page
2
10/17/2005
Answers to Chapter 16 Problems

Answers to Chapter 16 Problems

Part 1: Automobile Insurance Problems
1.
Dimensions: ItemNo, Insured automobile characteristics such as make, model, and year, insured party location characteristics such as the city, the state, and the zip code, insured party characteristics such as the age (derived from the date of birth column, IPDOB) and the risk category, AgentNo and other agent characteristics such as the agent type, the department, and the region, and characteristic about the policy date such as the beginning, the ending, and the effective dates

Measures: premium for the covered item, coverage limit for the covered item, the policy premium is a derived measure (sum of the premium of individual policy items)
2.
Snowflake schema for the policy data cube

Dimension tables:

Table: Item

	ItemNo
	ItemDesc
	ItemMinCoverage
	ItemMaxCoverage

Table: Agent

	AgentNo
	AgentName
	AgentPhone
	AgentDept
	AgentType
	AgentRegion

Table: InsuredParty

	IPSSN
	IPDrivLicNo
	IPState
	IPName
	IPPhone
	IPAddr
	IPDOB
	IPCity
	IPZip
	IPRiskCat

Table: InsuredAuto

	IAVIN
	IALicPlateNo
	IAState
	IAMake
	IAModel
	IAYear
	IAAirBags
	IADriverSSN
	PolNo

Table: Policy

	PolNo
	PolBegDate
	PolEndDate
	IPSSN
	AgentNo
	PolPremium
	PolEffDate

To reduce the number of dimension tables, the InsuredAuto, Policy, and InsuredParty tables may be combined into one large table. The large table is not in 3NF but this should not be a problem because the dimension tables will have a low frequency of updatess. In addition, there are typically only one or two automobiles and insured parties per policy so there will not be too much redundancy.

Fact table:

Table: PolicyItem

	IAVIN
	ItemNo
	PICoverage
	PIPremium

To support a data cube at the policy level (instead of policy item level), the Policy table would be the fact table and the InsuredParty and Agent tables would be the dimension tables.
3.
Dimensions: Insured automobile characteristics such as make, model, and year, insured party location characteristics such as city, state, and zip code, insured party characteristics such as age and risk category, claimant location characteristics such as state and zip code, third party location characteristics such as the state and zip code, and characteristic about the policy date such as the beginning and ending dates

Measures: claim estimate and claim amount

4.
Star schema for claims data cube:

Dimension tables:

Table: Claimant

	ClmtNo
	ClmtName
	ClmtPhone
	ClmtInsurComp
	ClmtPolNo
	ClmtAddr
	ClmtCity
	ClmtState
	ClmtZip

Table: ThirdParty

	TPSSN
	TPName
	TPPhone
	TPDesc
	TPAddr
	TPCity
	TPState
	TPZip

Table: InsuredParty

	IPSSN
	IPDrivLicNo
	IPState
	IPName
	IPPhone
	IPAddr
	IPDOB
	IPCity
	IPZip
	IPRiskCat

Table: InsuredAuto

	IAVIN
	IALicPlateNo
	IAState
	IAMake
	IAModel
	IAYear
	IAAirBags
	IADriverSSN
	PolNo

Table: Policy

	PolNo
	PolBegDate
	PolEndDate
	IPSSN
	AgentNo
	PolPremium
	PolEffDate

To reduce the number of dimension tables, the InsuredAuto, Policy, and InsuredParty tables may be combined into one large table. The large table is not in 3NF but this should not be a problem because the dimension tables are not updated. In addition, there is typically only one or two automobiles and insured parties per policy so there will not be too much redundancy.

Fact table:

Table: Claim

	ClaimNo
	ClaimAmount
	ClaimEstimate
	ClaimDesc
	ClaimDate
	IAVIN
	ClmtNo
	TPSSN

5. To provide analysis flexibility, the data warehouse should contain the same level of detail as the production tables. To reduce the number of tables and the number of columns, the data warehouse tables may use denormalization on the dimension tables and omit columns that are not needed for policy analysis. The data warehouse tables should support many data cubes that use summarized data as well as data mining applications that use detailed transaction data.

6. Hierarchies for the dimensions of the policy data cube are: year within make within model for insured auto; zip code within state and city within state for insured party; department within region for agent, a time hierarchy for the beginning, the ending, and the effective dates for the policy, and age categories for the insured party’s age.

7. To provide analysis flexibility, the data warehouse should contain the same level of detail as the production tables. To reduce the number of tables and the number of columns, the data warehouse tables may use denormalization on the dimension tables and omit columns that are not needed for claims analysis. The data warehouse tables should support many data cubes that use summarized data as well as data mining applications that use detailed transaction data.

