used after a column name to sort in descending order as demonstrated in Example 4.19.

man42207_ch04.qxd 07/25/2005 18:35 Page 96

Chapter 4 Query Formulation with SQL 97

FacCity FacState
BELLEVUE WA
BOTHELL WA
SEATTLE WA

conceptual evalua-
tion process
the sequence of
operations and
intermediate tables
used to derive the
result of a SELECT
statement. The concep-
tual evaluation process
may help you gain an
initial understanding of
the SELECT statement
as well as help you to
understand more
difficult problems.

EXAMPLE 4.21 Eliminating Duplicates with DISTINCT

List the unique city and state combinations in the Faculty table.

SELECT DISTINCT FacCity, FacState
FROM Faculty

4.3 Conceptual Evaluation Process for SELECT Statements
To develop a clearer understanding of the SELECT statement, it is useful to understand the
conceptual evaluation process or sequence of steps to produce the desired result. The
conceptual evaluation process describes operations (mostly relational algebra operations)
that produce intermediate tables leading to the result table. You may find it useful to refer to
the conceptual evaluation process when first learning to write SELECT statements. After
you gain initial competence with SELECT, you should not need to refer to the conceptual
evaluation process except to gain insight about difficult problems.

To demonstrate the conceptual evaluation process, consider Example 4.22, which in-
volves many parts of the SELECT statement. It involves multiple tables (Enrollment and
Offering in the FROM clause), row conditions (following WHERE), aggregrate functions
(COUNT and AVG) over groups of rows (GROUP BY), a group condition (following
HAVING), and sorting of the final result (ORDER BY).

EXAMPLE 4.22 Depict Many Parts of the SELECT Statement
(Access) List the course number, offer number, and average grade of students enrolled in fall 2005

IS course offerings in which more than one student is enrolled. Sort the result by course
number in ascending order and average grade in descending order. The Oracle version of
Example 4.22 is identical except for the % instead of the * as the wildcard character.

SELECT CourseNo, Offering.OfferNo, AVG(EnrGrade) AS AvgGrade
FROM Enrollment, Offering
WHERE CourseNo LIKE ‘IS*’ AND OffYear = 2005

AND OffTerm = ‘FALL’
AND Enrollment.OfferNo = Offering.OfferNo

GROUP BY CourseNo, Offering.OfferNo
HAVING COUNT(*) > 1
ORDER BY CourseNo, 3 DESC1

In the ORDER BY clause, note the number 3 as the second column to sort. The number 3
means sort by the third column (AvgGrade) in SELECT. Some DBMSs do not allow
aggregate expressions or alias names (AvgGrade) in the ORDER BY clause.

man42207_ch04.qxd 07/25/2005 18:35 Page 97

Tables 4.10 to 4.12 show the input tables and the result. Only small input and result tables
have been used so that you can understand more clearly the process to derive the result. It
does not take large tables to depict the conceptual evaluation process well.

The conceptual evaluation process is a sequence of operations as indicated in Figure 4.2.
This process is conceptual rather than actual because most SQL compilers can produce the
same output using many shortcuts. Because the shortcuts are system specific, rather mathe-
matical, and performance oriented, we will not review them. The conceptual evaluation
process provides a foundation for understanding the meaning of SQL statements that is
independent of system and performance issues. The remainder of this section applies the
conceptual evaluation process to Example 4.22.

1. The first step in the conceptual process combines the tables in the FROM clause with the
cross product and join operators. In Example 4.22, a cross product operation is necessary
because two tables are listed. A join operation is not necessary because the INNER JOIN
keyword does not appear in the FROM statement. Recall that the cross product operator
shows all possible rows by combining two tables. The resulting table contains the product
of the number of rows and the sum of the columns. In this case, the cross product contains
35 rows (5 � 7) and 7 columns (3 + 4). Table 4.13 shows a partial result. As an exercise,
you are encouraged to derive the entire result. As a notational shortcut here, the table
name (abbreviated as E and O) is prefixed before the column name for OfferNo.

2. The second step uses a restriction operation to retrieve rows that satisfy the conditions in
the WHERE clause from the result of step 1. We have four conditions: a join condition on
OfferNo, a condition on CourseNo, a condition on OffYear, and a condition on OffTerm.
Note that the condition on CourseNo includes the wildcard character (*). Any course

98 Part Two Understanding Relational Databases

TABLE 4.11
Sample Enrollment
Table

StdSSN OfferNo EnrGrade

111-11-1111 1111 3.1
111-11-1111 2222 3.5
111-11-1111 3333 3.3
111-11-1111 5555 3.8
222-22-2222 1111 3.2
222-22-2222 2222 3.3
333-33-3333 1111 3.6

TABLE 4.12
Example 4.22 Result

CourseNo OfferNo AvgGrade

IS480 2222 3.4
IS480 1111 3.3

TABLE 4.10
Sample Offering
Table

OfferNo CourseNo OffYear OffTerm

1111 IS480 2005 FALL
2222 IS480 2005 FALL
3333 IS320 2005 FALL
5555 IS480 2006 WINTER
6666 IS320 2006 SPRING

man42207_ch04.qxd 07/25/2005 18:35 Page 98

Chapter 4 Query Formulation with SQL 99

Yes

Yes

No

No

FROM Tables:
Cross product and

join operations

Restriction
on where
conditions

GROUP
BY?

Finish

ORDER
BY?

Project
columns in

SELECT

Sort
columns in
ORDER BY

Sort on
GROUP BY
columns

Compute
aggregates
and reduce
each group

to 1 row

Restriction
on HAVING
conditions

1

2

3
4

5

6

7

FIGURE 4.2
Flowchart of the
Conceptual
Evaluation Process

TABLE 4.13
Partial Result of
Step 1 for First
Two Offering Rows
(1111 and 2222)

O.OfferNo CourseNo OffYear OffTerm StdSSN E.OfferNo EnrGrade

1111 IS480 2005 FALL 111-11-1111 1111 3.1
1111 IS480 2005 FALL 111-11-1111 2222 3.5
1111 IS480 2005 FALL 111-11-1111 3333 3.3
1111 IS480 2005 FALL 111-11-1111 5555 3.8
1111 IS480 2005 FALL 222-22-2222 1111 3.2
1111 IS480 2005 FALL 222-22-2222 2222 3.3
1111 IS480 2005 FALL 333-33-3333 1111 3.6
2222 IS480 2005 FALL 111-11-1111 1111 3.1
2222 IS480 2005 FALL 111-11-1111 2222 3.5
2222 IS480 2005 FALL 111-11-1111 3333 3.3
2222 IS480 2005 FALL 111-11-1111 5555 3.8
2222 IS480 2005 FALL 222-22-2222 1111 3.2
2222 IS480 2005 FALL 222-22-2222 2222 3.3
2222 IS480 2005 FALL 333-33-3333 1111 3.6

numbers beginning with IS match this condition. Table 4.14 shows that the result of
the cross product (35 rows) is reduced to six rows.

3. The third step sorts the result of step 2 by the columns specified in the GROUP BY
clause. The GROUP BY clause indicates that the output should relate to groups of rows

man42207_ch04.qxd 07/25/2005 18:35 Page 99

rather than individual rows. If the output relates to individual rows rather than groups of
rows, the GROUP BY clause is omitted. When using the GROUP BY clause, you must
include every column from the SELECT clause except for expressions that involve an
aggregrate function.4 Table 4.15 shows the result of step 2 sorted by CourseNo and O.Of-
ferNo. Note that the columns have been rearranged to make the result easier to read.

4. The fourth step is only necessary if there is a GROUP BY clause. The fourth step com-
putes aggregate function(s) for each group of rows and reduces each group to a single
row.All rows in a group have the same values for the GROUP BY columns. In Table 4.16,
there are three groups {<IS320,3333>, <IS480, 1111>, <IS480,2222>}. Computed
columns are added for aggregate functions in the SELECT and HAVING clauses.
Table 4.16 shows two new columns for the AVG function in the SELECT clause and the
COUNT function in the HAVING clause. Note that remaining columns are eliminated at
this point because they are not needed in the remaining steps.

5. The fifth step eliminates rows that do not satisfy the HAVING condition. Table 4.17
shows that the first row in Table 4.16 is removed because it fails the HAVING condition.
Note that the HAVING clause specifies a restriction operation for groups of rows. The
HAVING clause cannot be present without a preceding GROUP BY clause. The condi-
tions in the HAVING clause always relate to groups of rows, not to individual rows.
Typically, conditions in the HAVING clause involve aggregate functions.

6. The sixth step sorts the results according to the ORDER BY clause. Note that the
ORDER BY clause is optional. Table 4.18 shows the result table after sorting.

7. The seventh step performs a final projection. Columns appearing in the result of step 6
are eliminated if they do not appear in the SELECT clause. Table 4.19 (identical to Table
4.12) shows the result after the projection of step 6. The Count(*) column is eliminated
because it does not appear in SELECT. The seventh step (projection) occurs after the
sixth step (sorting) because the ORDER BY clause can contain columns that do not ap-
pear in the SELECT list.

100 Part Two Understanding Relational Databases

TABLE 4.14
Result of Step 2

O.OfferNo CourseNo OffYear OffTerm StdSSN E.OfferNo EnrGrade

1111 IS480 2005 FALL 111-11-1111 1111 3.1
2222 IS480 2005 FALL 111-11-1111 2222 3.5
1111 IS480 2005 FALL 222-22-2222 1111 3.2
2222 IS480 2005 FALL 222-22-2222 2222 3.3
1111 IS480 2005 FALL 333-33-3333 1111 3.6
3333 IS320 2005 FALL 111-11-1111 3333 3.3

4 In other words, when using the GROUP BY clause, every column in the SELECT clause should either
be in the GROUP BY clause or be part of an expression with an aggregate function.

TABLE 4.15
Result of Step 3

CourseNo O.OfferNo OffYear OffTerm StdSSN E.OfferNo EnrGrade

IS320 3333 2005 FALL 111-11-1111 3333 3.3
IS480 1111 2005 FALL 111-11-1111 1111 3.1
IS480 1111 2005 FALL 222-22-2222 1111 3.2
IS480 1111 2005 FALL 333-33-3333 1111 3.6
IS480 2222 2005 FALL 111-11-1111 2222 3.5
IS480 2222 2005 FALL 222-22-2222 2222 3.3

man42207_ch04.qxd 07/25/2005 18:35 Page 100

This section finishes by discussing three major lessons about the conceptual evaluation
process. These lessons are more important to remember than the specific details about the
conceptual process.

