PAGE
6
10/16/2005
Answers to Chapter 8 Problems

Answers to Chapter 8 Problems

1.

Row Size = 100 bytes

Number of rows = 100,000

Primary key size = 6 bytes

Physical record size = 4096 bytes

Pointer size = 4 bytes

1.1 rows/PR = floor(physical record size / row size) = floor(40.96) = 40

1.2 PR in seq. file = ceil(number of rows / (rows/PR) = ceil(100,000/40) = 2500

1.3 On the average, one half the file must be accessed (1250 PRs)

1.4 On the average, one half the file must be accessed (1250 PRs)

1.5 In an unordered sequential file, all physical records must be accessed (2500). In an ordered sequential file, one half the physical records must be accessed on the average (1250).

1.6 PR in hash file = ceil (PR in seq. File / 0.7) = ceil (2500/0.7) = 3572

1.7 Branching Factor = floor (PR size / record size) = floor(4096 / 10) = 409

1.8 Max height = ceil (logd (NR+1)/2) = ceil (log205 50,000.5) = 3

1.9 Maximum number of PRs = 3 (maximum height)

2.

2.1 Five access plans are shown below. Students may also specify multiple index access using a combination of indexes on the CustBalance, CustCity, and CustState columns.

2.2 About 50% of the total customers (7240) should have a balance > 5000 using the uniform value assumption.

2.3 To use the histogram, use linear interpolation in the last cell: 1200 * (10000 - 5000) / (10000 - 4501) = 1091.

3.

3.1 There are two possible join orders: ((order, vehicle), customer) and ((customer, vehicle), order)

3.2 Here is an access plan.

4.

4.1 For customer, use a clustered index on custno and a non clustered index on custname. The clustered index on custno supports joins between customer and order. The non clustered index on custname supports equality conditions using custname.

4.2 For order, choose a clustered index on ordno and a non clustered index on custno. Query 9 has a highly selective condition on customer that makes the non clustered index on custno appear attractive.

4.3 For product, use a clustered index on prodno.

4.4 For ordline, use a clustered index on custno to support joins in queries 8 and 9.

5. A combination index on custstate and custcity can be used for conditions on custstate alone and on Boolean AND connecting conditions on custstate and custcity. The combined index cannot be used for conditions on custcity alone.

6. There are four possible join orders: (((customer, order), ordline), product), (((order, ordline), product), customer), (((order, ordline), customer), product), and (((product, ordline), order), customer).

7. The following are possible uses of denormalization and derived data for the financial database tables.

· The tables asset, stock, and bond can be combined because they represent a generalization hierarchy.

· The tables Asset and PriceHistory can be combined. The PriceHistory table can be replaced by a collection of X fields for the X most recent prices. An additional X fields can be added for the dates of the prices.

· A field for the most valuation date can be added to the holding table. This field is derived from the PriceHistory table.

· The field NetQty is derived data. For a given asset held by a customer, it summarizes the purchase and sales recorded in the trade table.

8. The condition on TrdType should be moved from the HAVING to the WHERE clause. The Type II nested query in the SQL statement should be removed and replaced by a separate query. Most SQL compilers will not find a good optimization plan for the Type II nested query. Repeated execution of the Type II nested query could result in very poor performance. The SQL statement can be rewritten as follows where TEMP1 and TEMP2 are names of temporary queries.

TEMP1:

SELECT customer.custno, custname, SUM(trdqty * trdprice) AS SumTradeAmt

 FROM customer, trade

 WHERE customer.custno = trade.custno AND trdtype = "buy"

 AND trddate BETWEEN '1-Oct-2006' AND '31-Oct-2006'
 GROUP BY customer.custno, custname

TEMP2:

SELECT custno, 1.25 * SUM(trdqty * trdprice) AS SumTradeAmt FROM trade

 WHERE trddate BETWEEN '1-Sep-2006' AND '30-Sep-2006'

 AND trdtype = "buy"

 GROUP BY custno

SELECT TEMP1.custno, custname, TEMP1.SumTradeAmt

FROM TEMP1, TEMP2

WHERE TEMP1.SumTradeAmt > TEMP2.SumTradeAmt

 AND TEMP1.custno = TEMP2.custno

9. The condition on the Trade table should be moved to the Customer table as shown below. The single quotes should be removed around the constant (10001) because CustNo is an integer column.
SELECT Customer.Custno, CustName,

 TrdQty * TrdPrice, TrdDate, SecName

 FROM Customer, Trade, Asset

 WHERE Customer.CustNo = Trade.CustNo

 AND Trade.AssetNo = Asset.AssetNo

 AND TrdType = 'BUY'

 AND TrdDate BETWEEN '1-Oct-2006' AND '31-Oct-2006'
 AND Customer.CustNo = 10001
10. The indexes match as indicated below:

