3rd Edition: First Printing (5 March 2005). Corrigenda

Page 36, Example 1.9 and p. 108, Question1.16: " -3.725×10^{-3} " in the expression for λ should be " -5.88×10^{-3} " (p 36, 1st and 4th equations, and p. 108). All calculations are correct.
Page 249, lines 4 and 5 from bottom: Delete negative signs and change "largest" to "smallest". Corrected version:

$$
E_{B L}=\left(\frac{e}{2 m_{e}}\right) L B \cos \theta=\left(\frac{e}{2 m_{e}}\right) L_{z} B=\left(\frac{e \hbar_{l}}{2 m_{e}}\right) m_{\ell} B
$$

which depends on m_{ℓ}, and it is minimum for the smallest m_{ℓ}. Since $m_{\ell}=-\ell, \ldots$, Page 250, top: Delete negative sign in equation, change $-1 / 2$ to $+1 / 2$ and $+1 / 2$ to $-1 / 2$ and interchange "down" and "up". Corrected version:

$$
E_{S L}=\left(\frac{e \hbar_{l}}{m_{e}}\right) m_{s} B
$$

which depends on m_{s}. Since $m_{s}= \pm \frac{1}{2}, E_{S L}$ has only two values, positive ($m_{s}=+\frac{1}{2}$) and negative ($m_{s}=-\frac{1}{2}$), which add and subtract from the electron's energy depending on whether the spin is up or down. Thus, in an external magnetic field, the elec-
Page 277. Eq. 3.60. Delete negative sign in front of $h v$ and change h^{3} to h^{2} in denominator. Page 280. Delete negative sign in second equation from top. Page 281. Change 2 to 4 in denominator of second equation from top. Page 580. Question 6.21 b . " 500 " should be " 400 ". Page 581. Question 6.27 , last sentence. Add into parenthesis. "Also assume $\eta=1$ and I_{o} is proportional to n_{i}^{2}." Page 681. Question 7.27, line 2. "nC" should be "C".