• GROUP BY conceptually occurs after WHERE. If you have an error in a SELECT state-
ment involving WHERE or GROUP BY, the problem is most likely in the WHERE
clause. You can check the intermediate results after the WHERE clause by submitting a
SELECT statement without the GROUP BY clause.

• Grouping occurs only one time in the evaluation process. If your problem involves more
than one independent aggregate calculation, you may need more than one SELECT
statement.

• Using sample tables can help you analyze difficult problems. It is often not necessary to
go through the entire evaluation process. Rather, use sample tables to understand only
the difficult part. Section 4.5 and Chapter 9 depict the use of sample tables to help ana-
lyze difficult problems.

4.4 Critical Questions for Query Formulation
The conceptual evaluation process depicted in Figure 4.2 should help you understand the
meaning of most SELECT statements, but it will probably not help you to formulate
queries. Query formulation involves a conversion from a problem statement into a state-
ment of a database language such as SQL as shown in Figure 4.3. In between the problem
statement and the database language statement, you convert the problem statement into a
database representation. Typically, the difficult part is to convert the problem statement into
a database representation. This conversion involves a detailed knowledge of the tables and
relationships and careful attention to possible ambiguities in the problem statement. The
critical questions presented in this section provide a structured process to convert a prob-
lem statement into a database representation.

Chapter 4 Query Formulation with SQL 101

TABLE 4.16
Result of Step 4

CourseNo O.OfferNo AvgGrade Count(*)

IS320 3333 3.3 1
IS480 1111 3.3 3
IS480 2222 3.4 2

CourseNo O.OfferNo AvgGrade Count(*)

IS480 1111 3.3 3
IS480 2222 3.4 2

CourseNo O.OfferNo AvgGrade Count(*)

IS480 2222 3.4 3
IS480 1111 3.3 2

CourseNo O.OfferNo AvgGrade

IS480 2222 3.4
IS480 1111 3.3

TABLE 4.17
Result of Step 5

TABLE 4.18
Result of Step 6

TABLE 4.19
Result of Step 7

critical questions
for query formula-
tion
provide a checklist to
convert a problem
statement into a
database representation
consisting of tables,
columns, table
connection operations,
and row grouping
requirements.

man42207_ch04.qxd 07/25/2005 18:35 Page 101

In converting from the problem statement into a database representation, you should an-
swer three critical questions. Table 4.20 summarizes the analysis for the critical questions.

What tables are needed? For the first question, you should match data requirements to
columns and tables. You should identify columns that are needed for output and conditions
as well as intermediate tables needed to connect other tables. For example, if you want to
join the Student and Offering tables, the Enrollment table should be included because it pro-
vides a connection to these tables. The Student and Offering tables cannot be combined
directly. All tables needed in the query should be listed in the FROM clause.

How are the tables combined? For the second question, most tables are combined by a
join operation. In Chapter 9, you will use the outer join, difference, and division operators to
combine tables. For now, just concentrate on combining tables with joins.You need to iden-
tify the matching columns for each join. In most joins, the primary key of a parent table is
matched with a foreign key of a related child table. Occasionally, the primary key of the par-
ent table contains multiple columns. In this case, you need to match on both columns. In
some situations, the matching columns do not involve a primary key/foreign key combina-
tion.You can perform a join as long as the matching columns have compatible data types. For
example, when joining customer tables from different databases, there may not be a common
primary key. Joining on other fields such as name, address, and so on may be necessary.

Does the output relate to individual rows or groups of rows? For the third question, look
for computations involving aggregate functions in the problem statement. For example, the
problem “list the name and average grade of students” contains an aggregate computation.
Problems referencing an aggregate function indicate that the output relates to groups of
rows. Hence the SQL statement requires a GROUP BY clause. If the problem contains

102 Part Two Understanding Relational Databases

Problem
statement

Database
representation

Database language
statement

FIGURE 4.3
Query Formulation
Process

TABLE 4.20
Summary of Critical
Questions for Query
Formulation

Question Analysis Tips

What tables are needed? Match columns to output data requirements and conditions
to test. If tables are not directly related, identify intermediate
tables to provide a join path between tables.

How are the tables combined? Most tables are combined using a primary key from a parent
table to a foreign key of a child table. More difficult problems
may involve other join conditions as well as other combining
operators (outer join, difference, or division).

Does the output relate to Identify aggregate functions used in output data requirements
individual rows or groups and conditions to test. SQL statement requires a GROUP BY
of rows? clause if aggregate functions are needed. A HAVING clause is

needed if conditions use aggregate functions.

man42207_ch04.qxd 07/25/2005 18:35 Page 102

conditions with aggregate functions, a HAVING clause should accompany the GROUP BY
clause. For example, the problem “list the offer number of course offerings with more than
30 students” needs a HAVING clause with a condition involving the count function.

After answering these questions, you are ready to convert the database representation into
a database language statement. To help in this process, you should develop a collection of
statements for each kind of relational algebra operator using a database that you understand
well. For example, you should have statements for problems that involve join operations,
joins with grouping, and joins with grouping conditions.As you increase your understanding
of SQL, this conversion will become easy for most problems. For difficult problems such as
those discussed in Section 4.5 and Chapter 9, relying on similar problems may be necessary
because difficult problems are not common.

4.5 Refining Query Formulation Skills with Examples
Let’s apply your query formulation skills and knowledge of the SELECT statement to more
difficult problems. All problems in this section involve the parts of SELECT discussed
in Sections 4.2 and 4.3. The problems involve more difficult aspects such as joining
more than two tables, grouping after joins of several tables, joining a table to itself, and
traditional set operators.

4.5.1 Joining Multiple Tables with the Cross Product Style
We begin with a number of join problems that are formulated using cross product opera-
tions in the FROM clause. This way to formulate joins is known as the cross product style
because of the implied cross product operations. The next subsection uses join operations
in the FROM clause to contrast the ways that joins can be expressed.

In Example 4.23, some student rows appear more than once in the result. For example,
Roberto Morales appears twice. Because of the 1-M relationship between the Student and
Enrollment tables, a Student row can match multiple Enrollment rows.

Chapter 4 Query Formulation with SQL 103

cross product style
lists tables in the FROM
clause and join condi-
tions in the WHERE
clause. The cross prod-
uct style is easy to read
but does not support
outer join operations.

EXAMPLE 4.23 Joining Two Tables

List the student name, offering number, and grade of students who have a grade ≥ 3.5 in
a course offering.

SELECT StdFirstName, StdLastName, OfferNo, EnrGrade
FROM Student, Enrollment
WHERE EnrGrade >= 3.5

AND Student.StdSSN = Enrollment.StdSSN

StdFirstName StdLastName OfferNo EnrGrade
CANDY KENDALL 1234 3.5
MARIAH DODGE 1234 3.8
HOMER WELLS 4321 3.5
ROBERTO MORALES 4321 3.5
BOB NORBERT 5679 3.7
ROBERTO MORALES 5679 3.8
MARIAH DODGE 6666 3.6
LUKE BRAZZI 7777 3.7
BOB NORBERT 9876 3.5
WILLIAM PILGRIM 9876 4

man42207_ch04.qxd 07/25/2005 18:35 Page 103

104 Part Two Understanding Relational Databases

Examples 4.24 and 4.25 depict duplicate elimination after a join. In Example 4.24, some
students appear more than once as in Example 4.23. Because only columns from the Student
table are used in the output, duplicate rows appear. When you join a parent table to a child
table and show only columns from the parent table in the result, duplicate rows can appear
in the result. To eliminate duplicate rows, you can use the DISTINCT keyword as shown in
Example 4.25.

Examples 4.26 through 4.29 depict problems involving more than two tables. In these
problems, it is important to identify the tables in the FROM clause. Make sure that you
examine conditions to test as well as columns in the result. In Example 4.28, the Enrollment
table is needed even though it does not supply columns in the result or conditions to test.

EXAMPLE 4.25 Join with Duplicates Removed

List the student names (without duplicates) that have a grade ≥ 3.5 in a course offering.

SELECT DISTINCT StdFirstName, StdLastName
FROM Student, Enrollment
WHERE EnrGrade >= 3.5

AND Student.StdSSN = Enrollment.StdSSN

StdFirstName StdLastName
BOB NORBERT
CANDY KENDALL
HOMER WELLS
LUKE BRAZZI
MARIAH DODGE
ROBERTO MORALES
WILLIAM PILGRIM

EXAMPLE 4.24 Join with Duplicates

List the names of students who have a grade ≥ 3.5 in a course offering.

SELECT StdFirstName, StdLastName
FROM Student, Enrollment
WHERE EnrGrade >= 3.5

AND Student.StdSSN = Enrollment.StdSSN

StdFirstName StdLastName
CANDY KENDALL
MARIAH DODGE
HOMER WELLS
ROBERTO MORALES
BOB NORBERT
ROBERTO MORALES
MARIAH DODGE
LUKE BRAZZI
BOB NORBERT
WILLIAM PILGRIM

man42207_ch04.qxd 07/25/2005 18:35 Page 104

Chapter 4 Query Formulation with SQL 105

OfferNo CourseNo CrsUnits OffDays OffLocation OffTime
1234 IS320 4 MW BLM302 10:30 AM
4321 IS320 4 TTH BLM214 3:30 PM

EXAMPLE 4.27 Joining Three Tables with Columns from Only Two Tables

List Leonard Vince’s teaching schedule in fall 2005. For each course, list the offering num-
ber, course number, number of units, days, location, and time.

SELECT OfferNo, Offering.CourseNo, CrsUnits, OffDays, OffLocation, OffTime
FROM Faculty, Course, Offering
WHERE Faculty.FacSSN = Offering.FacSSN

AND Offering.CourseNo = Course.CourseNo
AND OffYear = 2005 AND OffTerm = ‘FALL’
AND FacFirstName = ‘LEONARD’
AND FacLastName = ‘VINCE’

EXAMPLE 4.28 Joining Four Tables

List Bob Norbert’s course schedule in spring 2006. For each course, list the offer-
ing number, course number, days, location, time, and faculty name.

SELECT Offering.OfferNo, Offering.CourseNo, OffDays, OffLocation,
OffTime, FacFirstName, FacLastName

FROM Faculty, Offering, Enrollment, Student
WHERE Offering.OfferNo = Enrollment.OfferNo

AND Student.StdSSN = Enrollment.StdSSN
AND Faculty.FacSSN = Offering.FacSSN
AND OffYear = 2006 AND OffTerm = ‘SPRING’
AND StdFirstName = ‘BOB’
AND StdLastName = ‘NORBERT’

EXAMPLE 4.26 Joining Three Tables with Columns from Only Two Tables

List the student name and the offering number in which the grade is greater than 3.7 and
the offering is given in fall 2005.