8. Hierarchies for the dimensions of the claims data cube are: year within make within model for insured auto; zip code within state and city within state for the insured party, the claimant, and the third party; a time hierarchy (such as year, month, and date) for the beginning, the ending, and the effective dates for the policy, a time hierarchy for the claim date, and age categories for the insured party’s age.

9. Slicing the policy data cube by the agent produces a data cube with the dimensions of item, insured automobile characteristics, insured party location, insured party characteristics, and policy date dimensions. The specific agent number replaces the agent dimension.

10. The number of dimensions of the data cube remains the same from problem 9. However, the insured party location dimension is reduced to the subset of zip codes within the specified state.

11. Use a slice-summarize operation to summarize the insured auto dimension. The slice operation should compute the average of the policy amount over the insured auto dimension. The insured auto dimension is replaced with the average policy amount.

12. The levels in the agent dimension are the agent number, phone, department, type, and region. Each of these levels resides in a separate hierarchy with agent number. If department and region are related, these levels can be combined in one dimension. The phone number can be parsed to provide a hierarchy of country code, area code, and prefix.
13. The levels in the insured party dimension are the drivers license number, social security number, state, city, address, phone, risk category, date of birth, and phone. For each dimension hierarchy, the most detailed level is either the drivers license number or the social security number. The hierarchies are (state, city, address), (state, zip, address), birth date, risk category, and phone. The date of birth can have a hierarchy consisting of year, month, and day. The phone number can be parsed to yield a hierarchy of country code, area code, and prefix.
14. The levels in the insured auto dimension are the vehicle identification number, license plate number, state, make, model, and year. For each dimension hierarchy, the most detailed level is either the license plate number or the vehicle identification number. The hierarchies are state and (make, model, year).
15. A time dimension table is not required. The time dimension can be represented using a single field for each date field rather than a foreign key to a time table. For time hierarchies, there are functions to extract the year, month, day, and other attributes from a date field.
16. The columns involving an insured party’s location (IPState, IPAddr, IPCity, and IPZip) typically change together. The driver’s license number would change periodically depending on the state. The driver’s license would also typically change if the state changes. Non portable phone numbers typically change at the same time with the location columns. Portable phone numbers should change less frequently and not in correlation with the location columns. The risk category would be determined by age, gender, driving record, and location. The date of birth column is stable.
17. The make, model, year, and air bag columns are static as these columns are historical. The license plate number and state columns may change at the same time. The license plate number may also change periodically depending on the state. In many states, license plates are stable as new stickers are issued each year rather than new plates.
18. Here are type II and III history representations.

[image: image1.emf]InsuredParty

IPSSN

VersionNo

IPDrivLicNo

IPState

IPName

IPPhone

IPAddr

IPDOB

IPCity

IPZip

IPRiskCat

IPRiskBegEffDate

IPRiskEndEffDate

InsuredParty

IPSSN

IPDrivLicNo

IPState

IPName

IPPhone

IPAddr

IPDOB

IPCity

IPZip

IPRiskCurr

IPRiskCurrBegEffDate

IPRiskCurrEndEffDate

IPRiskPrev

IPRiskPrevBegEffDate

IPRiskPrevEndEffDate

Type II Representation

Type III Representation

19. Here is a limited history for the combination of IPState, IPCity, and IPZip columns.

[image: image2.emf]InsuredParty

IPSSN

IPDrivLicNo

IPName

IPPhone

IPAddr

IPDOB

IPCityCurr

IPStateCurr

IPZipCurr

IPLocCurrBegEffDate

IPLocCurrEndEffDate

IPCityPrev

IPStatePrev

IPZipPrev

IPLocPrevBegEffDate

IPLocPrevEndEffDate

Type III Representation

20. Here is an unlimited history for the combination of IPState, IPCity, and IPZip columns. There is a new version number whenever any location column changes.

[image: image3.emf]InsuredParty

IPSSN

VersionNo

IPDrivLicNo

IPState

IPName

IPPhone

IPAddr

IPDOB

IPCity

IPZip

IPRiskCat

IPLocBegEffDate

IPLocEndEffDate

Type II Representation

Part 2: Store Sales Problems
In the solutions, Oracle table names are used. To prevent naming conflicts with other tables, the prefix “SS” has been prepended to all table names. The student section of the Online Learning Center contains Oracle CREATE TABLE statements and sample data for the tables of the store sales schema.
1.

