page
2
10/17/2005
Answers to the Chapter 17 Problems

Answers to Chapter 17 Problems

1.

CREATE FRAGMENT BoulderStudents AS

 SELECT * FROM student WHERE stdcampus = 'Boulder'
CREATE FRAGMENT DenverStudents AS

 SELECT * FROM student WHERE stdcampus = 'Denver'
2.

CREATE FRAGMENT BoulderFaculty AS

 SELECT * FROM faculty WHERE faccampus = 'Boulder'
CREATE FRAGMENT DenverFaculty AS

 SELECT * FROM faculty WHERE faccampus = 'Denver'
3.

CREATE FRAGMENT BoulderOfferings AS

 SELECT * FROM offering WHERE offcampus = 'Boulder'
CREATE FRAGMENT DenverOfferings AS

 SELECT * FROM offering WHERE offcampus = 'Denver'
4.

CREATE FRAGMENT BoulderEnrollments AS

 SELECT enrollment.* FROM enrollment, offering

 WHERE offcampus = 'Boulder' AND enrollment.offerno = offering.offerno
CREATE FRAGMENT DenverEnrollments AS

 SELECT enrollment.* FROM enrollment, offering

 WHERE offcampus = 'Denver' AND enrollment.offerno = offering.offerno

5.

SELECT course.courseno, crsdesc, offerno, offtime FROM offering, course

 WHERE course.courseno = offering.course AND offqtr = 'Spring' AND offyear = 2006
 AND crsdesc LIKE 'IS'
6.

SELECT course.courseno, crsdesc, offerno, offtime FROM DenverOfferings DO, course

 WHERE course.courseno = DO.course AND offqtr = 'Spring' AND offyear = 2006
 AND crsdesc LIKE 'IS'
UNION

SELECT course.courseno, crsdesc, offerno, offtime FROM BoulderOfferings BO, course

 WHERE course.courseno = BO.course AND offqtr = 'Spring' AND offyear = 2006
 AND crsdesc LIKE 'IS'
7.

SELECT course.courseno, crsdesc, offerno, offtime

 FROM DenverOfferings@Denver DO, course@Denver

 WHERE course@Denver.courseno = DO.course AND offqtr = 'Spring'

 AND offyear = 2006 AND crsdesc LIKE 'IS'
UNION

SELECT course.courseno, crsdesc, offerno, offtime

 FROM BoulderOfferings@Boulder BO, course@Boulder

 WHERE course@Boulder.courseno = BO.course AND offqtr = 'Spring'

 AND offyear = 2006 AND crsdesc LIKE 'IS'
8.

UPDATE offering

 SET offcampus = 'Denver', location = 'Plaza 112'

 WHERE offerno = 'O1'
9.

SELECT offerno, courseno, offqtr, offyear, facno, offtime, offdays

 INTO $X1, $X2, $X3, $X4, $X5, $X6, $X7

 FROM BoulderOfferings

 WHERE offerno = 'O1'
INSERT INTO DenverOfferings

 (offerno, courseno, offqtr, offyear, facno, offtime, offdays, offlocation, offcampus)

 VALUES ($X1, $X2, $X3, $X4, $X5, $X6, $X7, 'Plaza 112', 'Denver')

INSERT INTO DenverEnrollments

 SELECT * FROM BoulderEnrollments WHERE offerno = 'O1'
DELECT FROM BoulderEnrollments

 WHERE offerno = 'O1'
DELECT FROM BoulderOfferings

 WHERE offerno = 'O1'
10.

SELCT offerno, courseno, offqtr, offyear, facno, offtime, offdays

 INTO $X1, $X2, $X3, $X4, $X5, $X6, $X7

 FROM BoulderOfferings@Boulder

 WHERE offerno = 'O1'
INSERT INTO DenverOfferings@Denver

 (offerno, courseno, offqtr, offyear, facno, offtime, offdays, offlocation, offcampus)

 VALUES ($X1, $X2, $X3, $X4, $X5, $X6, $X7, 'Plaza 112', 'Denver')

INSERT INTO DenverEnrollments@Denver

 SELECT * FROM BoulderEnrollments WHERE offerno = 'O1'
DELECT FROM BoulderEnrollments@Boulder

 WHERE offerno = 'O1'
DELECT FROM BoulderOffering@Boulder

 WHERE offerno = 'O1'
11.1 Move the entire DenverFaculty fragment to the Boulder site and perform the query.