SELECT StdFirstName, StdLastName, Enrollment.OfferNo
FROM Student, Enrollment, Offering
WHERE Student.StdSSN = Enrollment.StdSSN

AND Offering.OfferNo = Enrollment.OfferNo
AND OffYear = 2005 AND OffTerm = ‘FALL’
AND EnrGrade >= 3.7

StdFirstName StdLastName OfferNo
MARIAH DODGE 1234

OfferNo CourseNo OffDays OffLocation OffTime FacFirstName FacLastName
5679 IS480 TTH BLM412 3:30 PM CRISTOPHER COLAN
9876 IS460 TTH BLM307 1:30 PM LEONARD FIBON

man42207_ch04.qxd 07/25/2005 18:35 Page 105

106 Part Two Understanding Relational Databases

EXAMPLE 4.29 Joining Five Tables

List Bob Norbert’s course schedule in spring 2006. For each course, list the offering num-
ber, course number, days, location, time, course units, and faculty name.

SELECT Offering.OfferNo, Offering.CourseNo, OffDays, OffLocation, OffTime,
CrsUnits, FacFirstName, FacLastName

FROM Faculty, Offering, Enrollment, Student, Course
WHERE Faculty.FacSSN = Offering.FacSSN

AND Offering.OfferNo = Enrollment.OfferNo
AND Student.StdSSN = Enrollment.StdSSN
AND Offering.CourseNo = Course.CourseNo
AND OffYear = 2006 AND OffTerm = ‘SPRING’
AND StdFirstName = ‘BOB’
AND StdLastName = ‘NORBERT’

EXAMPLE 4.30 Joining Two Tables without Matching on a Primary and Foreign Key

List students who are on the faculty. Include all student columns in the result.

SELECT Student.*
FROM Student, Faculty
WHERE StdSSN = FacSSN

The Enrollment table is needed to connect the Student table with the Offering table.
Example 4.29 extends Example 4.28 with details from the Course table. All five tables are
needed to supply outputs, to test conditions, or to connect other tables.

Example 4.30 demonstrates another way to combine the Student and Faculty tables. In Ex-
ample 4.28, you saw it was necessary to combine the Student, Enrollment, Offering, and Fac-
ulty tables to find faculty teaching a specified student.To find students who are on the faculty
(perhaps teaching assistants), the tables can be joined directly. Combining the Student and
Faculty tables in this way is similar to an intersection operation. However, intersection cannot
actually be performed here because the Student and Faculty tables are not union compatible.

A minor point about Example 4.30 is the use of the * after the SELECT keyword. Pre-
fixing the * with a table name and period indicates all columns of the specified table are in
the result. Using an * without a table name prefix indicates that all columns from all FROM
tables are in the result.

4.5.2 Joining Multiple Tables with the Join Operator Style
As demonstrated in Section 4.2, join operations can be expressed directly in the FROM
clause using the INNER JOIN and ON keywords. This join operator style can be used
to combine any number of tables. To ensure that you are comfortable using this style, this

join operator style
lists join operations in
the FROM clause using
the INNER JOIN and
ON keywords. The join
operator style can be
somewhat difficult to
read for many join op-
erations but it supports
outer join operations as
shown in Chapter 9.

OfferNo CourseNo OffDays OffLocation OffTime CrsUnits FacFirstName FacLastName
5679 IS480 TTH BLM412 3:30 PM 4 CRISTOPHER COLAN
9876 IS460 TTH BLM307 1:30 PM 4 LEONARD FIBON

StdSSN StdFirstName StdLastName StdCity StdState StdMajor StdClass StdGPA StdZip
876-54-3210 CRISTOPHER COLAN SEATTLE WA IS SR 4.00 98114-1332

man42207_ch04.qxd 07/25/2005 18:35 Page 106

Chapter 4 Query Formulation with SQL 107

The join operator style can be extended for any number of tables. Think of the join oper-
ator style as writing a complicated formula with lots of parentheses. To add another part to
the formula, you need to add the arguments, operator, and another level of parentheses. For
example, with the formula (X +Y) * Z, you can add another operation as ((X +Y) * Z) / W.
This same principle can be applied with the join operator style. Examples 4.32 and 4.33
extend Example 4.31 with additional conditions that need other tables. In both examples,
another INNER JOIN is added to the end of the previous INNER JOIN operations.
The INNER JOIN could also have been added at the beginning or middle if desired. The or-
dering of INNER JOIN operations is not important.

Join Two Tables Using the Join Operator Style

Retrieve the name, city, and grade of students who have a high grade (greater than or
equal to 3.5) in a course offering.

SELECT StdFirstName, StdLastName, StdCity, EnrGrade
FROM Student INNER JOIN Enrollment

ON Student.StdSSN = Enrollment.StdSSN
WHERE EnrGrade >= 3.5

StdFirstName StdLastName StdCity EnrGrade
CANDY KENDALL TACOMA 3.5
MARIAH DODGE SEATTLE 3.8
HOMER WELLS SEATTLE 3.5
ROBERTO MORALES SEATTLE 3.5
BOB NORBERT BOTHELL 3.7
ROBERTO MORALES SEATTLE 3.8
MARIAH DODGE SEATTLE 3.6
LUKE BRAZZI SEATTLE 3.7
BOB NORBERT BOTHELL 3.5
WILLIAM PILGRIM BOTHELL 4

Join Three Tables Using the Join Operator Style

Retrieve the name, city, and grade of students who have a high grade (greater than or
equal 3.5) in a course offered in fall 2005.

SELECT StdFirstName, StdLastName, StdCity, EnrGrade
FROM (Student INNER JOIN Enrollment

ON Student.StdSSN = Enrollment.StdSSN)
INNER JOIN Offering

ON Offering.OfferNo = Enrollment.OfferNo
WHERE EnrGrade >= 3.5 AND OffTerm = ‘FALL’

AND OffYear = 2005

EXAMPLE 4.31
(Access and
Oracle 9i
versions
and beyond)

EXAMPLE 4.32
(Access and
Oracle 9i
versions and
beyond)

subsection presents examples of multiple table joins beginning with a two-table join in
Example 4.31. Note that these examples do not execute in Oracle versions before 9i.

man42207_ch04.qxd 07/25/2005 18:35 Page 107

108 Part Two Understanding Relational Databases

The cross product and join operator styles can be mixed as demonstrated in Example 4.34.
In most cases, it is preferable to use one style or the other, however.

StdFirstName StdLastName StdCity EnrGrade
CANDY KENDALL TACOMA 3.5
MARIAH DODGE SEATTLE 3.8
HOMER WELLS SEATTLE 3.5
ROBERTO MORALES SEATTLE 3.5

Join Four Tables Using the Join Operator Style

Retrieve the name, city, and grade of students who have a high grade (greater than or
equal to 3.5) in a course offered in fall 2005 taught by Leonard Vince.

SELECT StdFirstName, StdLastName, StdCity, EnrGrade
FROM ((Student INNER JOIN Enrollment

ON Student.StdSSN = Enrollment.StdSSN)
INNER JOIN Offering

ON Offering.OfferNo = Enrollment.OfferNo)
INNER JOIN Faculty ON Faculty.FacSSN = Offering.FacSSN

WHERE EnrGrade >= 3.5 AND OffTerm = ‘FALL’
AND OffYear = 2005 AND FacFirstName = ‘LEONARD’
AND FacLastName = ‘VINCE’

StdFirstName StdLastName StdCity EnrGrade
CANDY KENDALL TACOMA 3.5
MARIAH DODGE SEATTLE 3.8
HOMER WELLS SEATTLE 3.5
ROBERTO MORALES SEATTLE 3.5

Combine the Cross Product and Join Operator Styles

Retrieve the name, city, and grade of students who have a high grade (greater than
or equal to 3.5) in a course offered in fall 2005 taught by Leonard Vince (same result as
Example 4.33).

SELECT StdFirstName, StdLastName, StdCity, EnrGrade
FROM ((Student INNER JOIN Enrollment

ON Student.StdSSN = Enrollment.StdSSN)
INNER JOIN Offering

ON Offering.OfferNo = Enrollment.OfferNo),
Faculty

WHERE EnrGrade >= 3.5 AND OffTerm = ‘FALL’
AND OffYear = 2005 AND FacFirstName = ‘LEONARD’
AND FacLastName = ‘VINCE’
AND Faculty.FacSSN = Offering.FacSSN

EXAMPLE 4.33
(Access and
Oracle 9i
versions and
beyond)

EXAMPLE 4.34
(Access and
Oracle 9i
versions and
beyond)

man42207_ch04.qxd 07/25/2005 18:35 Page 108

EXAMPLE 4.35 Self-join

List faculty members who have a higher salary than their supervisor. List the Social Security
number, name, and salary of the faculty and supervisor.

SELECT Subr.FacSSN, Subr.FacLastName, Subr.FacSalary, Supr.FacSSN,
Supr.FacLastName, Supr.FacSalary

FROM Faculty Subr, Faculty Supr
WHERE Subr.FacSupervisor = Supr.FacSSN

AND Subr.FacSalary > Supr.FacSalary

The choice between the cross product and the join operator styles is largely a matter of
preference. In the cross product style, it is easy to see the tables in the SQL statement. For
multiple joins, the join operator style can be difficult to read because of nested parentheses.
The primary advantage of the join operator style is that you can formulate queries involv-
ing outer joins as described in Chapter 9.

You should be comfortable reading both join styles even if you only write SQL state-
ments using one style. You may need to maintain statements written with both styles. In
addition, some visual query languages generate code in one of the styles. For example,
Query Design, the visual query language of Microsoft Access, generates code in the join
operator style.

4.5.3 Self-Joins and Multiple Joins between Two Tables
Example 4.35 demonstrates a self-join, a join involving a table with itself. A self-join
is necessary to find relationships among rows of the same table. The foreign key,
FacSupervisor, shows relationships among Faculty rows. To find the supervisor name of a
faculty member, match on the FacSupervisor column with the FacSSN column. The trick
is to imagine that you are working with two copies of the Faculty table. One copy plays
the role of the subordinate, while the other copy plays the role of the superior. In SQL, a
self-join requires alias names (Subr and Supr) in the FROM clause to distinguish between
the two roles or copies.

Chapter 4 Query Formulation with SQL 109

self-join
a join between a table
and itself (two copies
of the same table).
Self-joins are useful
for finding relationships
among rows of the same
table.