SELECT StoreState, TimeYear, ItemBrand,

 SUM(SalesDollar) as TotalDollarSales

FROM SSStore, SSTimeDim, SSSales, SSItem
WHERE SSStore.StoreId = SSSales.StoreId

 AND SSTimeDim.TimeNo = SSSales.TimeNo

 AND SSItem.ItemId = SSSales.ItemId
 AND TimeYear IN (2005, 2006)

GROUP BY CUBE(StoreState, TimeYear, ItemBrand);
2.

SELECT TimeYear, TimeQuarter, TimeMonth,

 SUM(SalesDollar) as TotalDollarSales

FROM SSTimeDim, SSSales

WHERE SSTimeDim.TimeNo = SSSales.TimeNo
 AND TimeYear IN (2005, 2006)

GROUP BY ROLLUP(TimeYear, TimeQuarter, TimeMonth);
3.

SELECT StoreState, TimeYear, TimeMonth,

 SUM(SalesDollar) as TotalDollarSales

FROM SSStore, SSTimeDim, SSSales

WHERE SSStore.StoreId = SSSales.StoreId

 AND SSTimeDim.TimeNo = SSSales.TimeNo

 AND TimeYear IN (2005, 2006)

GROUP BY StoreState, ROLLUP(TimeYear, TimeMonth);
4.

SELECT CustState, CustZip, TimeYear, TimeQuarter,

 SUM(SalesDollar) as TotalDollarSales

FROM SSCustomer, SSTimeDim, SSSales

WHERE SSCustomer.CustId = SSSales.CustId

 AND SSTimeDim.TimeNo = SSSales.TimeNo

 AND TimeYear IN (2005, 2006)

GROUP BY ROLLUP(CustState,CustZip), ROLLUP(TimeYear, TimeQuarter);
5. Both UNION and UNION ALL give the same result. In the statements, 0 is used for the null value for TimeYear and '' is used for ItemBrand and StoreState.
SELECT StoreState, TimeYear, ItemBrand,
 SUM(SalesDollar) as TotalDollarSales

FROM SSStore, SSTimeDim, SSSales, SSItem
WHERE SSStore.StoreId = SSSales.StoreId

 AND SSTimeDim.TimeNo = SSSales.TimeNo

 AND SSItem.ItemId = SSSales.ItemId
 AND TimeYear IN (2005, 2006)

GROUP BY StoreState, TimeYear, ItemBrand

UNION
SELECT StoreState, TimeYear, '', SUM(SalesDollar) as TotalDollarSales

FROM SSStore, SSTimeDim, SSSales, SSItem
WHERE SSStore.StoreId = SSSales.StoreId

 AND SSTimeDim.TimeNo = SSSales.TimeNo

 AND SSItem.ItemId = SSSales.ItemId
 AND TimeYear IN (2005, 2006)

GROUP BY StoreState, TimeYear
UNION
SELECT StoreState, 0, ItemBrand, SUM(SalesDollar) as TotalDollarSales

FROM SSStore, SSTimeDim, SSSales, SSItem
WHERE SSStore.StoreId = SSSales.StoreId

 AND SSTimeDim.TimeNo = SSSales.TimeNo

 AND SSItem.ItemId = SSSales.ItemId
 AND TimeYear IN (2005, 2006)

GROUP BY StoreState, ItemBrand
UNION ALL

SELECT '', TimeYear, ItemBrand, SUM(SalesDollar) as TotalDollarSales

FROM SSStore, SSTimeDim, SSSales, SSItem
WHERE SSStore.StoreId = SSSales.StoreId

 AND SSTimeDim.TimeNo = SSSales.TimeNo

 AND SSItem.ItemId = SSSales.ItemId
 AND TimeYear IN (2005, 2006)

GROUP BY TimeYear, ItemBrand
UNION
SELECT StoreState, 0, '', SUM(SalesDollar) as TotalDollarSales

FROM SSStore, SSTimeDim, SSSales, SSItem
WHERE SSStore.StoreId = SSSales.StoreId

 AND SSTimeDim.TimeNo = SSSales.TimeNo

 AND SSItem.ItemId = SSSales.ItemId
 AND TimeYear IN (2005, 2006)

GROUP BY StoreState

UNION
SELECT '', TimeYear, '', SUM(SalesDollar) as TotalDollarSales

FROM SSStore, SSTimeDim, SSSales, SSItem
WHERE SSStore.StoreId = SSSales.StoreId

 AND SSTimeDim.TimeNo = SSSales.TimeNo

 AND SSItem.ItemId = SSSales.ItemId
 AND TimeYear IN (2005, 2006)

GROUP BY TimeYear
UNION
SELECT '', 0, ItemBrand, sum(SalesDollar) as TotalDollarSales