CT = 2,000 * 0.1 + (2,000 * 1,000) / 100,000 = 220 seconds

11.2 Move the entire BoulderOfferings fragment to the Denver site and perform the query.

CT = 20,000 * 0.1 + (20,000 * 1,000) / 100,000 = 2200 seconds

11.3 Move the restricted BoulderOfferings fragment to the Denver site and perform the query.

CT = 4,000 * 0.1 + (4,000 * 1,000) / 100,000 = 440 seconds

11.4 Move the restricted DenverFaculty fragment to the Boulder site and perform the query.

CT = 20 * 0.1 + (20 * 1,000) / 100,000 = 2.2 seconds

11.5 Restrict the DenverFaculty fragment and move the join values (FacNo) to the Boulder site. Join the FacNo values with the course table and BoulderOfferings fragment at the Boulder site. Move the result back to the Denver site to join with the DenverFaculty fragment.

CT (Denver to Boulder) = 20 * 0.1 + (20 * 32) / 100,000 = 2.0064 seconds

CT (Boulder to Denver) = 10 * 0.1 + (10 * 2,000) / 100,000 = 1.2 seconds

CT = 2.0064 + 1.2 = 3.2064 seconds

12. Microsoft provides a comprehensive solution for client-server computing and distributed databases. Here are important parts of the Microsoft solution for client-server computing and distributed databases. More information about these products can be found on the Microsoft website (www.microsoft.com) and the Microsoft Developer Network website (msdn.microsoft.com).

· SQL Server: relational database management system that provides query processing and transaction processing for distributed data in heterogeneous formats. SQL Server provides these services for remote data:

· Data Transformation Services (DTS) allows for the import, export, and transformation of data from heterogeneous data sources without any additional software investment.
· Support for distributed queries allows linking remote servers (using any OLE DB provider) and using data in queries that come from heterogeneous sources. This action is transparent to the client program, which sees the tables as if they were native SQL Server tables, and improves network traffic because the query engine tries to execute as much work as possible at the remote machine. In addition, data does not need to be moved; it continues to live in its native store.
· Support for distributed transactions
· Support for synchronization of replicated data
· Heterogeneous replication allows any Open Database Connectivity (ODBC) driver or OLE DB data provider to participate in replication.
· Component Object Model Plus (COM+): a distributed object protocol that supports N-tier client-server applications. COM+ supports communication among objects across platform and location boundaries. For distributed database processing, COM+ includes the Microsoft Transaction Server (MTS). MTS supplements the transaction-processing model of SQL Server with support for nested transactions. In addition, MTS supports role based security for distributed objects, thread pooling to reduce concurrency control overhead, and administration tools to support ease of configuration for client-server applications.

· Internet Information Server: web server that is integrated with other Microsoft client-server products.

· Microsoft Messaging Queuing Components (MSMQ): asynchronous messaging service for workflow applications. MSMQ allows messages from various sources, such as an Internet application, to be placed into a general dispatching queue, from where they are routed to a processing queue. Once the messages are in the queue, a COM component is invoked and performs the required business logic. Processes must be implemented to handle both the smart message routing and the instancing of the COM component for the received message.
· Object Database Connectivity (ODBC): a widely accepted application programming interface (API) for database access. It is based on the Call-Level Interface (CLI) specifications from X/Open and ISO/IEC for database APIs and uses the Structured Query Language (SQL) as its database access language. ODBC provides a driver manager and specifications for drivers. Most database management systems provide ODBC drivers through which data can be accessed. More information about ODBC can be found at http://www.microsoft.com/data/odbc/.

· OLEDB: an interface specification that provides for distributed data access without regard to the source or format of the data. SQL Server 2000 uses OLEDB to provide transparent access to remote, heterogeneous data sources.
· Application Data Objects (ADO): high-level interface to all kinds of data. ADO provides consistent, high-performance access to data, whether you're creating a front-end database client or middle-tier business object using an application, tool, language, or even an Internet browser. ADO is the single data interface you need to know for 1- to n-tier client/server and Web-based data-driven solution development. Learn more about ADO at the Microsoft website: http://www.microsoft.com/data/ado/prodinfo.htm.

· ADO.Net: an extension of ADO for Microsoft .Net applications. ADO.Net can be used to access relational database systems such as SQL Server 2000, and many additional data sources for which there is an OLE DB provider. Beyond the ADO capabilities, ADO.NET introduces some major changes and innovations specifically aimed at the loosely coupled, and inherently disconnected, nature of Web applications.
· The SQL Server 2000, Enterprise Edition can support groups of database servers that cooperate to form terabyte-sized databases accessed by thousands of users at the same time. The engine is capable of handling the traffic of any Web site in the world. The database engine also tunes itself, dynamically acquiring resources as more users connect to the database, and then freeing the resources as the users log off.

· XML support includes XML-Data schemas and the ability to specify XPath queries against these schemas, retrieval of XML data using the SELECT statement and the FOR XML clause, and writing XML data using the OpenXML rowset provider.