Problems involving self-joins can be difficult to understand. If you are having trouble
understanding Example 4.35, use the conceptual evaluation process to help. Start with a
small Faculty table. Copy this table and use the names Subr and Supr to distinguish
between the two copies. Join the two tables over Subr.FacSupervisor and Supr.FacSSN. If
you need, derive the join using a cross product operation. You should be able to see that
each result row in the join shows a subordinate and supervisor pair.

Problems involving self-referencing (unary) relationships are part of tree-structured
queries. In tree-structured queries, a table can be visualized as a structure such as a tree
or hierarchy. For example, the Faculty table has a structure showing an organization hi-
erarchy. At the top, the college dean resides. At the bottom, faculty members without

Subr.FacSSN Subr.FacLastName Subr.FacSalary Supr.FacSSN Supr.FacLastName Supr.FacSalary
987-65-4321 MILLS 75000.00 765-43-2109 MACON 65000.00

man42207_ch04.qxd 07/25/2005 18:35 Page 109

110 Part Two Understanding Relational Databases

subordinates reside. Similar structures apply to the chart of accounts in accounting
systems, part structures in manufacturing systems, and route networks in transportation
systems.

A more difficult problem than a self-join is to find all subordinates (direct or indirect)
in an organization hierarchy. This problem can be solved in SQL if the number of subordi-
nate levels is known. One join for each subordinate level is needed. Without knowing the
number of subordinate levels, this problem cannot be done in SQL-92 although it can
be solved in SQL:2003 using the WITH RECURSIVE clause and in proprietary SQL
extensions. In SQL-92, tree-structured queries can be solved by using SQL inside a
programming language.

Example 4.36 shows another difficult join problem. This problem involves two joins
between the same two tables (Offering and Faculty). Alias table names (O1 and O2) are
needed to distinguish between the two copies of the Offering table used in the statement.

EXAMPLE 4.36 More Than One Join between Tables Using Alias Table Names

List the names of faculty members and the course number for which the faculty member
teaches the same course number as his or her supervisor in 2006.

SELECT FacFirstName, FacLastName, O1.CourseNo
FROM Faculty, Offering O1, Offering O2
WHERE Faculty.FacSSN = O1.FacSSN

AND Faculty.FacSupervisor = O2.FacSSN
AND O1.OffYear = 2006 AND O2.OffYear = 2006
AND O1.CourseNo = O2.CourseNo

FacFirstName FacLastName CourseNo
LEONARD VINCE IS320
LEONARD FIBON IS320

If this problem is too difficult, use the conceptual evaluation process (Figure 4.2) with
sample tables to gain insight. Perform a join between the sample Faculty and Offering
tables, then join this result to another copy of Offering (O2) matching FacSupervisor with
O2.FacSSN. In the resulting table, select the rows that have matching course numbers and
year equal to 2006.

4.5.4 Combining Joins and Grouping
Example 4.37 demonstrates why it is sometimes necessary to group on multiple columns.
After studying Example 4.37, you might be confused about the necessity to group on both
OfferNo and CourseNo. One simple explanation is that any columns appearing in SELECT
must be either a grouping column or an aggregrate expression. However, this explanation
does not quite tell the entire story. Grouping on OfferNo alone produces the same values for
the computed column (NumStudents) because OfferNo is the primary key. Including
nonunique columns such as CourseNo adds information to each result row but does not
change the aggregate calculations. If you do not understand this point, use sample tables to
demonstrate it. When evaluating your sample tables, remember that joins occur before
grouping as indicated in the conceptual evaluation process.

man42207_ch04.qxd 07/25/2005 18:35 Page 110

Chapter 4 Query Formulation with SQL 111

EXAMPLE 4.38 Joins, Grouping, and Group Conditions

List the course number, the offering number, and the average GPA of students enrolled.
Only include courses offered in fall 2005 in which the average GPA of enrolled students is
greater than 3.0.

SELECT CourseNo, Enrollment.OfferNo, Avg(StdGPA) AS AvgGPA
FROM Student, Offering, Enrollment
WHERE Offering.OfferNo = Enrollment.OfferNo

AND Enrollment.StdSSN = Student.StdSSN
AND OffYear = 2005 AND OffTerm = ‘FALL’

GROUP BY CourseNo, Enrollment.OfferNo
HAVING Avg(StdGPA) > 3.0

CourseNo OfferNo AvgGPA
IS320 1234 3.23333330949148
IS320 4321 3.03333334128062

Example 4.38 demonstrates another problem involving joins and grouping. An impor-
tant part of this problem is the need for the Student table and the HAVING condition. They
are needed because the problem statement refers to an aggregate function involving the
Student table.

EXAMPLE 4.37 Join with Grouping on Multiple Columns

List the course number, the offering number, and the number of students enrolled. Only
include courses offered in spring 2006.

SELECT CourseNo, Enrollment.OfferNo, Count(*) AS NumStudents
FROM Offering, Enrollment
WHERE Offering.OfferNo = Enrollment.OfferNo

AND OffYear = 2006 AND OffTerm = ‘SPRING’
GROUP BY Enrollment.OfferNo, CourseNo

CourseNo OfferNo NumStudents
FIN480 7777 3
IS460 9876 7
IS480 5679 6

4.5.5 Traditional Set Operators in SQL
In SQL, you can directly use the traditional set operators with the UNION, INTERSECT,
and EXCEPT keywords. Some DBMSs including Microsoft Access do not support the
INTERSECT and EXCEPT keywords. As with relational algebra, the problem is always to
make sure that the tables are union compatible. In SQL, you can use a SELECT statement
to make tables compatible by listing only compatible columns. Examples 4.39 through 4.41
demonstrate set operations on column subsets of the Faculty and Student tables. The
columns have been renamed to avoid confusion.

man42207_ch04.qxd 07/25/2005 18:35 Page 111

112 Part Two Understanding Relational Databases

EXAMPLE 4.39 UNION Query

Show all faculty and students. Only show the common columns in the result.

SELECT FacSSN AS SSN, FacFirstName AS FirstName, FacLastName AS
LastName, FacCity AS City, FacState AS State

FROM Faculty
UNION

SELECT StdSSN AS SSN, StdFirstName AS FirstName, StdLastName AS
LastName, StdCity AS City, StdState AS State

FROM Student

EXAMPLE 4.40 INTERSECT Query
(Oracle) Show teaching assistants, faculty who are students. Only show the common columns in

the result.

SELECT FacSSN AS SSN, FacFirstName AS FirstName, FacLastName AS
LastName, FacCity AS City, FacState AS State

FROM Faculty
INTERSECT

SELECT StdSSN AS SSN, StdFirstName AS FirstName,
StdLastName AS LastName, StdCity AS City,
StdState AS State

FROM Student

SSN FirstName LastName City State
098765432 LEONARD VINCE SEATTLE WA
123456789 HOMER WELLS SEATTLE WA
124567890 BOB NORBERT BOTHELL WA
234567890 CANDY KENDALL TACOMA WA
345678901 WALLY KENDALL SEATTLE WA
456789012 JOE ESTRADA SEATTLE WA
543210987 VICTORIA EMMANUEL BOTHELL WA
567890123 MARIAH DODGE SEATTLE WA
654321098 LEONARD FIBON SEATTLE WA
678901234 TESS DODGE REDMOND WA
765432109 NICKI MACON BELLEVUE WA
789012345 ROBERTO MORALES SEATTLE WA
876543210 CRISTOPHER COLAN SEATTLE WA
890123456 LUKE BRAZZI SEATTLE WA
901234567 WILLIAM PILGRIM BOTHELL WA
987654321 JULIA MILLS SEATTLE WA

SSN FirstName LastName City State
876543210 CRISTOPHER COLAN SEATTLE WA

man42207_ch04.qxd 07/25/2005 18:35 Page 112

Chapter 4 Query Formulation with SQL 113

By default, duplicate rows are removed in the results of SQL statements with the
UNION, INTERSECT, and EXCEPT (MINUS) keywords. If you want to retain duplicate
rows, use the ALL keyword after the operator. For example, the UNION ALL keyword per-
forms a union operation but does not remove duplicate rows.

4.6 SQL Modification Statements
The modification statements support entering new rows (INSERT), changing columns in
one or more rows (UPDATE), and deleting one or more rows (DELETE). Although well
designed and powerful, they are not as widely used as the SELECT statement because data
entry forms are easier to use for end users.

The INSERT statement has two formats as demonstrated in Examples 4.42 and 4.43. In
the first format, one row at a time can be added. You specify values for each column with
the VALUES clause. You must format the constant values appropriate for each column.
Refer to the documentation of your DBMS for details about specifying constants, espe-
cially string and date constants. Specifying a null value for a column is also not standard
across DBMSs. In some systems, you simply omit the column name and the value. In other
systems, you use a particular symbol for a null value. Of course, you must be careful that
the table definition permits null values for the column of interest. Otherwise, the INSERT
statement will be rejected.

EXAMPLE 4.42 Single Row Insert

Insert a row into the Student table supplying values for all columns.

INSERT INTO Student
(StdSSN, StdFirstName, StdLastName, StdCity, StdState, StdZip, StdClass,

StdMajor, StdGPA)
VALUES (‘999999999’, ‘JOE’, ‘STUDENT’, ‘SEATAC’, ‘WA’, ‘98042-1121’, ‘FR’,

‘IS’, 0.0)

EXAMPLE 4.41 Difference Query
(Oracle) Show faculty who are not students (pure faculty). Only show the common columns in the

result. Oracle uses the MINUS keyword instead of the EXCEPT keyword used in SQL:2003.

SELECT FacSSN AS SSN, FacFirstName AS FirstName, FacLastName AS
LastName, FacCity AS City, FacState AS State

FROM Faculty
MINUS

SELECT StdSSN AS SSN, StdFirstName AS FirstName, StdLastName AS
LastName, StdCity AS City, StdState AS State

FROM Student

SSN FirstName LastName City State
098765432 LEONARD VINCE SEATTLE WA
543210987 VICTORIA EMMANUEL BOTHELL WA
654321098 LEONARD FIBON SEATTLE WA
765432109 NICKI MACON BELLEVUE WA
987654321 JULIA MILLS SEATTLE WA

man42207_ch04.qxd 07/25/2005 18:35 Page 113

114 Part Two Understanding Relational Databases

The second format of the INSERT statement supports addition of a set of records as
shown in Example 4.43. Using the SELECT statement inside the INSERT statement, you
can specify any derived set of rows. You can use the second format when you want to cre-
ate temporary tables for specialized processing.