FROM SSStore, SSTimeDim, SSSales, SSItem
WHERE SSStore.StoreId = SSSales.StoreId

 AND SSTimeDim.TimeNo = SSSales.TimeNo

 AND SSItem.ItemId = SSSales.ItemId
 AND TimeYear IN (2005, 2006)

GROUP BY ItemBrand
UNION ALL

SELECT '', 0, ''s, SUM(SalesDollar) as TotalDollarSales

FROM SSStore, SSTimeDim, SSSales, SSItem
WHERE SSStore.StoreId = SSSales.StoreId

 AND SSTimeDim.TimeNo = SSSales.TimeNo

 AND SSItem.ItemId = SSSales.ItemId
 AND TimeYear IN (2005, 2006);
6. Both UNION and UNION ALL give the same result. In the statements, 0 is used for the default value for all fields.

SELECT TimeYear, TimeQuarter, TimeMonth,

 SUM(SalesDollar) as TotalDollarSales

FROM SSTimeDim, SSSales

WHERE SSTimeDim.TimeNo = SSSales.TimeNo

 AND TimeYear IN (2005, 2006)

GROUP BY TimeYear, TimeQuarter, TimeMonth
UNION

SELECT TimeYear, TimeQuarter, 0,

 SUM(SalesDollar) as TotalDollarSales

FROM SSTimeDim, SSSales

WHERE SSTimeDim.TimeNo = SSSales.TimeNo

 AND TimeYear IN (2005, 2006)

GROUP BY TimeYear, TimeQuarter

UNION

SELECT TimeYear, 0, 0,

 SUM(SalesDollar) as TotalDollarSales

FROM SSTimeDim, SSSales

WHERE SSTimeDim.TimeNo = SSSales.TimeNo

 AND TimeYear IN (2005, 2006)

GROUP BY TimeYear
UNION

SELECT 0, 0, 0,

 SUM(SalesDollar) as TotalDollarSales

FROM SSTimeDim, SSSales

WHERE SSTimeDim.TimeNo = SSSales.TimeNo

 AND TimeYear IN (2005, 2006);

7. Both UNION and UNION ALL give the same result. In the statements, 0 is used for the default value for all fields.

SELECT StoreState, TimeYear, TimeMonth,

 SUM(SalesDollar) as TotalDollarSales

FROM SSStore, SSTimeDim, SSSales

WHERE SSStore.StoreId = SSSales.StoreId

 AND SSTimeDim.TimeNo = SSSales.TimeNo

 AND TimeYear IN (2005, 2006)

GROUP BY StoreState, TimeYear, TimeMonth
UNION

SELECT StoreState, TimeYear, 0,

 SUM(SalesDollar) as TotalDollarSales

FROM SSStore, SSTimeDim, SSSales

WHERE SSStore.StoreId = SSSales.StoreId

 AND SSTimeDim.TimeNo = SSSales.TimeNo

 AND TimeYear IN (2005, 2006)

GROUP BY StoreState, TimeYear
UNION

SELECT StoreState, 0, 0,

 SUM(SalesDollar) as TotalDollarSales

FROM SSStore, SSTimeDim, SSSales

WHERE SSStore.StoreId = SSSales.StoreId

 AND SSTimeDim.TimeNo = SSSales.TimeNo

 AND TimeYear IN (2005, 2006)

GROUP BY StoreState;
8. The GROUPING SETS operator requires enumeration of all grouping combinations.

SELECT StoreState, TimeYear, TimeMonth,

 SUM(SalesDollar) as TotalDollarSales

FROM SSStore, SSTimeDim, SSSales

WHERE SSStore.StoreId = SSSales.StoreId

 AND SSTimeDim.TimeNo = SSSales.TimeNo

 AND TimeYear IN (2005, 2006)

GROUP BY GROUPING SETS(StoreState, (StoreState, TimeYear),

 (StoreState, TimeYear, TimeMonth));
9. The GROUPING SETS operator requires enumeration of all grouping combinations.