· Matches index on TrdDate: TrdDate BETWEEN #10/1/2006# AND #10/31/2006#

· Matches index on CustPhone: CustPhone LIKE '(303)%'

· Does not match index on TrdType: TrdType <> 'BUY'

· Matches bitmap index on BondRating if the DBMS will perform a union of the resulting bitmaps: BondRating IN ('AAA', 'AA', 'A')

· Index on <CustState, CustCity, CustZip>:

· Matches first two columns: CustState = 'CO' AND CustCity = 'Denver'

· Matches first column only: CustState IN ('CO', 'CA') AND CustCity LIKE '%er'

· Matches first column only: CustState IN ('CO', 'CA') AND CustZip LIKE '8%'

· Matches all three columns: CustState = 'CO' AND CustCity IN ('Denver', 'Boulder') AND CustZip LIKE '8%'

11. The bitmap indexes are shown below. For easy references, the sample tables also are shown.

Customer Table

	RowId
	CustNo
	…
	CustState

	1
	113344
	
	CO

	2
	123789
	
	CA

	3
	145789
	
	UT

	4
	111245
	
	NM

	5
	931034
	
	CO

	6
	998245
	
	CA

	7
	287341
	
	UT

	8
	230432
	
	CO

	9
	321588
	
	CA

	10
	443356
	
	CA

	11
	559211
	
	UT

	12
	220688
	
	NM

Bitmap Column Index on CustState
	CustState
	Bitmap

	CA
	010001001100

	CO
	100010010000

	NM
	000100000001

	UT
	001000100010

Trade Table

	RowId
	TradeNo
	…
	CustNo

	1
	1111
	
	113344

	2
	1234
	
	123789

	3
	1345
	
	123789

	4
	1599
	
	145789

	5
	1807
	
	145789

	6
	1944
	
	931034

	7
	2100
	
	111245

	8
	2200
	
	287341

	9
	2301
	
	287341

	10
	2487
	
	230432

	11
	2500
	
	443356

	12
	2600
	
	559211

	13
	2703
	
	220688

	14
	2801
	
	220688

	15
	2944
	
	220688

	16
	3100
	
	230432

	17
	3200
	
	230432

	18
	3258
	
	321588

	19
	3302
	
	321588

	20
	3901
	
	559211

	21
	4001
	
	998245

	22
	4205
	
	998245

	23
	4301
	
	931034

	24
	4455
	
	443356

Bitmap Join Index on CustNo to Trade
	CustNo
	Bitmap

	113344
	10000000000000000000000

	123789
	01100000000000000000000

	145789
	00011000000000000000000

	111245
	00000010000000000000000

	931034
	00000100000000000000000

	998245
	00000000000000000000110

	287341
	00000001100000000000000

	230432
	00000000010000011000000

	321588
	00000000000000000110000

	443356
	00000000001000000000001

	559211
	00000000000100000001000

	220688
	00000000000011100000000

Bitmap Join Index on CustState to Trade
	CustState
	Bitmap

	CA
	01100000001000000110111

	CO
	10000100010000011000000

	NM
	00000010000011100000000

	UT
	00011001100100000001000

12. The index choices and selection rules are shown below.
· Customer: CustNo (clustering, Rule 1), CustZip (Rule 4), CustPhone (Rule 4); The indexes on CustZip and CustPhone would be especially useful if the DBMS can combine multiple indexes when accessing a table. The DBMS also should be able to accurately estimate the fraction of rows for the joint condition on CustZip and CustPhone.
· Trade: TradeNo (clustering, Rule 1), TrdStatus (bitmap column, Rule 8), TrdDate (Rule 4); The indexes on TrdStatus and TrdDate would be especially useful if the DBMS can combine multiple indexes when accessing a table. The DBMS also should be able to accurately estimate the fraction of rows for the joint condition on TrdStatus and TrdDate. TrdStatus might not be a good choice for a bitmap column index because it has a reasonable level of updates.
· Holding: CustNo (clustering, Rule 2), AssetNo (Rule 2)
· Asset: AssetNo (clustering, Rule 1), AssetName (Rule 4)
· PriceHistory: AssetNo (clustering, Rule 2)
13. Optimizer hints may be a good idea for statements 12 and 13. Both statements involve joint conditions that an optimization component may not accurately estimate. In problem 12, a hint could force the optimization component to use multiple index access on CustZip and CustPhone. In problem 13, a hint could force the optimization component to use multiple index access on TrdStatus and TrdDate. On statement 9, a hint may be useful to force the optimization component to combine indexes on CustNo and TrdDate when accessing the Trade table. The CustNo index would be useful when joining with the Customer table. The combination of a customer number and a small date range usually would result in few trades.
14. Student responses may vary for tools for managing access plans. For Oracle 10g, students should describe the EXPLAIN PLAN statement, plan stability, and optimizer hints. Information about these tools can be found in the online Oracle documentation in the following books: Database Performance Tuning Guide, Oracle Database 2 Day DBA, and SQL Reference.
15. Student responses may vary for database design tools. For Oracle 10g, students should describe the SQL Tuning Advisor, SQL Tuning Sets, the SQL Trace Facility, the Automatic Workload Repository, and the SQL Access Advisor. Information about these tools can be found in the online Oracle documentation in the following books: Database Performance Tuning Guide and the Oracle Database 2 Day DBA course.
16. Student responses may vary for tools for the query optimization component. For Oracle 10g, students should describe the kinds of access plans (single table access and join algorithms), optimizer statistics, and tradeoffs in using indexes. Information about these topics can be found in the online Oracle documentation in the following books: Database Performance Tuning Guide and the Oracle Database Concepts.
17. Here is a description of the state of the Btree after each insertion:
· Keys 115 is added to the left most node between 100 and 122 as shown below.