The DELETE statement allows one or more rows to be removed, as shown in Exam-
ples 4.46 and 4.47. DELETE is subject to the rules on referenced rows. For example, a
Student row cannot be deleted if related Enrollment rows exist and the deletion action is
restrict.

EXAMPLE 4.43 Multiple Row Insert

Assume a new table ISStudent has been previously created. ISStudent has the same
columns as Student. This INSERT statement adds rows from Student into ISStudent.

INSERT INTO ISStudent
SELECT * FROM Student WHERE StdMajor = ‘IS’

EXAMPLE 4.44 Single Column Update

Give faculty members in the MS department a 10 percent raise. Four rows are updated.

UPDATE Faculty
SET FacSalary = FacSalary * 1.1
WHERE FacDept = ‘MS’

EXAMPLE 4.45 Update Multiple Columns

Change the major and class of Homer Wells. One row is updated.

UPDATE Student
SET StdMajor = ‘ACCT’, StdClass = ‘SO’
WHERE StdFirstName = ‘HOMER’

AND StdLastName = ‘WELLS’

EXAMPLE 4.46 Delete Selected Rows

Delete all IS majors who are seniors. Three rows are deleted.

DELETE FROM Student
WHERE StdMajor = ‘IS’ AND StdClass = ‘SR’

The UPDATE statement allows one or more rows to be changed, as shown in Exam-
ples 4.44 and 4.45. Any number of columns can be changed, although typically only one
column at a time is changed. When changing the primary key, update rules on referenced
rows may not allow the operation.

man42207_ch04.qxd 07/25/2005 18:35 Page 114

Sometimes it is useful for the condition inside the WHERE clause of the DELETE state-
ment to reference rows from other tables. Microsoft Access supports the join operator style
to combine tables as shown in Example 4.48. You cannot use the cross product style inside
a DELETE statement. Chapter 9 shows another way to reference other tables in a DELETE
statement that most DBMSs (including Access and Oracle) support.

Chapter 4 Query Formulation with SQL 115

EXAMPLE 4.47 Delete All Rows in a Table

Delete all rows in the ISStudent table. This example assumes that the ISStudent table has
been previously created.

DELETE FROM ISStudent

EXAMPLE 4.48 DELETE Statement Using the Join Operator Style
(Access) Delete offerings taught by Leonard Vince. Three Offering rows are deleted. In addition,

this statement deletes related rows in the Enrollment table because the ON DELETE clause
is set to CASCADE.

DELETE Offering.*
FROM Offering INNER JOIN Faculty

ON Offering.FacSSN = Faculty.FacSSN
WHERE FacFirstName = ‘LEONARD’

AND FacLastName = ‘VINCE’

Chapter 4 has introduced the fundamental statements of the industry standard Structured
Query Language (SQL). SQL has a wide scope covering database definition, manipulation,
and control. As a result of careful analysis and compromise, standards groups have
produced a well-designed language. SQL has become the common glue that binds the
database industry even though strict conformance to the standard is sometimes lacking. You
will no doubt continually encounter SQL throughout your career.

This chapter has focused on the most widely used parts of the SELECT statement from
the core part of the SQL:2003 standard. Numerous examples were shown to demonstrate
conditions on different data types, complex logical expressions, multiple table joins, sum-
marization of tables with GROUP BY and HAVING, sorting of tables, and the traditional
set operators. To facilitate hands-on usage of SQL, examples were shown for both Oracle
and Access with special attention to deviations from the SQL:2003 standard. This chapter
also briefly described the modification statements INSERT, UPDATE, and DELETE. These
statements are not as complex and widely used as SELECT.

This chapter has emphasized two problem-solving guidelines to help you formulate
queries. The conceptual evaluation process was presented to demonstrate derivation of
result rows for SELECT statements involving joins and grouping. You may find this evalu-
ation process helps in your initial learning of SELECT as well as provides insight on more
challenging problems. To help formulate queries, three questions were provided to guide
you. You should explicitly or implicitly answer these questions before writing a SELECT

Closing
Thoughts

man42207_ch04.qxd 07/25/2005 18:35 Page 115

statement to solve a problem. An understanding of both the critical questions and the
conceptual evaluation process will provide you a solid foundation for using relational
databases. Even with these formulation aids, you need to work many problems to learn
query formulation and the SELECT statement.

This chapter covered an important subset of the SELECT statement. Other parts of the
SELECT statement not covered in this chapter are outer joins, nested queries, and division
problems. Chapter 9 covers advanced query formulation and additional parts of the
SELECT statement so that you can hone your skills.

• SQL consists of statements for database definition (CREATE TABLE, ALTER TABLE,
etc.), database manipulation (SELECT, INSERT, UPDATE, and DELETE), and data-
base control (GRANT, REVOKE, etc.).

• The most recent SQL standard is known as SQL:2003. Major DBMS vendors support
most features in the core part of this standard although the lack of independent confor-
mance testing hinders strict conformance with the standard.

• SELECT is a complex statement. Chapter 4 covered SELECT statements with the
format:

SELECT <list of column and column expressions>
FROM <list of tables and join operations>
WHERE <list of row conditions connected by AND, OR, and NOT>
GROUP BY <list of columns>
HAVING <list of group conditions connected by AND, OR, and NOT>
ORDER BY <list of sorting specifications>

• Use the standard comparison operators to select rows:

SELECT StdFirstName, StdLastName, StdCity, StdGPA
FROM Student
WHERE StdGPA >= 3.7

• Inexact matching is done with the LIKE operator and pattern-matching characters:

Oracle and SQL:2003

SELECT CourseNo, CrsDesc
FROM Course
WHERE CourseNo LIKE ‘IS4%’

Access

SELECT CourseNo, CrsDesc
FROM Course
WHERE CourseNo LIKE ‘IS4*’

• Use BETWEEN . . . AND to compare dates:

Oracle

SELECT FacFirstName, FacLastName, FacHireDate
FROM Faculty
WHERE FacHireDate BETWEEN ‘1-Jan-1999’ AND ‘31-Dec-2000’

Review
Concepts

116 Part Two Understanding Relational Databases

man42207_ch04.qxd 07/25/2005 18:35 Page 116

Access:

SELECT FacFirstName, FacLastName, FacHireDate
FROM Faculty
WHERE FacHireDate BETWEEN #1/1/1999# AND #12/31/2000#

• Use expressions in the SELECT column list and WHERE clause:

Oracle

SELECT FacFirstName, FacLastName, FacCity, FacSalary*1.1 AS
InflatedSalary, FacHireDate

FROM Faculty
WHERE to_number(to_char(FacHireDate, ‘YYYY’)) > 1999

Access

SELECT FacFirstName, FacLastName, FacCity, FacSalary*1.1 AS
InflatedSalary, FacHireDate

FROM Faculty
WHERE year(FacHireDate) > 1999

• Test for null values:

SELECT OfferNo, CourseNo
FROM Offering
WHERE FacSSN IS NULL AND OffTerm = ‘SUMMER’

AND OffYear = 2006

• Create complex logical expressions with AND and OR:

SELECT OfferNo, CourseNo, FacSSN
FROM Offering
WHERE (OffTerm = ‘FALL’ AND OffYear = 2005)

OR (OffTerm = ‘WINTER’ AND OffYear = 2006)

• Sort results with the ORDER BY clause:

SELECT StdGPA, StdFirstName, StdLastName, StdCity, StdState
FROM Student
WHERE StdClass = ‘JR’
ORDER BY StdGPA

• Eliminate duplicates with the DISTINCT keyword:

SELECT DISTINCT FacCity, FacState
FROM Faculty

• Qualify column names in join queries:

SELECT Course.CourseNo, CrsDesc
FROM Offering, Course
WHERE OffTerm = ‘SPRING’ AND OffYear = 2006

AND Course.CourseNo = Offering.CourseNo

• Use the GROUP BY clause to summarize rows:

SELECT StdMajor, AVG(StdGPA) AS AvgGpa
FROM Student
GROUP BY StdMajor

Chapter 4 Query Formulation with SQL 117

man42207_ch04.qxd 07/25/2005 18:35 Page 117

• GROUP BY must precede HAVING:

SELECT StdMajor, AVG(StdGPA) AS AvgGpa
FROM Student
GROUP BY StdMajor
HAVING AVG(StdGPA) > 3.1

• Use WHERE to test row conditions and HAVING to test group conditions:

SELECT StdMajor, AVG(StdGPA) AS AvgGpa
FROM Student
WHERE StdClass IN (‘JR’, ‘SR’)
GROUP BY StdMajor
HAVING AVG(StdGPA) > 3.1

• Difference between COUNT(*) and COUNT(DISTINCT column)—not supported by
Access:

SELECT OffYear, COUNT(*) AS NumOfferings, COUNT(DISTINCT CourseNo)
AS NumCourses

FROM Offering
GROUP BY OffYear

• Conceptual evaluation process lessons: use small sample tables, GROUP BY occurs
after WHERE, only one grouping per SELECT statement.

• Query formulation questions: what tables?, how combined?, and row or group output?

• Joining more than two tables with the cross product and join operator styles (not sup-
ported by Oracle versions before 9i):

SELECT OfferNo, Offering.CourseNo, CrsUnits, OffDays, OffLocation,
OffTime

FROM Faculty, Course, Offering
WHERE Faculty.FacSSN = Offering.FacSSN

AND Offering.CourseNo = Course.CourseNo
AND OffYear = 2005 AND OffTerm = ‘FALL’
AND FacFirstName = ‘LEONARD’
AND FacLastName = ‘VINCE’

SELECT OfferNo, Offering.CourseNo, CrsUnits, OffDays, OffLocation, OffTime
FROM (Faculty INNER JOIN Offering

ON Faculty.FacSSN = Offering.FacSSN)
INNER JOIN Course

ON Offering.CourseNo = Course.CourseNo
WHERE OffYear = 2005 AND OffTerm = ‘FALL’

AND FacFirstName = ‘LEONARD’
AND FacLastName = ‘VINCE’

• Self-joins:

SELECT Subr.FacSSN, Subr.FacLastName, Subr.FacSalary,
Supr.FacSSN, Supr.FacLastName, Supr.FacSalary

FROM Faculty Subr, Faculty Supr
WHERE Subr.FacSupervisor = Supr.FacSSN

AND Subr.FacSalary > Supr.FacSalary

118 Part Two Understanding Relational Databases

man42207_ch04.qxd 07/25/2005 18:35 Page 118

Chapter 4 Query Formulation with SQL 119

• Combine joins and grouping:

SELECT CourseNo, Enrollment.OfferNo, Count(*) AS NumStudents
FROM Offering, Enrollment
WHERE Offering.OfferNo = Enrollment.OfferNo

AND OffYear = 2006 AND OffTerm = ‘SPRING’
GROUP BY Enrollment.OfferNo, CourseNo

• Traditional set operators and union compatibility:

SELECT FacSSN AS SSN, FacLastName AS LastName FacCity AS City,
FacState AS State

FROM Faculty
UNION

SELECT StdSSN AS SSN, StdLastName AS LastName, StdCity AS City,
StdState AS State

FROM Student

• Use the INSERT statement to add one or more rows:

INSERT INTO Student
(StdSSN, StdFirstName, StdLastName, StdCity, StdState, StdClass,
StdMajor, StdGPA)
VALUES (‘999999999’, ‘JOE’, ‘STUDENT’, ‘SEATAC’, ‘WA’, ‘FR’, ‘IS’, 0.0)

• Use the UPDATE statement to change columns in one or more rows:

UPDATE Faculty
SET FacSalary = FacSalary * 1.1
WHERE FacDept = ‘MS’

• Use the DELETE statement to remove one or more rows:

DELETE FROM Student
WHERE StdMajor = ‘IS’ AND StdClass = ‘SR’

• Use a join operation inside a DELETE statement (Access only):

DELETE Offering.*
FROM Offering INNER JOIN Faculty

ON Offering.FacSSN = Faculty.FacSSN
WHERE FacFirstName = ‘LEONARD’ AND FacLastName = ‘VINCE’

Questions 1. Why do some people pronounce SQL as “sequel”?