SELECT CustState, CustZip, TimeYear, TimeQuarter,

 SUM(SalesDollar) as TotalDollarSales

FROM SSCustomer, SSTimeDim, SSSales

WHERE SSCustomer.CustId = SSSales.CustId

 AND SSTimeDim.TimeNo = SSSales.TimeNo

 AND TimeYear IN (2005, 2006)

GROUP BY GROUPING SETS((CustState,CustZip,TimeYear,TimeQuarter),

 (CustState,CustZip,TimeYear), (CustState,CustZip),

 (CustState,TimeYear,TimeQuarter),(CustState,TimeYear), CustState,

 (TimeYear, TimeQuarter), TimeYear, ())
10. The calculations are formulas are shown below:

· Calculate the maximum number of rows for a query with a rollup of year (2), quarter (4), and month (12). Separate the calculation to show the number of rows appearing in the normal GROUP BY result and the number of subtotal rows generated by the rollup operator.. The normal GROUP BY result contains a maximum of 96 (2 × 4 × 12) rows. The maximum subtotals rows are 8 (2 × 4) rows for the combination of year and quarter, 2 rows for the years, and 1 row for the grand total. Thus there are a maximum of 11 subtotal rows.
· Calculate the maximum number of rows in a query with a rollup of year (2), quarter (4), month (12), and weeks per month (4). Separate the calculation to show the number of rows appearing in the normal GROUP BY result and the number of subtotal rows generated by the rollup operator. The normal GROUP BY result contains a maximum of 384 (2 × 4 × 12 × 4) rows. The maximum subtotals rows are 96 (2 × 4 × 12) rows for the combination of year, quarter, and month, 8 rows for the combination of year and quarter, 2 rows for the years, and 1 row for the grand total. Thus there are a maximum of 107 subtotal rows.
· Calculate the maximum number of rows in a query with a cube of state (5), brands (10), and year (2). Separate the calculation to show the number of rows appearing in the normal GROUP BY result and the number of subtotal rows generated by the cube operator. The normal GROUP BY result contains a maximum of 100 (5 × 10 × 2) rows. The maximum subtotals rows are calculated using the formula M + N + P + M*N + M*P + N*P + 1. Thus there are a maximum of 98 (17 + 5 × 10 + 5 × 2 + 10 × 2 + 1) subtotal rows.
· The number of SELECT statements in a query without GROUP BY operators is 16 (24). There is one SELECT statement for the normal GROUP BY results and 15 SELECT statements to generate the subtotal rows. The number of subtotal groups does not depend on the unique values in each column.
11. Oracle CREATE DIMENSION statement for the customer dimension

-- Students will need permission to create/drop materialized views.

DROP DIMENSION Customer_D;

CREATE DIMENSION Customer_D
 LEVEL CustId IS SSCustomer.CustId

 LEVEL City IS SSCustomer.CustCity

 LEVEL Zip IS SSCustomer.CustZip

 LEVEL State IS SSCustomer.CustState

 LEVEL Nation IS SSCustomer.CustNation

HIERARCHY city_rollup (

 CustId CHILD OF
 City CHILD OF
 State CHILD OF

 Nation)

HIERARCHY zip_rollup (

 CustId CHILD OF
 Zip CHILD OF
 State CHILD OF

 Nation);

12. Oracle CREATE DIMENSION statement for the time dimension

DROP DIMENSION Time_D;

CREATE DIMENSION Time_D
 LEVEL TimeNo IS SSTimeDim.TimeNo

 LEVEL Day IS SSTimeDim.TimeDay

 LEVEL Mon IS SSTimeDim.TimeMonth

 LEVEL Qtr IS SSTimeDim.TimeQuarter

 LEVEL Year IS SSTimeDim.TimeYear

 LEVEL DayofWeek IS SSTimeDim.TimeDayofWeek

 LEVEL FiscalYear IS SSTimeDim.TimeFiscalYear

HIERARCHY date_rollup (

 timeno CHILD OF
 Day CHILD OF
 Mon CHILD OF

 Qtr CHILD OF
 Year)

HIERARCHY date_day_rollup (

 TimeNo CHILD OF
 DayofWeek)

HIERARCHY date_fy_rollup (

 TimeNo CHILD OF
 FiscalYear);
13. Oracle CREATE MATERIALIZED VIEW statement for 2005 store sales.
-- Students will need permission to create/drop materialized views.

DROP MATERIALIZED VIEW SalesByStoreTimeMV2005;

CREATE MATERIALIZED VIEW SalesByStoreTimeMV2005
BUILD IMMEDIATE

REFRESH COMPLETE ON DEMAND AS

SELECT StoreId, SSTimeDim.TimeNo, ItemId,

 SUM(SalesDollar) as TotalDollarSales,
 SUM(SalesCost) AS TotalCostSales

FROM SSTimeDim, SSSales

WHERE SSTimeDim.TimeNo = SSSales.TimeNo
 AND TimeYear = 2005
GROUP BY StoreId, SSTimeDim.TimeNo, ItemId;
14. Oracle CREATE MATERIALIZED VIEW statement for 2006 store sales.