[image: image1.wmf] 135 155

100 115 122

143 146

187 192 195

· Key 142 is added to the middle node before 143 as shown below.

[image: image2.wmf] 135 155

100 115 122

142 143 146

187 192 195

· Key 111 is added to the left most node between 100 and 115.

[image: image3.wmf] 135 155

100 111 115 122

142 143 146

187 192 195

· Key 134 causes a split of the left-most node as shown below.

[image: image4.wmf] 115 135 155

100 111

142 143 146

187 192 195

122 134

· Key 170 is added to the right-most node as shown below.

[image: image5.wmf] 115 135 155

100 111

142 143 146

170 187 192 195

122 134

· Key 175 causes a split of the right-most node as shown below.

[image: image6.wmf] 115 135 155 187

100 111

142 143 146

192 195

122 134

170 175

· Key 127 is added to the second node as shown below.

[image: image7.wmf] 115 135 155 187

100 111

142 143 146

192 195

122 127 134

170 175

· Key 137 is added to the middle node as shown below.

[image: image8.wmf] 115 135 155 187

100 111

137 142 143 146

192 195

122 127 134

170 175

· Key 108 is added to the left-most nods as shown below.

[image: image9.wmf] 115 135 155 187

100 108 111

137 142 143 146

192 195

122 127 134

170 175

· Key 140 causes two node splits resulting in a new level in the Btree.

[image: image10.wmf] 115 135

100 108 111

 143 146

192 195

122 127 134

170 175

 142

 155 187

 137 140

18. Here is a description of the state of the Btree after each deletion:
· Key 111 is removed from the first node as shown below.

[image: image11.wmf] 115 135

100 108

 143 146

192 195

122 127 134

170 175

 142

 155 187

 137 140

· Key 108 causes a redistribution of keys among the left-most leaf nodes and the parent node as shown below.

[image: image12.wmf] 122 135

100 115

 137 140

192 195

127 134

170 175

 142

 155 187

 143 146

· Key 137 causes a node concatenation at two levels resulting in a tree that loses a level.

[image: image13.wmf] 122 142 155 187

100 115

 143 146

192 195

127 134 135 140

170 175

_1175888161.vsd
 135 155

100 115 122

142 143 146

187 192 195

_1175889488.vsd
 115 135 155 187

100 111

142 143 146

192 195

122 134

170 175

_1175889896.vsd
 115 135 155 187

100 108 111

137 142 143 146

192 195

122 127 134

170 175

_1175951806.vsd
 115 135

100 108 111

 143 146

192 195

122 127 134

170 175

 142

 155 187

 137 140

_1175951958.vsd
 122 135

100 115

 137 140

192 195

127 134

170 175

 142

 155 187

 143 146

_1175952400.vsd
 122 142 155 187

100 115

 143 146

192 195

127 134 135 140

170 175

_1175951833.vsd
 115 135

100 108

 143 146

192 195

122 127 134

170 175

 142

 155 187

 137 140

_1175889897.vsd
 115 135 155 187

100 111

137 142 143 146

192 195

122 127 134

170 175

_1175889804.vsd
 115 135 155 187

100 111

142 143 146

192 195

122 127 134

170 175

_1175888706.vsd
 115 135 155

100 111

142 143 146

187 192 195

122 134

_1175889171.vsd
 115 135 155

100 111

142 143 146

170 187 192 195

122 134

_1175888237.vsd
 135 155

100 111 115 122

142 143 146

187 192 195

_942764371.vsd

_1175888100.vsd
 135 155

100 115 122

143 146

187 192 195

_942762026.vsd