2. Why are the manipulation statements of SQL more widely used than the definition and control
statements?

3. How many levels do the SQL-92, SQL:1999, and SQL:2003 standards have?

4. Why is conformance testing important for the SQL standard?

5. In general, what is the state of conformance among major DBMS vendors for the SQL:2003
standard?

6. What is stand-alone SQL?

7. What is embedded SQL?

8. What is an expression in the context of database languages?

9. From the examples and the discussion in Chapter 4, what parts of the SELECT statement are not
supported by all DBMSs?

man42207_ch04.qxd 07/25/2005 18:35 Page 119

120 Part Two Understanding Relational Databases

10. Recite the rule about the GROUP BY and HAVING clauses.

11. Recite the rule about columns in SELECT when a GROUP BY clause is used.

12. How does a row condition differ from a group condition?

13. Why should row conditions be placed in the WHERE clause rather than the HAVING clause?

14. Why are most DBMSs not case sensitive when matching on string conditions?

15. Explain how working with sample tables can provide insight about difficult problems.

16. When working with date columns, why is it necessary to refer to documentation of your DBMS?

17. How do exact and inexact matching differ in SQL?

18. How do you know when the output of a query relates to groups of rows as opposed to individual
rows?

19. What tables belong in the FROM statement?

20. Explain the cross product style for join operations.

21. Explain the join operator style for join operations.

22. Discuss the pros and cons of the cross product versus the join operator styles. Do you need to
know both the cross product and the join operator styles?

23. What is a self-join? When is a self-join useful?

24. Provide a SELECT statement example in which a table is needed even though the table does not
provide conditions to test or columns to show in the result.

25. What is the requirement when using the traditional set operators in a SELECT statement?

26. When combining joins and grouping, what conceptually occurs first, joins or grouping?

27. How many times does grouping occur in a SELECT statement?

28. Why is the SELECT statement more widely used than the modification statements INSERT,
UPDATE, and DELETE?

29. Provide an example of an INSERT statement that can insert multiple rows.

30. What is the relationship between the DELETE statement and the rules about deleting referenced
rows?

31. What is the relationship between the UPDATE statement and the rules about updating the pri-
mary key of referenced rows?

32. How does COUNT(*) differ from COUNT(ColumnName)?

33. How does COUNT(DISTINCT ColumnName) differ from COUNT(ColumnName)?

34. When mixing AND and OR in a logical expression, why is it a good idea to use parentheses?

35. What are the most important lessons about the conceptual evaluation process?

36. What are the mental steps involved in query formulation?

37. What kind of join queries often have duplicates in the result?

38. What mental steps in the query formulation process are addressed by the conceptual evaluation
process and critical questions?

Problems The problems use the tables of the Order Entry database, an extension of the order entry tables used
in the problems of Chapter 3. Table 4.P1 lists the meaning of each table and Figure 4.P1 shows the
Access Relationship window. After the relationship diagram, row listings and Oracle CREATE
TABLE statements are shown for each table. In addition to the other documentation, here are some
notes about the Order Entry Database:

• The primary key of the OrdLine table is a combination of OrdNo and ProdNo.

• The Employee table has a self-referencing (unary) relationship to itself through the foreign key,
SupEmpNo, the employee number of the supervising employee. In the relationship diagram, the
table Employee_1 is a representation of the self-referencing relationship, not a real table.

• The relationship from OrderTbl to OrdLine cascades deletions and primary key updates of refer-
enced rows. All other relationships restrict deletions and primary key updates of referenced rows
if related rows exist.

man42207_ch04.qxd 07/25/2005 18:35 Page 120

Chapter 4 Query Formulation with SQL 121

TABLE 4.P1
Tables of the Order
Entry Database

Table Name Description

Customer List of customers who have placed orders
OrderTbl Contains the heading part of an order; Internet

orders do not have an employee
Employee List of employees who can take orders
OrdLine Contains the detail part of an order
Product List of products that may be ordered

FIGURE 4.P1
Relationship Window
for the Order Entry
Database

CustNo CustFirstName CustLastName CustStreet CustCity CustState CustZip CustBal

C0954327 Sheri Gordon 336 Hill St. Littleton CO 80129-5543 $230.00

C1010398 Jim Glussman 1432 E. Ravenna Denver CO 80111-0033 $200.00

C2388597 Beth Taylor 2396 Rafter Rd Seattle WA 98103-1121 $500.00

C3340959 Betty Wise 4334 153rd NW Seattle WA 98178-3311 $200.00

C3499503 Bob Mann 1190 Lorraine Cir. Monroe WA 98013-1095 $0.00

C8543321 Ron Thompson 789 122nd St. Renton WA 98666-1289 $85.00

C8574932 Wally Jones 411 Webber Ave. Seattle WA 98105-1093 $1,500.00

C8654390 Candy Kendall 456 Pine St. Seattle WA 98105-3345 $50.00

C9128574 Jerry Wyatt 16212 123rd Ct. Denver CO 80222-0022 $100.00

C9403348 Mike Boren 642 Crest Ave. Englewood CO 80113-5431 $0.00

C9432910 Larry Styles 9825 S. Crest Lane Bellevue WA 98104-2211 $250.00

C9543029 Sharon Johnson 1223 Meyer Way Fife WA 98222-1123 $856.00

C9549302 Todd Hayes 1400 NW 88th Lynnwood WA 98036-2244 $0.00

C9857432 Homer Wells 123 Main St. Seattle WA 98105-4322 $500.00

C9865874 Mary Hill 206 McCaffrey Littleton CO 80129-5543 $150.00

C9943201 Harry Sanders 1280 S. Hill Rd. Fife WA 98222-2258 $1,000.00

Customer

man42207_ch04.qxd 07/25/2005 18:35 Page 121

122 Part Two Understanding Relational Databases

OrderTbl
OrdNo OrdDate CustNo EmpNo OrdName OrdStreet OrdCity OrdState OrdZip

O1116324 01/23/2007 C0954327 E8544399 Sheri Gordon 336 Hill St. Littleton CO 80129-5543

O1231231 01/23/2007 C9432910 E9954302 Larry Styles 9825 S. Crest Lane Bellevue WA 98104-2211

O1241518 02/10/2007 C9549302 Todd Hayes 1400 NW 88th Lynnwood WA 98036-2244

O1455122 01/09/2007 C8574932 E9345771 Wally Jones 411 Webber Ave. Seattle WA 98105-1093

O1579999 01/05/2007 C9543029 E8544399 Tom Johnson 1632 Ocean Dr. Des Moines WA 98222-1123

O1615141 01/23/2007 C8654390 E8544399 Candy Kendall 456 Pine St. Seattle WA 98105-3345

O1656777 02/11/2007 C8543321 Ron Thompson 789 122nd St. Renton WA 98666-1289

O2233457 01/12/2007 C2388597 E9884325 Beth Taylor 2396 Rafter Rd Seattle WA 98103-1121

O2334661 01/14/2007 C0954327 E1329594 Mrs. Ruth Gordon 233 S. 166th Seattle WA 98011

O3252629 01/23/2007 C9403348 E9954302 Mike Boren 642 Crest Ave. Englewood CO 80113-5431

O3331222 01/13/2007 C1010398 Jim Glussman 1432 E. Ravenna Denver CO 80111-0033

O3377543 01/15/2007 C9128574 E8843211 Jerry Wyatt 16212 123rd Ct. Denver CO 80222-0022

O4714645 01/11/2007 C2388597 E1329594 Beth Taylor 2396 Rafter Rd Seattle WA 98103-1121

O5511365 01/22/2007 C3340959 E9884325 Betty White 4334 153rd NW Seattle WA 98178-3311

O6565656 01/20/2007 C9865874 E8843211 Mr. Jack Sibley 166 E. 344th Renton WA 98006-5543

O7847172 01/23/2007 C9943201 Harry Sanders 1280 S. Hill Rd. Fife WA 98222-2258

O7959898 02/19/2007 C8543321 E8544399 Ron Thompson 789 122nd St. Renton WA 98666-1289

O7989497 01/16/2007 C3499503 E9345771 Bob Mann 1190 Lorraine Cir. Monroe WA 98013-1095

O8979495 01/23/2007 C9865874 HelenSibley 206 McCaffrey Renton WA 98006-5543

O9919699 02/11/2007 C9857432 E9954302 Homer Wells 123 Main St. Seattle WA 98105-4322

EmpNo EmpFirstName EmpLastName EmpPhone EmpEMail SupEmpNo EmpCommRate
E1329594 Landi Santos (303) 789-1234 LSantos@bigco.com E8843211 0.02
E8544399 Joe Jenkins (303) 221-9875 JJenkins@bigco.com E8843211 0.02
E8843211 Amy Tang (303) 556-4321 ATang@bigco.com E9884325 0.04
E9345771 Colin White (303) 221-4453 CWhite@bigco.com E9884325 0.04
E9884325 Thomas Johnson (303) 556-9987 TJohnson@bigco.com 0.05
E9954302 Mary Hill (303) 556-9871 MHill@bigco.com E8843211 0.02
E9973110 Theresa Beck (720) 320-2234 TBeck@bigco.com E9884325