DROP MATERIALIZED VIEW SalesByStoreTimeMV2006;

CREATE MATERIALIZED VIEW SalesByStoreTimeMV2006
BUILD IMMEDIATE

REFRESH COMPLETE ON DEMAND AS

SELECT StoreId, SSTimeDim.TimeNo, ItemId,

 SUM(SalesDollar) as TotalDollarSales,
 SUM(SalesCost) AS TotalCostSales

FROM SSTimeDim, SSSales

WHERE SSTimeDim.TimeNo = SSSales.TimeNo
 AND TimeYear = 2006
GROUP BY StoreId, SSTimeDim.TimeNo, ItemId;
15. Rewrite of query 1 (except CUBE operator) using the materialized views in problems 10 and 11.

SELECT StoreState, TimeYear, ItemBrand,
 SUM(TotalDollarSales) as TotalSales

FROM SSStore, SSTimeDim, SSItem, SalesByStoreTimeMV2005 SS0

WHERE SSStore.StoreId = SS0.StoreId

 AND SSTimeDim.TimeNo = SS0.TimeNo

 AND SSItem.ItemId = SS0.ItemId
GROUP BY StoreState, TimeYear, ItemBrand
UNION

SELECT StoreState, TimeYear, ItemBrand,
 SUM(TotalDollarSales) as TotalSales

FROM SSStore, SSTimeDim, SSItem, SalesByStoreTimeMV2006 SS1

WHERE SSStore.StoreId = SS1.StoreId

 AND SSTimeDim.TimeNo = SS1.TimeNo

 AND SSItem.ItemId = SS1.ItemId
GROUP BY StoreState, TimeYear, ItemBrand;
16. Rewrite of query 1 (including the CUBE operator) using the materialized views in problems 10 and 11. The CUBE must be done after the UNION. Either a view can be used or a nested query in the FROM clause.
-- Solution 1 using a view

DROP VIEW Exercise16View;

CREATE VIEW Exercise16View AS
SELECT StoreState, TimeYear, ItemBrand,
 SUM(TotalDollarSales) as TotalSales1
FROM SSStore, SSTimeDim, SSItem, SalesByStoreTimeMV2005 SS0

WHERE SSStore.StoreId = SS0.StoreId

 AND SSTimeDim.TimeNo = SS0.TimeNo

 AND SSItem.ItemId = SS0.ItemId
GROUP BY StoreState, TimeYear, ItemBrand
UNION

SELECT StoreState, TimeYear, ItemBrand,
 SUM(TotalDollarSales) as TotalSales1
FROM SSStore, SSTimeDim, SSItem, SalesByStoreTimeMV2006 SS1

WHERE SSStore.StoreId = SS1.StoreId

 AND SSTimeDim.TimeNo = SS1.TimeNo

 AND SSItem.ItemId = SS1.ItemId
GROUP BY StoreState, TimeYear, ItemBrand;
SELECT StoreState, TimeYear, ItemBrand, SUM(TotalSales1) as TotalSales

FROM Exercise16View

GROUP BY CUBE(StoreState, TimeYear, ItemBrand);
-- Solution 2 using a nested query in the FROM clause

SELECT StoreState, TimeYear, ItemBrand,
 SUM(TotalSales1) as TotalSales

FROM
 (SELECT StoreState, TimeYear, ItemBrand,
 SUM(TotalDollarSales) as TotalSales1
 FROM SSStore, SSTimeDim, SSItem, SalesByStoreTimeMV2005 SS0

 WHERE SSStore.StoreId = SS0.StoreId

 AND SSTimeDim.TimeNo = SS0.TimeNo

 AND SSItem.ItemId = SS0.ItemId
 GROUP BY StoreState, TimeYear, ItemBrand
 UNION

 SELECT StoreState, TimeYear, ItemBrand,
 SUM(TotalDollarSales) as TotalSales1
 FROM SSStore, SSTimeDim, SSItem, SalesByStoreTimeMV2006 SS1

 WHERE SSStore.StoreId = SS1.StoreId

 AND SSTimeDim.TimeNo = SS1.TimeNo

 AND SSItem.ItemId = SS1.ItemId
 GROUP BY StoreState, TimeYear, ItemBrand)
 GROUP BY CUBE(StoreState, TimeYear, ItemBrand);
17. Rewrite of query 3 (except ROLLUP operator) using the materialized views in problems 10 and 11.