Employee

ProdNo ProdName ProdMfg ProdQOH ProdPrice ProdNextShipDate
P0036566 17 inch Color Monitor ColorMeg, Inc. 12 $169.00 2/20/2007
P0036577 19 inch Color Monitor ColorMeg, Inc. 10 $319.00 2/20/2007
P1114590 R3000 Color Laser Printer Connex 5 $699.00 1/22/2007
P1412138 10 Foot Printer Cable Ethlite 100 $12.00
P1445671 8-Outlet Surge Protector Intersafe 33 $14.99
P1556678 CVP Ink Jet Color Printer Connex 8 $99.00 1/22/2007
P3455443 Color Ink Jet Cartridge Connex 24 $38.00 1/22/2007
P4200344 36-Bit Color Scanner UV Components 16 $199.99 1/29/2007
P6677900 Black Ink Jet Cartridge Connex 44 $25.69
P9995676 Battery Back-up System Cybercx 12 $89.00 2/1/2007

Product

man42207_ch04.qxd 07/25/2005 18:35 Page 122

Chapter 4 Query Formulation with SQL 123

OrdNo ProdNo Qty
O1116324 P1445671 1
O1231231 P0036566 1
O1231231 P1445671 1
O1241518 P0036577 1
O1455122 P4200344 1
O1579999 P1556678 1
O1579999 P6677900 1
O1579999 P9995676 1
O1615141 P0036566 1
O1615141 P1445671 1
O1615141 P4200344 1
O1656777 P1445671 1
O1656777 P1556678 1
O2233457 P0036577 1
O2233457 P1445671 1
O2334661 P0036566 1
O2334661 P1412138 1
O2334661 P1556678 1
O3252629 P4200344 1
O3252629 P9995676 1
O3331222 P1412138 1
O3331222 P1556678 1
O3331222 P3455443 1
O3377543 P1445671 1
O3377543 P9995676 1
O4714645 P0036566 1
O4714645 P9995676 1
O5511365 P1412138 1
O5511365 P1445671 1
O5511365 P1556678 1
O5511365 P3455443 1
O5511365 P6677900 1
O6565656 P0036566 10
O7847172 P1556678 1
O7847172 P6677900 1
O7959898 P1412138 5
O7959898 P1556678 5
O7959898 P3455443 5
O7959898 P6677900 5
O7989497 P1114590 2
O7989497 P1412138 2
O7989497 P1445671 3
O8979495 P1114590 1
O8979495 P1412138 1
O8979495 P1445671 1
O9919699 P0036577 1
O9919699 P1114590 1
O9919699 P4200344 1

OrdLine

man42207_ch04.qxd 07/25/2005 18:35 Page 123

124 Part Two Understanding Relational Databases

CREATE TABLE Customer
(CustNo CHAR(8),

CustFirstName VARCHAR2(20) CONSTRAINT CustFirstNameRequired NOT NULL,
CustLastName VARCHAR2(30) CONSTRAINT CustLastNameRequired NOT NULL,
CustStreet VARCHAR2(50),
CustCity VARCHAR2(30),
CustState CHAR(2),
CustZip CHAR(10),
CustBal DECIMAL(12,2) DEFAULT 0,

CONSTRAINT PKCustomer PRIMARY KEY (CustNo))

CREATE TABLE OrderTbl
(OrdNo CHAR(8),

OrdDate DATE CONSTRAINT OrdDateRequired NOT NULL,
CustNo CHAR(8) CONSTRAINT CustNoRequired NOT NULL,
EmpNo CHAR(8),
OrdName VARCHAR2(50),
OrdStreet VARCHAR2(50),
OrdCity VARCHAR2(30),
OrdState CHAR(2),
OrdZip CHAR(10),

CONSTRAINT PKOrderTbl PRIMARY KEY (OrdNo) ,
CONSTRAINT FKCustNo FOREIGN KEY (CustNo) REFERENCES Customer,
CONSTRAINT FKEmpNo FOREIGN KEY (EmpNo) REFERENCES Employee)

CREATE TABLE OrdLine
(OrdNo CHAR(8),

ProdNo CHAR(8),
Qty INTEGER DEFAULT 1,

CONSTRAINT PKOrdLine PRIMARY KEY (OrdNo, ProdNo),
CONSTRAINT FKOrdNo FOREIGN KEY (OrdNo) REFERENCES OrderTbl

ON DELETE CASCADE,
CONSTRAINT FKProdNo FOREIGN KEY (ProdNo) REFERENCES Product)

CREATE TABLE Employee
(EmpNo CHAR(8),

EmpFirstName VARCHAR2(20) CONSTRAINT EmpFirstNameRequired NOT NULL,
EmpLastName VARCHAR2(30) CONSTRAINT EmpLastNameRequired NOT NULL,
EmpPhone CHAR(15),
EmpEMail VARCHAR(50) CONSTRAINT EmpEMailRequired NOT NULL,
SupEmpNo CHAR(8),
EmpCommRate DECIMAL(3,3),

CONSTRAINT PKEmployee PRIMARY KEY (EmpNo),
CONSTRAINT UNIQUEEMail UNIQUE(EmpEMail),
CONSTRAINT FKSupEmpNo FOREIGN KEY (SupEmpNo) REFERENCES Employee)

man42207_ch04.qxd 07/25/2005 18:35 Page 124

Chapter 4 Query Formulation with SQL 125

Part 1: SELECT
1. List the customer number, the name (first and last), and the balance of customers.

2. List the customer number, the name (first and last), and the balance of customers who reside in
Colorado (CustState is CO).

3. List all columns of the Product table for products costing more than $50. Order the result by
product manufacturer (ProdMfg) and product name.

4. List the order number, order date, and shipping name (OrdName) of orders sent to addresses in
Denver or Englewood.

5. List the customer number, the name (first and last), the city, and the balance of customers who
reside in Denver with a balance greater than $150 or who reside in Seattle with a balance greater
than $300.

6. List the cities and states where orders have been placed. Remove duplicates from the result.

7. List all columns of the OrderTbl table for Internet orders placed in January 2007. An Internet
order does not have an associated employee.

8. List all columns of the OrderTbl table for phone orders placed in February 2007. A phone order
has an associated employee.

9. List all columns of the Product table that contain the words Ink Jet in the product name.

10. List the order number, order date, and customer number of orders placed after January 23, 2007,
shipped to Washington recipients.

11. List the order number, order date, customer number, and customer name (first and last) of orders
placed in January 2007 sent to Colorado recipients.

12. List the order number, order date, customer number, and customer name (first and last) of orders
placed in January 2007 placed by Colorado customers (CustState) but sent to Washington recip-
ients (OrdState).

13. List the customer number, name (first and last), and balance of Washington customers who have
placed one or more orders in February 2007. Remove duplicate rows from the result.

14. List the order number, order date, customer number, customer name (first and last), employee
number, and employee name (first and last) of January 2007 orders placed by Colorado
customers.

15. List the employee number, name (first and last), and phone of employees who have taken orders
in January 2007 from customers with balances greater than $300. Remove duplicate rows in the
result.

16. List the product number, name, and price of products ordered by customer number C0954327 in
January 2007. Remove duplicate products in the result.

17. List the customer number, name (first and last), order number, order date, employee number,
employee name (first and last), product number, product name, and order cost (OrdLine.Qty *
ProdPrice) for products ordered on January 23, 2007, in which the order cost exceeds $150.

18. List the average balance of customers by city. Include only customers residing in Washington
state (WA).

CREATE TABLE Product
(ProdNo CHAR(8),

ProdName VARCHAR2(50) CONSTRAINT ProdNameRequired NOT NULL,
ProdMfg VARCHAR2(20) CONSTRAINT ProdMfgRequired NOT NULL,
ProdQOH INTEGER DEFAULT 0,
ProdPrice DECIMAL(12,2) DEFAULT 0,
ProdNextShipDate DATE,

CONSTRAINT PKProduct PRIMARY KEY (ProdNo))

man42207_ch04.qxd 07/25/2005 18:35 Page 125

126 Part Two Understanding Relational Databases

19. List the average balance of customers by city and short zip code (the first five digits of the zip
code). Include only customers residing in Washington State (WA). In Microsoft Access, the
expression left(CustZip, 5) returns the first five digits of the zip code. In Oracle, the expression
substr(CustZip, 1, 5) returns the first five digits.

20. List the average balance and number of customers by city. Only include customers residing in
Washington State (WA). Eliminate cities in the result with less than two customers.

21. List the number of unique short zip codes and average customer balance by city. Only include
customers residing in Washington State (WA). Eliminate cities in the result in which the average
balance is less than $100. In Microsoft Access, the expression left(CustZip, 5) returns the first
five digits of the zip code. In Oracle, the expression substr(CustZip, 1, 5) returns the first five
digits. (Note: this problem requires two SELECT statements in Access SQL or a nested query in
the FROM clause—see Chapter 9).

22. List the order number and total amount for orders placed on January 23, 2007. The total amount
of an order is the sum of the quantity times the product price of each product on the order.

23. List the order number, order date, customer name (first and last), and total amount for orders
placed on January 23, 2007. The total amount of an order is the sum of the quantity times the
product price of each product on the order.

24. List the customer number, customer name (first and last), the sum of the quantity of products or-
dered, and the total order amount (sum of the product price times the quantity) for orders placed
in January 2007. Only include products in which the product name contains the string Ink Jet or
Laser. Only include customers who have ordered more than two Ink Jet or Laser products in
January 2007.

25. List the product number, product name, sum of the quantity of products ordered, and total order
amount (sum of the product price times the quantity) for orders placed in January 2007. Only
include products that have more than five products ordered in January 2007. Sort the result in de-
scending order of the total amount.

26. List the order number, the order date, the customer number, the customer name (first and last),
the customer state, and the shipping state (OrdState) in which the customer state differs from the
shipping state.

27. List the employee number, the employee name (first and last), the commission rate, the super-
vising employee name (first and last), and the commission rate of the supervisor.

28. List the employee number, the employee name (first and last), and total amount of commissions
on orders taken in January 2007. The amount of a commission is the sum of the dollar amount of
products ordered times the commission rate of the employee.

29. List the union of customers and order recipients. Include the name, street, city, state, and zip in
the result. You need to use the concatenation function to combine the first and last names so that
they can be compared to the order recipient name. In Access SQL, the & symbol is the concate-
nation function. In Oracle SQL, the || symbol is the concatenation function.

30. List the first and last name of customers who have the same name (first and last) as an employee.

31. List the employee number and the name (first and last) of second-level subordinates (subordi-
nates of subordinates) of the employee named Thomas Johnson.

32. List the employee number and the name (first and last) of the first- and second-level subordinates
of the employee named Thomas Johnson. To distinguish the level of subordinates, include a com-
puted column with the subordinate level (1 or 2).

33. Using a mix of the join operator and the cross product styles, list the names (first and last) of cus-
tomers who have placed orders taken by Amy Tang. Remove duplicate rows in the result. Note
that the join operator style is supported only in Oracle versions 9i and beyond.

34. Using the join operator style, list the product name and the price of all products ordered by Beth
Taylor in January 2007. Remove duplicate rows from the result.

35. For Colorado customers, compute the number of orders placed in January 2007. The
result should include the customer number, last name, and number of orders placed in January
2007.

man42207_ch04.qxd 07/25/2005 18:35 Page 126

Chapter 4 Query Formulation with SQL 127

36. For Colorado customers, compute the number of orders placed in January 2007 in which the or-
ders contain products made by Connex. The result should include the customer number, last
name, and number of orders placed in January 2007.

37. For each employee with a commission rate of less than 0.04, compute the number of orders taken
in January 2007. The result should include the employee number, employee last name, and num-
ber of orders taken.

38. For each employee with a commission rate greater than 0.03, compute the total commission
earned from orders taken in January 2007. The total commission earned is the total order amount
times the commission rate. The result should include the employee number, employee last name,
and total commission earned.

39. List the total amount of all orders by month in 2007. The result should include the month and the
total amount of all orders in each month. The total amount of an individual order is the sum of
the quantity times the product price of each product in the order. In Access, the month number
can be extracted by the Month function with a date as the argument. You can display the month
name using the MonthName function applied to a month number. In Oracle, the function
to_char(OrdDate, ‘M’) extracts the month number from OrdDate. Using “MON” instead of
“M” extracts the three-digit month abbreviation instead of the month number.

40. List the total commission earned by each employee in each month of 2007. The result should
include the month, employee number, employee last name, and the total commission amount
earned in that month. The amount of a commission for an individual employee is the sum of
the dollar amount of products ordered times the commission rate of the employee. Sort the re-
sult by the month in ascending month number and the total commission amount in descending
order. In Access, the month number can be extracted by the Month function with a date as the
argument. You can display the month name using the MonthName function applied to a month
number. In Oracle, the function to_char(OrdDate, ‘M’) extracts the month number from
OrdDate. Using “MON” instead of “M” extracts the three-digit month abbreviation instead of
the month number.

Part 2: INSERT, UPDATE, and DELETE statements
1. Insert yourself as a new row in the Customer table.

2. Insert your roommate, best friend, or significant other as a new row in the Employee table.

3. Insert a new OrderTbl row with you as the customer, the person from problem 2 (Part 2) as the
employee, and your choice of values for the other columns of the OrderTbl table.

4. Insert two rows in the OrdLine table corresponding to the OrderTbl row inserted in problem 3
(Part 2).

5. Increase the price by 10 percent of products containing the words Ink Jet.

6. Change the address (street, city, and zip) of the new row inserted in problem 1 (part 2).

7. Identify an order that respects the rules about deleting referenced rows to delete the rows inserted
in problems 1 to 4 (Part 2).

8. Delete the new row(s) of the table listed first in the order for problem 7 (Part 2).

9. Delete the new row(s) of the table listed second in the order for problem 7 (Part 2).

10. Delete the new row(s) of the remaining tables listed in the order for problem 7 (Part 2).

There are many SQL books varying by emphasis on basic coverage, advanced coverage, and prod-
uct specific coverage. A good summary of SQL books can be found at www.ocelot.ca/books.htm.
The DBAZine site (www.dbazine.com) and the DevX.com Database Zone (www.devx.com) have
plenty of practical advice about query formulation and SQL. For product-specific SQL advice, the
Advisor.com site (www.advisor.com) features technical journals for Microsoft SQL Server and
Microsoft Access. Oracle documentation can be found at the Oracle Technet site (www.oracle.
com/technology).

References
for Further
Study

man42207_ch04.qxd 07/25/2005 18:35 Page 127

128 Part Two Understanding Relational Databases

SQL:2003 Syntax Summary
This appendix summarizes SQL:2003 syntax for the SELECT, INSERT, UPDATE, and
DELETE statements presented in this chapter. The syntax is limited to the simplified state-
ment structure presented in this chapter. More complex syntax is introduced in Part 5 of
this textbook. The conventions used in the syntax notation are identical to those used at the
end of Chapter 3.

Simplified SELECT Syntax

<Select-Statement>: { <Simple-Select> | <Set-Select> }
[ORDER BY <Sort-Specification>*]

<Simple-Select>:
SELECT [DISTINCT] <Column-Specification>*

FROM <Table-Specification>*
[WHERE <Row-Condition>]
[GROUP BY ColumnName*]
[HAVING <Group-Condition>]

<Column-Specification>: { <Column-List> | <Column-Item> }

<Column-List>: { * | TableName.* }
— * is a literal here not a syntax symbol

<Column-Item>: <Column-Expression> [AS ColumnName]

<Column-Expression>:
{ <Scalar-Expression> | <Aggregate-Expression> }

<Scalar-Expression>:
{ <Scalar-Item> |
<Scalar-Item> <Arith-Operator> <Scalar-Item> }

<Scalar-Item>:
{ [TableName.]ColumnName |

Constant |
FunctionName [(Argument*)] |
<Scalar-Expression> |
(<Scalar-Expression>) }

<Arith-Operator>: { + | – | * | / }
— * and + are literals here not syntax symbols

<Aggregate-Expression>:
{ SUM ({<Scalar-Expression> | DISTINCT ColumnName }) |

AVG ({<Scalar-Expression> | DISTINCT ColumnName }) |

Appendix 4.A

man42207_ch04.qxd 07/25/2005 18:35 Page 128

Chapter 4 Query Formulation with SQL 129

MIN (<Scalar-Expression>) |
MAX (<Scalar-Expression>) |
COUNT ([DISTINCT] ColumnName) |
COUNT (*) } — * is a literal symbol here, not a special syntax symbol

<Table-Specification>: { <Simple-Table> |
<Join-Operation> }

<Simple-Table>: TableName [[AS] AliasName]

<Join-Operation>:
{ <Simple-Table> [INNER] JOIN <Simple-Table>

ON <Join-Condition> |
{ <Simple-Table> | <Join-Operation> } [INNER] JOIN
{ <Simple-Table> | <Join-Operation> }
ON <Join-Condition> |

(<Join-Operation>) }

<Join-Condition>: { <Simple-Join-Condition> |
<Compound-Join-Condition> }

<Simple-Join-Condition>:
<Scalar-Expression> <Comparison-Operator>
<Scalar-Expression>

<Compound-Join-Condition>:
{ NOT <Join-Condition> |

<Join-Condition> AND <Join-Condition> |
<Join-Condition> OR <Join-Condition> |
(<Join-Condition>)

<Comparison-Operator>: { = | < | > | <= | >= | <> }

<Row-Condition>:
{ <Simple-Condition> | <Compound-Condition> }

<Simple-Condition>:
{ <Scalar-Expression> <Comparison-Operator>

<Scalar-Experssion> |
<Scalar-Expression> [NOT] IN (Constant*) |
<Scalar-Expression> BETWEEN <Scalar-Expression> AND
<Scalar-Expression> |

<Scalar-Expression> IS [NOT] NULL |
ColumnName [NOT] LIKE StringPattern }

<Compound-Condition>:
{ NOT <Row-Condition> |
<Row-Condition> AND <Row-Condition> |
<Row-Condition> OR <Row-Condition> |
(<Row-Condition>) }

man42207_ch04.qxd 07/25/2005 18:35 Page 129

<Group-Condition>:
{ <Simple-Group-Condition> | <Compound-Group-Condition> }

<Simple-Group-Condition>:— permits both scalar and aggregate expressions
{ <Column-Expression> ComparisonOperator

< Column-Experssion> |
<Column-Expression> [NOT] IN (Constant*) |
<Column-Expression> BETWEEN <Column-Expression> AND
<Column-Expression> |

<Column-Expression> IS [NOT] NULL |
ColumnName [NOT] LIKE StringPattern }

<Compound-Group-Condition>:
{ NOT <Group-Condition> |
<Group-Condition> AND <Group-Condition> |
<Group-Condition> OR <Group-Condition> |
(<Group-Condition>) }

<Sort-Specification>:
{ ColumnName | ColumnNumber } [{ ASC | DESC }]

<Set-Select>:
{ <Simple-Select> | <Set-Select> } <Set-Operator>
{ <Simple-Select> | <Set-Select> }

<Set-Operator>: { UNION | INTERSECT | EXCEPT } [ALL]

INSERT Syntax

INSERT INTO TableName (ColumnName*)
VALUES (Constant*)

INSERT INTO TableName [(ColumnName*)]
<Simple-Select>

UPDATE Syntax

UPDATE TableName
SET <Column-Assignment>*
[WHERE <Row-Condition>]

<Column-Assignment>: ColumnName = <Scalar-Expression>

130 Part Two Understanding Relational Databases

man42207_ch04.qxd 07/25/2005 18:35 Page 130

DELETE Syntax

DELETE FROM TableName
[WHERE <Row-Condition>]

DELETE TableName.* — * is a literal symbol here not a special syntax symbol
FROM <Join-Operation>
[WHERE <Row-Condition>]

Syntax Differences among Major DBMS Products
Table 4B.1 summarizes syntax differences among Microsoft Access (1997 to 2003 ver-
sions), Oracle 8i to 10g, Microsoft SQL Server, and IBM’s DB2. The differences involve
the parts of the SELECT statement presented in the chapter.

Appendix 4.B

Chapter 4 Query Formulation with SQL 131

TABLE 4B.1 SELECT Syntax Differences among Major DBMS Products

Access
Element\Product Oracle 8i, 9i, 10g 97/2000/2002/2003 MS SQL Server 2000 DB2

Pattern-matching %, _ *, ? although the % %, _ %, _
characters and _ characters can be

used in the 2002/2003 versions
by setting the query mode

Case sensitivity in Yes No Yes Yes
string matching
Date constants Surround in single Surround in # symbols Surround in single Surround in single

quotation marks quotation marks quotation marks
Inequality symbol < > < > != < >
Join operator style No in 8i, Yes in Yes Yes Yes

9i, 10g
Difference operations MINUS keyword Not supported Not supported EXCEPT keyword

man42207_ch04.qxd 07/25/2005 18:35 Page 131

man42207_ch04.qxd 07/25/2005 18:35 Page 132