SELECT StoreState, TimeYear, TimeMonth,
 SUM(TotalDollarSales) as TotalSales

FROM SSStore, SSTimeDim, SalesByStoreTimeMV2005 SS0

WHERE SSStore.StoreId = SS0.StoreId

 AND SSTimeDim.TimeNo = SS0.TimeNo

GROUP BY StoreState, TimeYear, TimeMonth
UNION

SELECT StoreState, TimeYear, TimeMonth,
 SUM(TotalDollarSales) as TotalSales

FROM SSStore, SSTimeDim, SalesByStoreTimeMV2006 SS1

WHERE SSStore.StoreId = SS1.StoreId

 AND SSTimeDim.TimeNo = SS1.TimeNo

GROUP BY StoreState, TimeYear, TimeMonth;
18. Rewrite of query 3 (including the ROLLUP operator) using the materialized views in problems 10 and 11. The ROLLUP must be done after the UNION. Either a view can be used or a nested query in the FROM clause.

-- Solution 1 using a view

DROP VIEW Exercise18View;

CREATE VIEW Exercise18View AS
SELECT StoreState, TimeYear, TimeMonth,
 SUM(TotalDollarSales) as TotalSales1
FROM SSStore, SSTimeDim, SalesByStoreTimeMV2005 SS0

WHERE SSStore.StoreId = SS0.StoreId

 AND SSTimeDim.TimeNo = SS0.TimeNo

GROUP BY StoreState, TimeYear, TimeMonth
UNION

SELECT StoreState, TimeYear, TimeMonth,
 SUM(TotalDollarSales) as TotalSales1
FROM SSStore, SSTimeDim, SalesByStoreTimeMV2006 SS1

WHERE SSStore.StoreId = SS1.StoreId

 AND SSTimeDim.TimeNo = SS1.TimeNo

GROUP BY StoreState, TimeYear, TimeMonth;
SELECT StoreState, TimeYear, TimeMonth, SUM(TotalSales1) as TotalSales

FROM Exercise18View

GROUP BY StoreState, ROLLUP(TimeYear, TimeMonth);
-- Solution 2 using a nested query in the FROM clause

SELECT StoreState, TimeYear, TimeMonth,
 SUM(TotalSales1) as TotalSales

FROM

 (SELECT StoreState, TimeYear, TimeMonth,
 SUM(TotalDollarSales) as TotalSales1
 FROM SSStore, SSTimeDim, SalesByStoreTimeMV2005 SS0

 WHERE SSStore.StoreId = SS0.StoreId

 AND SSTimeDim.TimeNo = SS0.TimeNo

 GROUP BY StoreState, TimeYear, TimeMonth
 UNION

 SELECT StoreState, TimeYear, TimeMonth,
 SUM(TotalDollarSales) as TotalSales1
 FROM SSStore, SSTimeDim, SalesByStoreTimeMV2006 SS1

 WHERE SSStore.StoreId = SS1.StoreId

 AND SSTimeDim.TimeNo = SS1.TimeNo

 GROUP BY StoreState, TimeYear, TimeMonth)

 GROUP BY StoreState, ROLLUP(TimeYear, TimeMonth);
19. Oracle CREATE MATERIALIZED VIEW statement for 2005 cost of store sales.

DROP MATERIALIZED VIEW SalesCostMV1;

CREATE MATERIALIZED VIEW SalesCostMV1

BUILD IMMEDIATE

REFRESH COMPLETE ON DEMAND

ENABLE QUERY REWRITE AS

SELECT CustZip, TimeYear, SUM(SalesUnits) AS SumUnits1,
 SUM(SalesCost) AS SumCost1
 FROM SSSales, SSCustomer, SSTimeDim
 WHERE SSSales.CustId = SSCustomer.CustId
 AND SSSales.TimeNo = SSTimeDim.TimeNo
 AND TimeYear <= 2005
 GROUP BY CustZip, TimeYear;

20. Oracle CREATE MATERIALIZED VIEW statement for USA cost of store sales.

DROP MATERIALIZED VIEW SalesCostMV2;

CREATE MATERIALIZED VIEW SalesCostMV2
BUILD IMMEDIATE

REFRESH COMPLETE ON DEMAND

ENABLE QUERY REWRITE AS

SELECT CustZip, TimeYear, TimeQuarter, SUM(SalesUnits) AS SumUnits2,

 SUM(SalesCost) AS SumCost2
 FROM SSSales, SSCustomer, SSTimeDim
 WHERE SSSales.CustId = SSCustomer.CustId
 AND SSSales.TimeNo = SSTimeDim.TimeNo
 AND CustNation = 'USA'
 GROUP BY CustZip, TimeYear, TimeQuarter;

21. Oracle CREATE MATERIALIZED VIEW statement for 2005 to 2006 average cost of store sales.

DROP MATERIALIZED VIEW SalesCostMV3;

CREATE MATERIALIZED VIEW SalesCostMV3

BUILD IMMEDIATE

REFRESH COMPLETE ON DEMAND

ENABLE QUERY REWRITE AS

SELECT CustZip, TimeYear, SUM(SalesUnits) AS SumUnits3,

 SUM(SalesCost) AS SumCost3
 FROM SSSales, SSCustomer, SSTimeDim
 WHERE SSSales.CustId = SSCustomer.CustId
 AND SSSales.TimeNo = SSTimeDim.TimeNo
 AND CustNation = 'Canada'
 AND TimeYear BETWEEN 2005 AND 2006
 GROUP BY CustZip, TimeYear;

22. Oracle CREATE MATERIALIZED VIEW statement for USA cost of store sales.

-- Data warehouse query

SELECT CustZip, TimeYear,
 SUM(SalesCost)/SUM(SalesUnits) AS SumUnitCost

 FROM SSSales, SSCustomer, SSTimeDim
 WHERE SSSales.CustId = SSCustomer.CustId
 AND SSSales.TimeNo = SSTimeDim.TimeNo
 AND TimeYear = 2005
 AND CustNation IN ('USA','Canada')

GROUP BY CustZip, TimeYear;

-- Query Rewrite: replace Sales and Time tables with SalesCostMV1
SELECT DISTINCT SMV1.CustZip, TimeYear,
 SumCost1/SumUnits1 AS SumUnitCost
FROM SalesCostMV1 SMV1, SSCustomer
WHERE SMV1.CustZip = SSCustomer.CustZip
 AND TimeYear = 2005

 AND CustNation IN ('USA','Canada');
23. Oracle CREATE MATERIALIZED VIEW statement for USA cost of store sales.

-- Data warehouse query

SELECT CustZip, TimeYear,
 SUM(SalesCost)/SUM(SalesUnits) AS SumUnitCost

 FROM SSSales, SSCustomer, SSTimeDim
 WHERE SSSales.CustId = SSCustomer.CustId
 AND SSSales.TimeNo = SSTimeDim.TimeNo
 AND TimeYear BETWEEN 2004 AND 2006
 AND CustNation IN ('USA','Canada')

GROUP BY CustZip, TimeYear;

-- Query Rewrite

SELECT DISTINCT SMV1.CustZip, TimeYear,
 SumCost1/SumUnits1 AS SumUnitCost
 FROM SalesCostMV1 SMV1, SSCustomer

 WHERE SMV1.CustZip = SSCustomer.CustZip

 AND TimeYear BETWEEN 2004 AND 2005

 AND CustNation IN ('USA','Canada')
UNION

SELECT DISTINCT SMV2.CustZip, TimeYear,
 SUM(SumCost2)/SUM(SumUnits2) AS SumUnitCost

 FROM SalesCostMV2 SMV2, SSCustomer

 WHERE SMV2.CustZip = SSCustomer.CustZip

 AND TimeYear = 2006
 GROUP BY SMV2.CustZip, TimeYear

UNION

SELECT DISTINCT SMV3.CustZip, TimeYear,
 SumCost3/SumUnits3 AS SumUnitCost

 FROM SalesCostMV3 SMV3, SSCustomer

 WHERE SMV3.CustZip = SSCustomer.CustZip

 AND TimeYear = 2006
 AND CustNation ='Canada';
_1179907128.vsd
Name

Table

InsuredParty
IPSSN
IPDrivLicNo
IPName
IPPhone
IPAddr
IPDOB
IPCityCurr
IPStateCurr
IPZipCurr
IPLocCurrBegEffDate
IPLocCurrEndEffDate
IPCityPrev
IPStatePrev
IPZipPrev
IPLocPrevBegEffDate
IPLocPrevEndEffDate

Type III Representation

_1179907224.vsd
Name

Table

Type II Representation

InsuredParty
IPSSN
VersionNo
IPDrivLicNo
IPState
IPName
IPPhone
IPAddr
IPDOB
IPCity
IPZip
IPRiskCat
IPLocBegEffDate
IPLocEndEffDate

_1179905765.vsd
Name

Table

InsuredParty
IPSSN
IPDrivLicNo
IPState
IPName
IPPhone
IPAddr
IPDOB
IPCity
IPZip
IPRiskCurr
IPRiskCurrBegEffDate
IPRiskCurrEndEffDate
IPRiskPrev
IPRiskPrevBegEffDate
IPRiskPrevEndEffDate

Type II Representation

Type III Representation

InsuredParty
IPSSN
VersionNo
IPDrivLicNo
IPState
IPName
IPPhone
IPAddr
IPDOB
IPCity
IPZip
IPRiskCat
IPRiskBegEffDate
IPRiskEndEffDate

